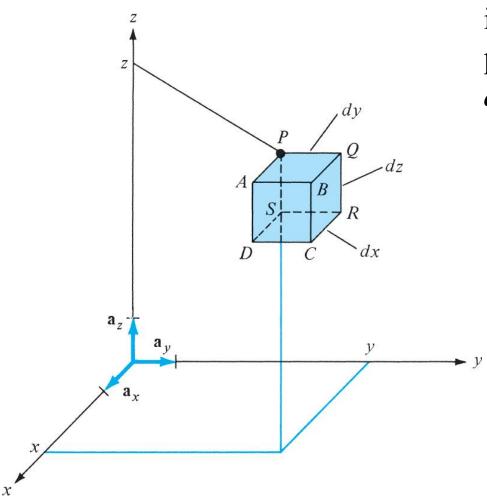
Lecture 4: Vector Calculus

Differential Elements, line integrals, surface integrals, volume integrals
Chapter 3, pages 57-67

Cartesian Differential Element

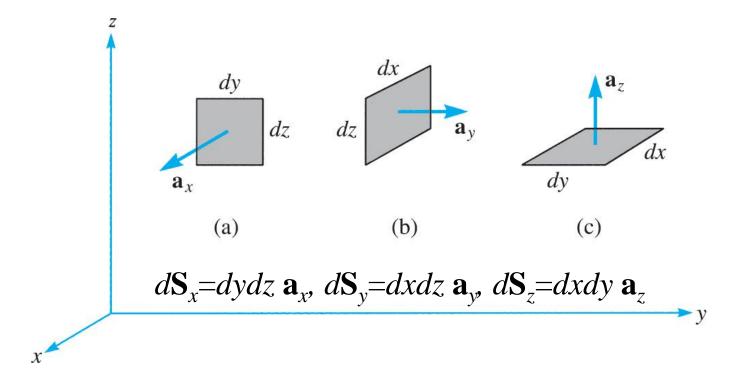


in moving from point S to point B, we increase x by dx, y by dy, and z by dz

the length element directed from S to B is $d\mathbf{l} = dx \, \mathbf{a}_x + dy \, \mathbf{a}_y + dz \, \mathbf{a}_z$

this differential elements defines 6 differential surfaces and one differential volume

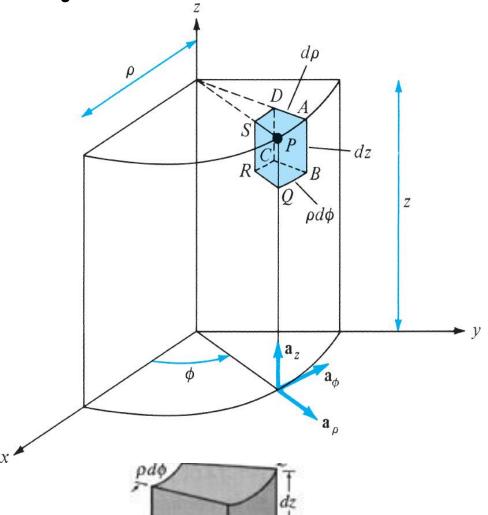
Differential Surfaces



notice that there are 3 other differential surfaces with opposite directions

differential volume dv=dydxdz

Cylindrical Differential Element

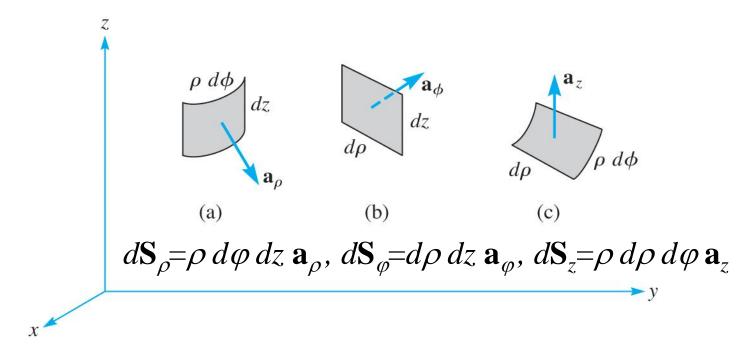


from point R to point A, we perturb ρ by $d\rho$, φ by $d\varphi$, and z by dz

the element has edges of lengths $d\rho$, $\rho d\varphi$, and dz: $d\mathbf{l} = d\rho \mathbf{a}_{\rho} + \rho d\varphi \mathbf{a}_{\varphi} + dz \mathbf{a}_{z}$

this differential element defines 6 differential surfaces and one differential volume

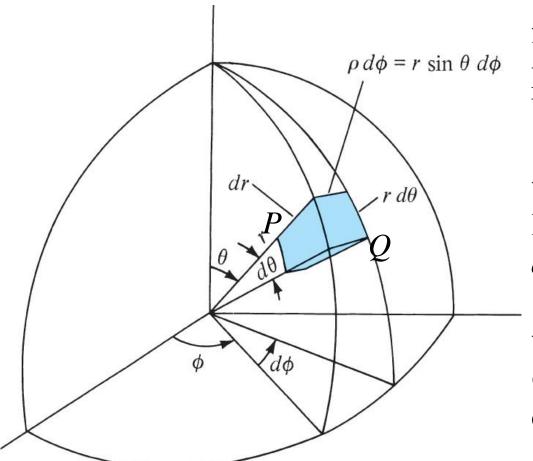
Differential Cylindrical Surfaces



three other differential area vectors are pointing in the opposite directions

differential volume $dv = \rho d\rho d\phi dz$

Differential Spherical Element

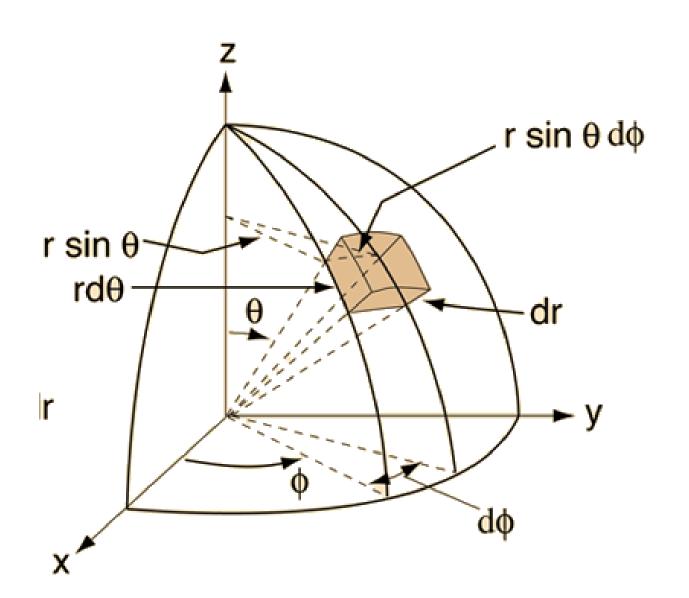


from point P to point Q, we perturb r by dr, θ by $d\theta$, and φ by $d\varphi$

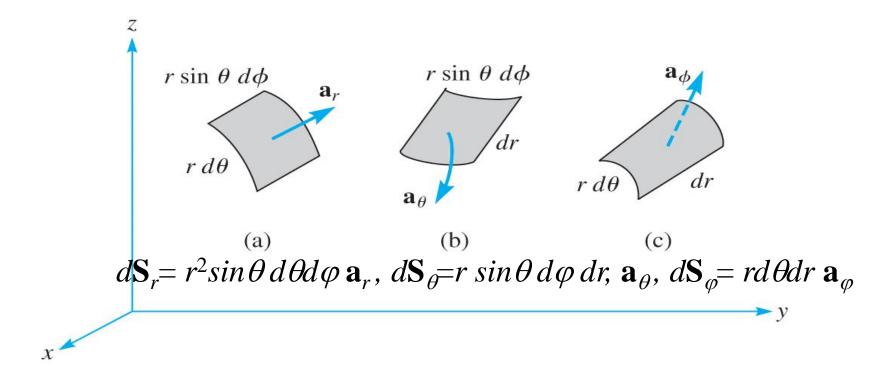
the element has edges of lengths dr, $rd\theta$, and $r\sin\theta d\varphi$: $dl = dr a_r + rd\theta a_\theta + r\sin\theta d\varphi a_\varphi$

this differential element defines 6 differential surfaces and one differential volume

Differential Spherical Element (Cont'd)

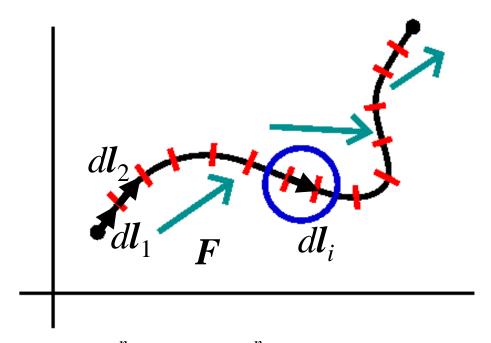


Differential Spherical Surfaces



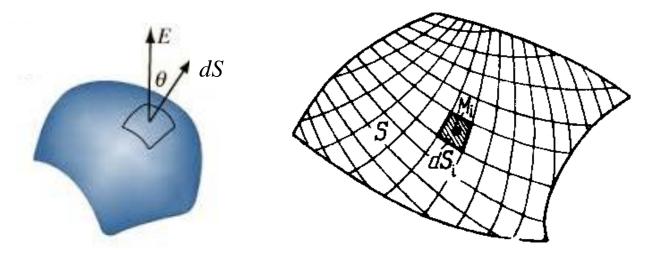
three other surface elements are points in the opposite directions the differential volume is $dv = r^2 sin\theta \, dr d\theta d\phi$

Motivation for Line Integrals



work done $W = \sum_{i=1}^{n} \boldsymbol{F} \cdot d\boldsymbol{l}_{i} = \sum_{i=1}^{n} F_{i} \cdot dl_{i} \cos \theta_{i}$ as $n \to \infty$, summation becomes a line integral $W = \int \boldsymbol{F} \cdot d\boldsymbol{l}$

Motivation for Surface Integrals

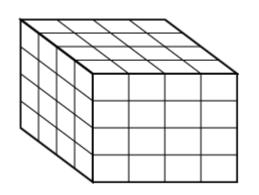


the flux of a vector through a small surface element is the product of the **normal component** of the vector with the area of that element $\psi_i = E_i \cos \theta_i dS_i$

Total flux over a surface =
$$\sum_{i=1}^{n} \psi_{i} = \sum_{i=1}^{n} E_{i} dS_{i} \cos \theta_{i} = \sum_{i=1}^{n} E_{i} \bullet dS_{i}$$

as $n \to \infty$, summation becomes a surface integral $\psi = \iint \mathbf{E} \cdot d\mathbf{S}$

Motivation for Volume Integrals



in the general case, the density of an object is not uniform

the mass of a differential volume element is given by $dm_i = \rho_i dv_i$

the total mass is the sum of all differential masses $m = \sum_{i=1}^{n} \rho_i dv_i$

as $n \to \infty$, summation becomes a volume integral $m = \iiint \rho dv$

dv can be a differential volume in any of the three coordinate systems