Lecture 17: Electrostatics

Method of Images, Applications, Chapter 6, pages

$$
256-267
$$

Uniqueness Theorem

if $V_{1}(\boldsymbol{r})$ is a solution for Laplace equation that satisfies the boundary conditions and if $V_{2}(\boldsymbol{r})$ is also a solution for Laplace equation that satisfies the boundary conditions, then we must have $V_{1}(\boldsymbol{r})=V_{2}(\boldsymbol{r})$ (solution is unique)
keeping the same boundary conditions and the same charge distribution results in the same solution
simpler problems can be solved through using image charges

A Point Charge above a Ground Plane

the positive charge induces negative surface charges resulting in a difficult problem to solve as ρ_{s} is unknown!

The Equivalent Problem

adding a negative charge $-Q$
satisfies the boundary conditions
for the top half space
the charge distribution is unchanged in the top half space
it follows, by the Uniqueness Theorem, that the solution will be exactly the same for $z \geq 0$!
the field anywhere in the top half space is the sum of the fields resulting from the charge and its image!

The Equivalent Problem (Cont'd)

The Equivalent Problem (Cont'd)

at $z=0$, we have
$\mathbf{D}=\frac{-h Q}{2 \pi}\left[\frac{\boldsymbol{a}_{z}}{\left(x^{2}+y^{2}+h^{2}\right)^{3 / 2}}\right] \Rightarrow \rho_{s}(x, y)=D_{n}=\left[\frac{-h Q}{2 \pi\left(x^{2}+y^{2}+h^{2}\right)^{3 / 2}}\right]$
integrating this surface charge density over the whole surface of the ground plane we get $-Q$!
the flux diverging out from the positive charge Q terminates at the distributed negative surface charge $-Q$!

The General Case

add image charges (discrete, linear, or volumetric) to maintain the same boundary conditions and solve a much simpler problem
solution is valid only for $z \geq 0$!

