
Lecture 16: Electrostatics

Resistance and Capacitance, Chapter 6, pages 239-256

Two Conductors

Evaluating Resistance between Two Conductor

start with Poisson's or Laplace's equations to determine V(r)

evaluate electric field using $\mathbf{E} = -\nabla V$

evaluate current density using $J = \sigma E$

evaluate current flowing between the two conductors using

$$I = \iint_{S} \mathbf{J}.d\mathbf{S}$$
 conductance is given by $G = \frac{I}{V_a - V_b}$

Evaluating Capacitance (V-method)

start with Poisson's or Laplace's equations to determine V(r)

evaluate electric field using $\mathbf{E} = -\nabla V$

evaluate **D** using $D = \varepsilon E$

evaluate electric flux diverging from the positive conductor using

$$Q = \psi = \oiint \mathbf{D}.d\mathbf{S}$$

capacitance is given by
$$C = \frac{Q}{V_a - V_b}$$

Evaluating Capacitance (Q-method)

start by assuming a charge Q on one of the positive conductor apply Gauss Law to solve for \mathbf{D}

evaluate **E** using $E=D/\varepsilon$

evaluate potential difference between the two conductors using

$$V_a - V_b = \int_a^b \mathbf{E}.d\mathbf{L}$$

capacitance is given by
$$C = \frac{Q}{V_a - V_b}$$