Lecture 10: Electrostatics

Electric potential, relations between E and V, Chapter 4, pages 137-146

Work

 differential work $\quad d W=\mathbf{F} \cdot d \mathbf{L}=F d L \cos \alpha$ work done from A to $B$$$
W=\int_{A}^{B} \mathbf{F} \cdot d \mathbf{L}, \mathbf{J}
$$

work is positive if the applied force is in the direction of displacement $\stackrel{\Delta \mathbf{L}_{\infty}}{ } \mathbf{F}$

$$
\Delta W=F \Delta L>0
$$

work is negative if the applied force is opposite to the direction of displacement

$$
\stackrel{\mathbf{F}}{\Delta W=-F \Delta L<0}
$$

work is zero if force is orthogonal
$\Delta W=0$
$\Delta \mathbf{L}=0$
\mathbf{F}

Gravity Example (uniform motion)

$$
W_{m}=F_{m} \Delta L>0, \text { man does work }
$$

$$
W_{g}=F_{g} \Delta L \cos \alpha<0, \text { rock gains energy }
$$

$$
W_{m}=-W_{g}
$$

$$
F_{m}=-F_{g} \cos \alpha
$$

$W_{g}=F_{g} \Delta L \cos \alpha>0$, gravity does work (rock loses energy)
$W_{m}=-F_{m} \Delta L<0$
man provides enough friction to prevent acceleration, gains energy (heat)

Work Against Electric Field

work done against electric field to move a charge Q from point A to point B is

$$
W=-Q \int_{A}^{B} \mathbf{E} \cdot d \mathbf{L} \quad \text { why }- \text { ve sign? }
$$

Electrostatic Potential Difference

potential difference $V_{A B}$ is the work done by the electric field in moving a unit test charge from point B to point A

$$
V_{A B}=V_{B}-V_{A}=\int_{B}^{A} \mathbf{E} \cdot d \mathbf{L}, \mathrm{~V}
$$

OR: potential difference $V_{A B}$ is the work done by external forces in moving a unit test charge from point A to point B

$$
V_{A B}=V_{B}-V_{A}=-\int_{A}^{B} \mathbf{E} \cdot d \mathbf{L}, \mathrm{~V}
$$

Electrostatic Potential

the potential at a point A is the work done by the electric field in moving a unit test charge from point A to a reference point A_{0} where the potential is assumed equal to zero

OR: the potential at a point A is the work done by an external force in moving a unit test charge from a reference point A_{0}, where the potential is assumed equal to zero, to the point A.

$$
V_{A}=\int_{A}^{A_{0}} \mathbf{E} \cdot d \mathbf{L}=-\int_{A_{0}}^{A} \mathbf{E} \cdot d \mathbf{L}, \mathrm{~V}
$$

the electrostatic potential is the potential energy of a unit test charge

Potential of a Point Charge

assume potential is zero at infinity integrate along any radial line

$$
\begin{aligned}
& V_{A}=\int_{A}^{\infty} \mathbf{E} \cdot d \mathbf{L}=\int_{r_{A}}^{\infty} \frac{Q}{4 \pi \varepsilon r^{2}} \mathbf{a}_{R} \cdot \mathbf{a}_{R} d r \\
\Rightarrow & V_{A}=-\left.\frac{Q}{4 \pi \varepsilon} \frac{1}{r}\right|_{r_{A}} ^{\infty} \Rightarrow V_{A}=\frac{Q}{4 \pi \varepsilon} \frac{1}{r_{A}}
\end{aligned}
$$

the potential is the same for all points on the sphere of radius r_{A} the sphere is an equipotential surface notice the $1 / r$ dependence on distance!

Potential (Cont'd)

if the points charge is at \boldsymbol{r}^{\prime}, the potential at a point \boldsymbol{r} is given by

$$
V(\boldsymbol{r})=\frac{Q}{4 \pi \varepsilon\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}
$$

for a number of discrete charges, we have

$$
V(\boldsymbol{r})=\sum_{i=1}^{N} \frac{Q_{i}}{4 \pi \varepsilon\left|\boldsymbol{r}-\boldsymbol{r}_{i}^{\prime}\right|}
$$

remember that all these potentials are relative to a point in ∞ !

Potential (Cont'd)

for continuous charge distributions, we have

$$
\begin{array}{ll}
V(\boldsymbol{r})=\frac{1}{4 \pi \varepsilon} \int \frac{\rho_{L}\left(\boldsymbol{r}^{\prime}\right) d l^{\prime}}{4 \pi \varepsilon\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} & \text { line charge } \\
V(\boldsymbol{r})=\frac{1}{4 \pi \varepsilon} \int \frac{\rho_{s}\left(\boldsymbol{r}^{\prime}\right) d s^{\prime}}{4 \pi \varepsilon\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} & \text { surface charge } \\
V(\boldsymbol{r})=\frac{1}{4 \pi \varepsilon} \int \frac{\rho_{v}\left(\boldsymbol{r}^{\prime}\right) d v^{\prime}}{4 \pi \varepsilon\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} & \text { volume charge }
\end{array}
$$

Potential of a Line Charge

$$
\begin{aligned}
& V_{A B}=V_{B}-V_{A}=-\int_{A}^{B} \mathbf{E} \cdot d \mathbf{L}=-\int_{\rho_{A}}^{\rho_{B}} \frac{\rho_{L}}{2 \pi \rho} \mathbf{a}_{\rho} \cdot \mathbf{a}_{\rho} d \rho \\
& \Rightarrow V_{A B}=\frac{\rho_{l}}{2 \pi \varepsilon} \cdot \ln \left(\frac{\rho_{A}}{\rho_{B}}\right) \quad \begin{array}{l}
\text { Can we choose } \rho_{B} \text { or } \rho_{A} \text { at infinity } \\
\text { or at zero? }
\end{array}
\end{aligned}
$$

if we choose $\rho_{B}=1.0 \mathrm{~m}$, and $V\left(\rho_{B}\right)=0$, we get
$\Rightarrow V_{A B}=-V_{A}=\frac{\rho_{l}}{2 \pi \varepsilon} \cdot \ln \left(\rho_{A}\right) \Rightarrow V_{A}=\frac{\rho_{l}}{2 \pi \varepsilon} \cdot \ln \left(\frac{1}{\rho_{A}}\right)$

Relation between \mathbf{E} and \mathbf{V}

potential does not depend on contour of integration but on position of points
$V_{A B}=-\int_{\boldsymbol{C} 1} \boldsymbol{E} \cdot d \mathbf{L}=-\int_{C^{2}} \boldsymbol{E} . d \mathbf{L} \Rightarrow \oint \boldsymbol{E} . d \mathbf{L}=0 \quad$ ESF is conservative
using Stoke's Theorem, $\oint \mathbf{E} . d \mathbf{L}=\iint_{S}(\nabla \times \mathbf{E}) . d s=0 \Rightarrow(\nabla \times \mathbf{E})=\mathbf{0}$
it follows that
$\mathbf{E}=-\nabla V($ why? $)$

Relation between E and V (Cont'd)

the differential potential difference over a differential length $d \mathbf{L}$ is given by

$$
d V=-\mathbf{E} \cdot d \mathbf{L}=-E_{x} d x-E_{y} d y-E_{z} d z
$$

using first-order Taylor expansion, we have

$$
d V=\frac{\partial V}{\partial x} d x+\frac{\partial V}{\partial y} d y+\frac{\partial V}{\partial y} d z
$$

equating, we have

$$
E_{x}=-\frac{\partial V}{\partial x}, E_{y}=-\frac{\partial V}{\partial y}, E_{z}=-\frac{\partial V}{\partial z}
$$

