Lecture 11: Electrostatics

Electric dipole, electric energy, Chapter 4, pages 146-160

Electric Dipole

electric dipole: two point charges of equal charge but opposite polarity in close proximity

the dipole moment \mathbf{p} is the main characteristic (from $-Q$ to $+Q$!)
the dipole assumption: distance from dipole to observation point >>d

Dipole (Cont'd)

 the far-field assumption leads to$$
R_{+} \simeq r-\frac{d}{2} \cos \theta, R_{-} \simeq r+\frac{d}{2} \cos \theta
$$ using superposition

$$
\begin{gathered}
V(P)=\frac{Q}{4 \pi \varepsilon}\left(\frac{1}{R_{+}}-\frac{1}{R_{-}}\right) \\
V(P)=\frac{Q}{4 \pi \varepsilon}\left(\frac{1}{r-\frac{d}{2} \cos \theta}-\frac{1}{r+\frac{d}{2} \cos \theta}\right)=\frac{Q}{4 \pi \varepsilon} \frac{l \cos \theta}{\left[r^{2}-\left(\frac{d}{2} \cos \theta\right)^{2}\right]} \\
V(P) \simeq 0 \\
\approx \frac{Q d \cos \theta}{4 \pi \varepsilon r^{2}}=\frac{\mathbf{p} \cdot \mathbf{a}_{r}}{4 \pi \varepsilon r^{2}} \\
\text { @Copyright Dr. Mohamed Bakr, EE 2FH3, 2014 }
\end{gathered}
$$

Dipole (Cont'd)

dipole potential decreases with distance as $1 / r^{2}$
dipole potential is zero in the azimuthal plane $\theta=90 \mathrm{deg}$.

E field is obtained from V

$$
\begin{array}{r}
\mathbf{E}=-\nabla V=\frac{Q d}{4 \pi \varepsilon r^{3}}\left(2 \cos \theta \mathbf{a}_{r}+\right. \\
\left.\sin \theta \mathbf{a}_{\theta}\right)
\end{array}
$$

E field of dipole decreases with distance as $1 / r^{3}$

Potential Energy

the potential energy is the work done to build the system, i.e., to bring the charges together against the Coulomb forces
if the charges of the system were set free, this energy would set them into motion, i.e., be converted into kinetic energy
the potential of at a point P due to charge Q_{1}

$$
V_{1}(P)=\frac{Q_{1}}{4 \pi \varepsilon R_{1}}=\int_{R_{1}}^{\infty} \mathbf{E} \cdot d \mathbf{L}=-\int_{\infty}^{R_{1}} \mathbf{E} \cdot d \mathbf{L}, \quad \mathrm{~V}
$$

is the work done to bring a unit positive charge from infinity to the point P which is R_{1} (meters) away from Q_{1}

Potential Energy (Cont'd)

if a charge Q_{2} is brought at a distance R_{21} from the first charge Q_{1}, the energy spent is

$$
W_{21}=Q_{2} \cdot \frac{Q_{1}}{4 \pi \varepsilon R_{21}}=Q_{2} V_{21}, \quad \mathrm{~J}=\mathrm{C} \times \mathrm{V}
$$

it does not matter which charge is brought close to which

$$
W_{21}=W_{12}
$$

as long as Q_{1} and Q_{2} are held apart at a distance R_{12} the system holds $W_{21}=W_{12}$ energy

Potential Energy (Cont'd)

the potential of the $\left(Q_{1}, Q_{2}\right)$ system at a point P is now z^{P}

$$
V_{1}(P)+V_{2}(P)=\frac{Q_{1}}{4 \pi \varepsilon R_{1}}+\frac{Q_{2}}{4 \pi \varepsilon R_{2}}
$$

the work to bring over a third charge Q_{3} is

$$
W_{31}+W_{32}=Q_{3}\left(\frac{Q_{1}}{4 \pi \varepsilon R_{31}}+\frac{Q_{2}}{4 \pi \varepsilon R_{32}}\right)=Q_{3}\left(V_{31}+V_{32}\right)=W_{13}+W_{23}
$$

the total energy spent to built the system of three charges is

$$
\begin{aligned}
& W_{21}+W_{31}+W_{32}=\frac{1}{4 \pi \varepsilon}\left(\frac{Q_{2} Q_{1}}{R_{21}}+\frac{Q_{3} Q_{1}}{R_{31}}+\frac{Q_{3} Q_{2}}{R_{32}}\right)= \\
& Q_{2} V_{21}+Q_{3} V_{31}+Q_{3} V_{32}=W_{21}+W_{31}+W_{32}=W_{E}
\end{aligned}
$$

Potential Energy (Cont'd)

if charges are assembled in the opposite order $\left(Q_{3}\right.$, then Q_{2}, then Q_{1}, we get

$$
\begin{aligned}
& W_{23}+W_{13}+W_{12}=\frac{1}{4 \pi \varepsilon}\left(\frac{Q_{2} Q_{3}}{R_{23}}+\frac{Q_{1} Q_{3}}{R_{13}}+\frac{Q_{1} Q_{2}}{R_{12}}\right)= \\
& Q_{2} V_{23}+Q_{1} V_{13}+Q_{1} V_{12}=W_{23}+W_{13}+W_{12}=W_{E}
\end{aligned}
$$

sum both results to get:

$$
\begin{aligned}
& Q_{1}\left(V_{12}+V_{13}\right)+Q_{2}\left(V_{21}+V_{23}\right)+Q_{3}\left(V_{31}+V_{32}\right)=2 W_{E} \\
& \Rightarrow W_{E}=\frac{1}{2} \sum_{i=1}^{3} Q_{i} V_{i}
\end{aligned}
$$

in general, for N charges, $W_{E}=\frac{1}{2} \sum_{n=1}^{N} Q_{n} V_{n}$ where $V_{n}=\sum_{\substack{k=1 \\ k \neq n}}^{N} V_{n, k}$

Energy of a System

$$
W_{E}=\frac{1}{2} \sum_{n=1}^{N} Q_{n} V_{n} \text { where } V_{n}=\sum_{\substack{k=1 \\ k \neq n}}^{N} V_{n, k}
$$

The total electrostatic energy W_{E} of a system of discrete charges is the sum of the energies of all possible pairs of charges.
if charge is distributed in a volume
$W_{E}=\frac{1}{2} \iiint_{v} \rho_{v} V d v$

Energy Density

$$
\begin{aligned}
W_{E} & =\frac{1}{2} \iiint_{V} V \underbrace{V(\nabla \cdot \mathbf{D})}_{\rho_{v}} d v=\frac{1}{2} \iiint_{v}[\nabla \cdot(V \mathbf{D})-\mathbf{D} \cdot \nabla V] d v \\
\Rightarrow W_{E} & =\frac{1}{2} \oiint_{S_{[v]}}(V \mathbf{D}) \cdot d \mathbf{s}-\frac{1}{2} \iiint_{v}(\mathbf{D} \cdot \nabla V) d v
\end{aligned}
$$

to account for all energy allow the volume v to expand to infinity $|\mathbf{D}| \sim 1 / R^{2}, V \sim 1 / R,|d \mathbf{s}| \sim R^{2} \Rightarrow \lim _{R \rightarrow \infty} \oiint_{S_{[v]}}(V \mathbf{D}) \cdot d \mathbf{s}=0$

$$
\leadsto W_{E}=\frac{1}{2} \iiint_{v \rightarrow \infty}(\mathbf{D} \cdot \mathbf{E}) d v, \mathbf{J}
$$

Energy Density (Cont'd)

energy integral in an isotropic medium where $\mathbf{D}=\varepsilon \mathbf{E}$

$$
W_{E}=\frac{1}{2} \iiint_{v \rightarrow \infty} \varepsilon|\mathbf{E}|^{2} d v \quad W_{E}=\frac{1}{2} \iiint_{v \rightarrow \infty} \frac{|\mathbf{D}|^{2}}{\varepsilon} d v
$$

energy density and the field vectors

$$
w_{E}=\frac{1}{2} \mathbf{D} \cdot \mathbf{E}, \mathrm{~J} / \mathrm{m}^{3}
$$

energy density in an isotropic medium

$$
w_{E}=\frac{1}{2} \varepsilon|\mathbf{E}|^{2} \quad w_{E}=\frac{1}{2} \frac{|\mathbf{D}|^{2}}{\varepsilon}
$$

