# Lecture 6: Vector Calculus 

Curl Operator, Stokes Theorem, Classification of<br>Vectors, Laplacian of a scalar, Chapter 3, pages 8095

## Motivation for Curl Operator



## Motivation (Cont'd)

the curl can be measured through a line integral


## Curl in Cartesian Coordinates

the curl is a vector normal to the plane of the line integral


The same approach can be repeated in the $x z$, and $x y$ planes to get the other two components of the curl

$$
[\nabla \times \mathbf{F}]_{x}=\lim _{\Delta y, \Delta \rightarrow \rightarrow 0} \frac{\oint_{C_{1}} \mathbf{F} . \mathbf{d l}}{\Delta y \Delta z}
$$

$$
\nabla \times \mathbf{A}=\left[\begin{array}{ccc}
\boldsymbol{a}_{x} & \boldsymbol{a}_{y} & \boldsymbol{a}_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\mathrm{~A}_{x} & \mathrm{~A}_{y} & \mathrm{~A}_{z}
\end{array}\right]
$$ operator

## Curl Expressions

$$
\begin{aligned}
& \nabla \times \mathbf{A}=\mathbf{a}_{x}\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right)+\mathbf{a}_{y}\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right)+\mathbf{a}_{z}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \\
& \nabla \times \mathbf{A}=\left(\frac{1}{\rho} \frac{\partial A_{z}}{\partial \phi}-\frac{\partial A_{\phi}}{\partial z}\right) \mathbf{a}_{\rho}+\left(\frac{\partial A_{\rho}}{\partial z}-\frac{\partial A_{z}}{\partial \rho}\right) \mathbf{a}_{\phi}+\frac{1}{\rho}\left[\frac{\partial\left(\rho A_{\phi}\right)}{\partial \rho}-\frac{\partial A_{\rho}}{\partial \phi}\right] \mathbf{a}_{z} \\
& (\nabla \times \mathbf{A})_{r}=\frac{1}{r \sin \theta}\left[\frac{\partial\left(A_{\phi} \sin \theta\right)}{\partial \theta}-\frac{\partial A_{\theta}}{\partial \phi}\right] \\
& (\nabla \times \mathbf{A})_{\theta}=\frac{1}{r}\left[\frac{1}{\sin \theta} \frac{\partial A_{r}}{\partial \phi}-\frac{\partial\left(r A_{\phi}\right)}{\partial r}\right] \\
& (\nabla \times \mathbf{A})_{\phi}=\frac{1}{r}\left[\frac{\partial\left(r A_{\theta}\right)}{\partial r}-\frac{\partial A_{r}}{\partial \theta}\right]
\end{aligned}
$$

## Illustrations of Rotational Vectors


$\mathbf{F}=-y \mathbf{a}_{x}+x \mathbf{a}_{y} \Rightarrow \nabla \times \mathbf{F}=2 \mathbf{a}_{z}$
the direction of curlF is along the axis of rotation (right-hand rule)
Rotational and Irrotational vectors (Cont'd)

$$
\nabla \times \mathbf{A} \neq \mathbf{0}
$$

$$
\nabla \times \mathbf{A}=\mathbf{0}
$$

$$
(\nabla \times \mathbf{F})_{z}<0
$$



$$
\xrightarrow[(\nabla \times \mathbf{F})_{z}>0]{\stackrel{\vec{H}_{\boldsymbol{H}}^{\mathbf{F}}}{\boldsymbol{H}}} \stackrel{\odot}{Z}
$$

## Stokes Theorem



$$
\oint_{C} \mathbf{H} \cdot d \mathbf{L}=\iint_{S}(\nabla \times \mathbf{H}) \cdot d \mathbf{S}
$$

## Stokes Theorem (Cont'd)


$i^{\text {th }}$ element of surface
Iskandar, 1992

- For the $i$ th element we have

$$
\lim _{\Delta S_{i} \rightarrow 0} \frac{\dot{\ell}_{i}}{\Delta S_{i}}=\text { curl F.n }
$$ or

[^0]
## Stokes Theorem (Cont'd)

summing for all elements we get

$$
\sum_{i=1}^{N} \oint_{\ell_{i}} \mathbf{F} \cdot \mathbf{d l}=\sum_{i=1}^{N}(\nabla \times \mathbf{F}) \cdot \Delta \mathbf{S}_{i}
$$

notice that the internal line integrals cancel out and only integration over the external contour remains
it follows that as $\Delta S_{i} \rightarrow 0$, we get

$$
\oint_{\ell} \mathbf{F} \cdot \mathbf{d l}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{d} \mathbf{S}
$$

## Classification of Vectors



## Laplacian Operator of a Scalar

the Laplacian of a scalar function is the divergence of its gradient

$$
\begin{aligned}
& \nabla \cdot \nabla \mathrm{V}=\nabla^{2} \mathrm{~V}=\left(\boldsymbol{a}_{x} \frac{\partial}{\partial x}+\boldsymbol{a}_{y} \frac{\partial}{\partial y}+\boldsymbol{a}_{z} \frac{\partial}{\partial z}\right) \\
&\left(\boldsymbol{a}_{x} \frac{\partial \mathrm{~V}}{\partial x}+\boldsymbol{a}_{y} \frac{\partial \mathrm{~V}}{\partial y}+\boldsymbol{a}_{z} \frac{\partial \mathrm{~V}}{\partial z}\right) \\
& \nabla^{2} \mathrm{~V}=\frac{\partial^{2} \mathrm{~V}}{\partial x^{2}}+\frac{\partial^{2} \mathrm{~V}}{\partial y^{2}}+\frac{\partial^{2} \mathrm{~V}}{\partial z^{2}} \quad \text { Laplace equation? }
\end{aligned}
$$

similar expressions can be derived through coordinate transformations for cylindrical and spherical coordinates

## Important Vector Identities

$\nabla \times(\mathbf{A}+\mathbf{B})=\nabla \times \mathbf{A}+\nabla \times \mathbf{B}$
$\nabla \cdot(\nabla \times \mathbf{A})=0$
$\nabla \times(\nabla \mathrm{V})=\mathbf{0}$
in Cartesian coordinates
$\nabla^{2} \mathbf{E}=\nabla^{2} \mathrm{E}_{x} \mathbf{a}_{x}+\nabla^{2} \mathrm{E}_{y} \mathbf{a}_{y}+\nabla^{2} \mathrm{E}_{z} \mathbf{a}_{z}$
in general
$\nabla^{2} \mathbf{E}=\nabla(\nabla \cdot \mathbf{E})-\nabla \times(\nabla \times \mathbf{E})$


[^0]:    $\oint_{\ell_{i}} \mathbf{F} . \mathbf{d l}=\operatorname{curl} \mathbf{F} . \Delta \mathbf{S}_{i}$

