
Lecture 14: Electrostatics 

Poisson and Laplace Equations, Uniqueness 
Theorem Chapter 6, pages 215-239 

@Copyright Dr. Mohamed Bakr, EE 2FH3, 2014 



Poisson and Laplace Equations 
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if   does not change within the considered region, we have   
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second order partial differential equation to be solved for V 
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Uniqueness Theorem 

if V1(r) is a solution for Laplace equation that satisfies the 

boundary conditions and if V2(r) is also a solution for Laplace 

equation that satisfies the boundary conditions, then we must 

have V1(r) = V2(r) (solution is unique) 
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Laplacian Operator 
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Procedure for Solving BVPs 

use separation of variables, if needed, to solve for V(r) in terms of 

unknown coefficients 
 

apply boundary conditions to determine the unknown coefficients 
 

obtain E and D as a by product using V(r) 
 

we have now a third approach for solving for E! 
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