
Lecture 2: Coordinate Systems 

and Transformations 
Scalar triple product, vector triple product, 

Cartesian coordinates, cylindrical coordinates, 

transformations between Cartesian and  

Cylindrical, Chapter 1: pages 15-25, Chapter 2: 

pages 29-33 
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Triple Scalar Product 

This product, as the name implies, gives a scalar product of 3 vectors 

                                                                          (notice the cyclic expression) 

 

This product gives the volume of the parallelogram whose edges are 
the three vectors 
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This scalar product can be shown to be given by the determinant 
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Triple Scalar Product (Cont’d) 
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As the name implies, the result of this product is a vector using 3 other 
vectors 

 

 

Related identities 
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Vector Triple Product 
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Components of a vector 

The projection of a vector A in the direction of a vector B is given by 

AB=A.aB, where aB is the unit vector in the direction of B 
 

The vector projection of A in the direction of B is thus AB=(A.aB) aB 
 

The vector component of A normal to B is D=A- AB 
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Cartesian (Rectangular) Coordinate System 

An origin and three orthogonal axis are first determined 
 

Any point is determined by the intersection of 3 orthogonal planes 
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Cartesian Coordinates (Cont’d) 
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principal planes satisfy: x=const.,  

y=const., z=const. 
 

principal lines are intersections of 

two principal planes: 

.,  . (  varies)
.,  . (  varies)
.,  . (  varies)

x const y const z
y const z const x
z const x const y
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Where are these lines? 



The position vector of any point (x,y,z)=xax+yay+zaz 

 

Any vector with components (Ax, Ay, Az) is written as A= Axax+ Ayay+ Azaz 
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Cartesian Coordinates (Cont’d) 

-<x< 

-<y< 

-<z< 

 

Directions of coordinate axes ax,  

ay, and az do not change from one 

point to another  
 



Cylindrical Coordinates 
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position coordinates (, , z) 

position vector 

No  component (why?) 

Notice that a changes from one point to another as a function of ! 
 

Notice also that a is normal to the plane containing R and az 



0  , 0    2,  -<z<  
 

Any vector (not a position vector) 

with components (A, A, Az) can 

be written as A= A a+A a+Az az 

 

Because the cylindrical coordinates 

are mutually orthogonal, we have 
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Cylindrical Coordinates (Cont’d) 
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Coordinate Transformations 
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Cylindrical to Cartesian 

Cartesian to Cylindrical 



Vector Transformations 
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cos sinx    a a a sin cosy    a a a

Given A= Axax+ Ayay+ Azaz, what are (A, A, Az)? 
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Vector Transformations (Cont’d) 

A= Axax+ Ayay+ Azaz 

A=Ax                                                + Ay                               + Azaz 

A=(Axcos+ Aysin)a+(- Axsin+ Aycos)a+Azaz 

 

 
 

(cos sin )  a a (sin cos )  a a
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In matrix form, we have 

cos sin 0A A

sin cos 0A A

0 0 1A A
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Remember what  means! 


