Lecture 14: Electrostatics

continuity equation, relaxation time, boundary conditions, Chapter 5, pages 192-206

Continuity Equation

$$I_{out} = \oint \mathbf{J}.d\mathbf{S} = -\frac{\partial Q}{\partial t} = -\frac{\partial}{\partial t} \iiint_{V} \rho_{v} dv$$
$$\iiint_{V} \nabla \cdot \mathbf{J} dv = -\frac{\partial}{\partial t} \iiint_{V} \rho_{v} dv$$

if the positive charge density is decreasing at a point with time then current is flowing out (diverging) from this point

Relaxation Time

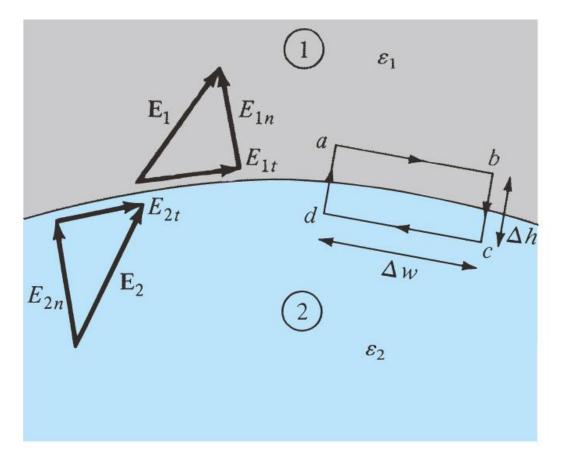
if a volume charge is initially placed inside a material with a finite conductivity, the charge disperses towards the boundaries with time

starting with the continuity equation $\nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t}$, using $\mathbf{J} = \sigma \mathbf{E}$, and noting that $\nabla \cdot \mathbf{E} = \rho_v / \varepsilon$, we get $\partial \rho_v = \sigma \mathbf{E} = \frac{\partial \rho_v}{\partial t}$, using $\mathbf{J} = \sigma \mathbf{E}$,

$$\frac{\partial \rho_v}{\partial t} = -\frac{\partial}{\varepsilon} \rho_v \Longrightarrow \rho_v = \rho_{vo} e^{-t/T_r}, \ T_r = \frac{\varepsilon}{\sigma}$$

for a perfect conductor $T_r=0$, and for an ideal dielectric $T_r=\infty$

Tangential Electric Fields



as the electric field is conservative, we have

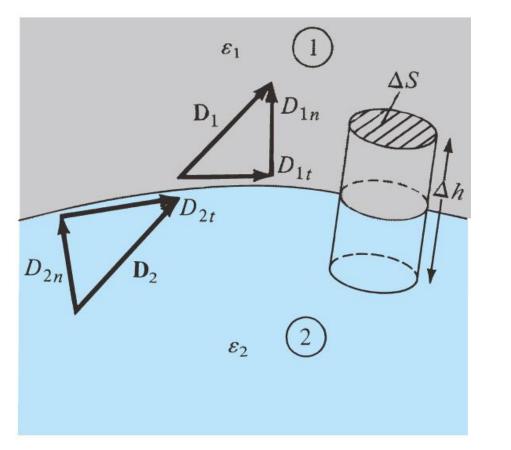
 $\oint \mathbf{E}.\mathbf{dL} = 0$

as $\Delta h \rightarrow 0$, we have

$$E_{1T}\Delta w - E_{2T}\Delta w = 0$$
$$\bigcup_{E_{1T}} E_{2T} = E_{2T}$$

tangential component of electric field is continuous across the interface!

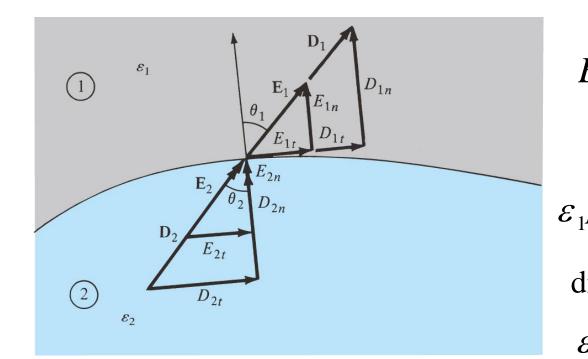
Normal E Component



applying Gauss' law as $\Delta h \rightarrow 0$ $D_{1n}\Delta s - D_{2n}\Delta s = \rho_s \Delta s$ $D_{1n} - D_{2n} = \rho_{s}$ if $\rho_s = 0$ $\mathcal{E}_1 E_{1n} = \mathcal{E}_2 E_{2n}$ $E_{2n} \stackrel{\checkmark}{=} \frac{\mathcal{E}_1}{\mathcal{E}_2} E_{2n}$

normal component of electric field is discontinuous across the interface!

Interface of Two Dielectrics



$$E_{1T} = E_{2T}$$

$$E_{1}\sin(\theta_{1}) = E_{2}\sin(\theta_{2})$$

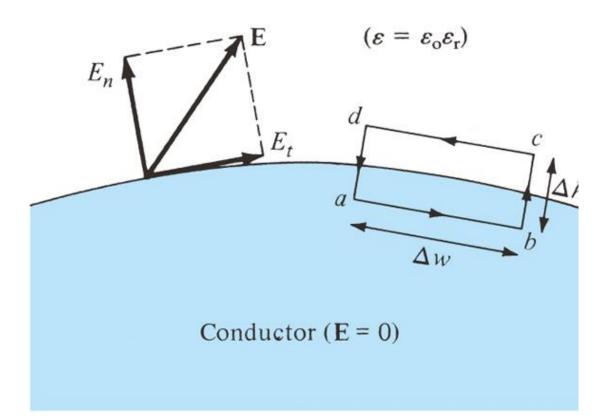
$$\varepsilon_{1}E_{1n} = \varepsilon_{2}E_{2n}$$

$${}_{1}E_{1}\cos(\theta_{1}) = \varepsilon_{2}E_{2}\cos(\theta_{2})$$
dividing, we get
$$\varepsilon_{2}\tan(\theta_{1}) = \varepsilon_{1}\tan(\theta_{2})$$

$$\bigcup_{1} \frac{\tan(\theta_{1})}{\tan(\theta_{2})} = \frac{\varepsilon_{1}}{\varepsilon_{2}}$$

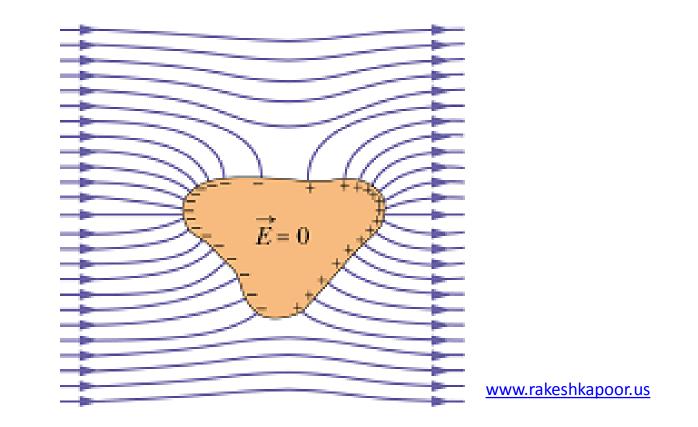
Dielectric-Conductor Interface

Dielectric



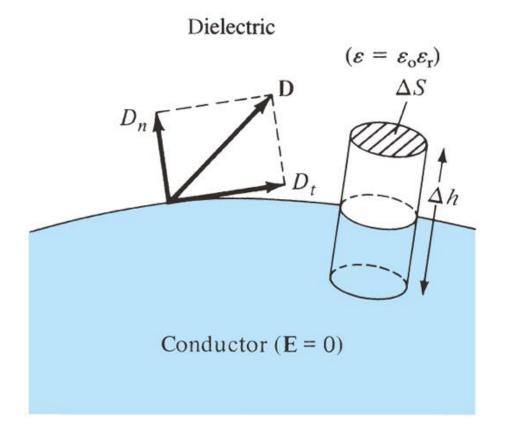
because there is no field inside the conductor, $E_t=0$ at the dielectricconductor interface

Fields and Perfect Conductors



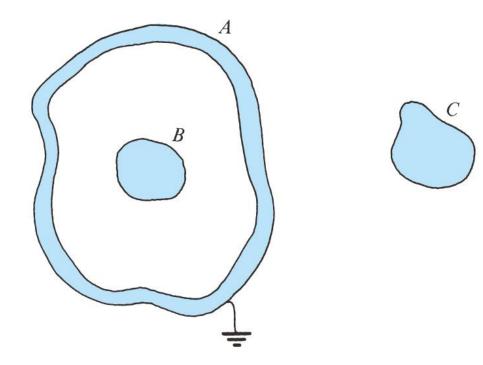
field lines meets a perfect conductor at a right angle

Dielectric-Conductor Interface (Cont'd)



because there is no field inside the conductor, $D_n = \rho_s$

Electrostatic Shielding



by surrounding a region by a grounded conductor, this region becomes electromagnetically isolated from any fields or charges outside the shield