Lecture 14: Electrostatics

Poisson and Laplace Equations, Uniqueness
Theorem Chapter 6, pages 215-239
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Poisson and Laplace Equations

starting with

VeD=p,
and using E = —VV one gets,

Ve(eVV)=-p,
If £does not change within the considered region, we have

VA = —p,l & (Poisson Equation)
vy =0 (Laplace equation, p,=0)

second order partial differential equation to be solved for V



Uniqueness Theorem

If V,(r) is a solution for Laplace equation that satisfies the
boundary conditions and if V,(r) is also a solution for Laplace
equation that satisfies the boundary conditions, then we must
have V,(r) = V,(r) (solution is unique)



Laplacian Operator
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Procedure for Solving BVPs

use separation of variables, if needed, to solve for V(r) in terms of
unknown coefficients

apply boundary conditions to determine the unknown coefficients
obtain E and D as a by product using V(r)

we have now a third approach for solving for E!



