# Lecture 2: Coordinate Systems and Transformations

Scalar triple product, vector triple product, Cartesian coordinates, cylindrical coordinates, transformations between Cartesian and Cylindrical, Chapter 1: pages 15-25, Chapter 2: pages 29-33

#### **Triple Scalar Product**



This product, as the name implies, gives a scalar product of 3 vectors  $\mathbf{A} \bullet (\mathbf{B} \times \mathbf{C}) = \mathbf{B} \bullet (\mathbf{C} \times \mathbf{A}) = \mathbf{C} \bullet (\mathbf{A} \times \mathbf{B})$  (notice the cyclic expression)

This product gives the volume of the parallelogram whose edges are the three vectors

#### **Triple Scalar Product (Cont'd)**

This scalar product can be shown to be given by the determinant

$$\mathbf{A} \bullet (\mathbf{B} \times \mathbf{C}) = \begin{vmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix}$$
$$= A_x (B_y C_z - B_z C_y) - A_y (B_x C_z - B_z C_x) + A_z (B_x C_y - B_y C_x)$$

# **Vector Triple Product**

As the name implies, the result of this product is a vector using 3 other vectors

 $VTP = \mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$ 

**Related identities** 

 $A(B \cdot C) \neq (A \cdot B)C$  $C(A \cdot B) = (A \cdot B)C$ 

## **Components of a vector**



The projection of a vector **A** in the direction of a vector **B** is given by  $A_B = \mathbf{A} \cdot \mathbf{a}_B$ , where  $\mathbf{a}_B$  is the unit vector in the direction of **B** 

The vector projection of **A** in the direction of **B** is thus  $\mathbf{A}_B = (\mathbf{A} \cdot \mathbf{a}_B) \mathbf{a}_B$ 

The vector component of **A** normal to **B** is  $D=A-A_B$ 

#### **Cartesian (Rectangular) Coordinate System**



An origin and three orthogonal axis are first determined

Any point is determined by the intersection of 3 orthogonal planes

@Copyright Dr. Mohamed Bakr, EE 2FH3, 2014

P(1, 2, 3)

V

## **Cartesian Coordinates (Cont'd)**



principal planes satisfy: *x*=*const*., *y*=*const*., *z*=*const*.

<u>principal lines</u> are intersections of two principal planes:

$$x = const., y = const. (z \text{ varies})$$
  
 $y = const., z = const. (x \text{ varies})$   
 $z = const., x = const. (y \text{ varies})$ 

Where are these lines? line x = 0, y = 0line y = 0, z = 0line z = 0, x = 0

## **Cartesian Coordinates (Cont'd)**



-∞<*x*<∞ -∞<*y*<∞ -∞<*z*<∞

Directions of coordinate axes  $\mathbf{a}_x$ ,  $\mathbf{a}_y$ , and  $\mathbf{a}_z$  do not change from one point to another

The position vector of any point  $(x,y,z)=x\mathbf{a}_x+y\mathbf{a}_y+z\mathbf{a}_z$ 

Any vector with components  $(A_x, A_y, A_z)$  is written as  $\mathbf{A} = A_x \mathbf{a}_x + A_y \mathbf{a}_y + A_z \mathbf{a}_z$ 

# **Cylindrical Coordinates**





$$\rho = r\sin\theta$$

$$x = \rho \cos \varphi$$

$$y = \rho \sin \varphi$$

position coordinates ( $\rho$ ,  $\varphi$ , z) position vector  $\mathbf{R} = \rho \mathbf{a}_{\rho} + z \mathbf{a}_{z}$ No  $\varphi$  component (why?)

Notice that  $\mathbf{a}_{\rho}$  changes from one point to another as a function of  $\varphi$ ! Notice also that  $\mathbf{a}_{\varphi}$  is normal to the plane containing **R** and  $\mathbf{a}_{z}$ 

# **Cylindrical Coordinates (Cont'd)**



$$0 \le \rho, \ 0 \le \varphi \le 2\pi, \ -\infty < z < \infty$$

Any vector (not a position vector) with components ( $A_{\rho}$ ,  $A_{\varphi}$ ,  $A_z$ ) can be written as  $\mathbf{A} = A_{\rho} \mathbf{a}_{\rho} + A_{\varphi} \mathbf{a}_{\varphi} + A_z \mathbf{a}_z$ 

Because the cylindrical coordinates are mutually orthogonal, we have

$$\mathbf{A} = \sqrt{\mathbf{A}_{\rho}^2 + \mathbf{A}_{\varphi}^2 + \mathbf{A}_{z}^2}$$

$$\mathbf{a}_{\rho} \cdot \mathbf{a}_{\varphi} = 0, \ \mathbf{a}_{\rho} \cdot \mathbf{a}_{z} = 0, \ \mathbf{a}_{\varphi} \cdot \mathbf{a}_{z} = 0,$$

$$\mathbf{a}_{\rho} \cdot \mathbf{a}_{\rho} = \mathbf{1}, \ \mathbf{a}_{\varphi} \cdot \mathbf{a}_{\varphi} = \mathbf{1}, \ \mathbf{a}_{z} \cdot \mathbf{a}_{z} = \mathbf{1}$$

#### **Coordinate Transformations**



Cylindrical to Cartesian  $\begin{vmatrix} x = \rho \cos \phi \\ y = \rho \sin \phi \\ z = z \end{vmatrix}$ 

Cartesian to Cylindrical

$$\rho = \sqrt{x^2 + y^2}$$
  
$$\phi = \arctan\left(\frac{y}{x}\right)$$
  
$$z = z$$



#### **Vector Transformations (Cont'd)**

$$\mathbf{A} = \mathbf{A}_{x} \mathbf{a}_{x} + \mathbf{A}_{y} \mathbf{a}_{y} + \mathbf{A}_{z} \mathbf{a}_{z}$$

$$\mathbf{A} = \mathbf{A}_{x} (\cos \varphi \mathbf{a}_{\rho} - \sin \varphi \mathbf{a}_{\varphi}) + \mathbf{A}_{y} (\sin \varphi \mathbf{a}_{\rho} + \cos \varphi \mathbf{a}_{\varphi}) + \mathbf{A}_{z} \mathbf{a}_{z}$$

$$\mathbf{A} = (\mathbf{A}_{x} \cos \varphi + \mathbf{A}_{y} \sin \varphi) \mathbf{a}_{\rho} + (-\mathbf{A}_{x} \sin \varphi + \mathbf{A}_{y} \cos \varphi) \mathbf{a}_{\varphi} + \mathbf{A}_{z} \mathbf{a}_{z}$$

$$\mathbf{A} = (\mathbf{A}_{x} \cos \varphi + \mathbf{A}_{y} \sin \varphi) \mathbf{a}_{\rho} + (-\mathbf{A}_{x} \sin \varphi + \mathbf{A}_{y} \cos \varphi) \mathbf{a}_{\varphi} + \mathbf{A}_{z} \mathbf{a}_{z}$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{x} \\ \mathbf{A}_{\varphi} \\ \mathbf{A}_{z} \end{bmatrix} = \begin{bmatrix} \cos \varphi & \sin \varphi & 0 \\ -\sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{A}_{\varphi} \\ \mathbf{A}_{z} \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{A}_{\rho} \\ \mathbf{A}_{\varphi} \\ \mathbf{A}_{z} \end{bmatrix}$$

$$\mathbf{R} = \mathbf{R} = \mathbf{R}$$