Lecture 22: Magnetostatics

Magnetic torque, magnetic dipole, applications, Chapter 8, pages 343-350

@Copyright Dr. Mohamed Bakr, EE 2FH3, 2014

Torque Due to Magnetic Field

this definition of magnetic moment is general for any planar current loop

Magnetic Dipole

the magnetic vector potential of the current loop is obtained using

$$\mathbf{A} = \frac{\mu_{o}I}{4\pi} \oint \frac{d\mathbf{l}}{R}$$

$$d\mathbf{l} = ad\varphi \boldsymbol{a}_{\varphi} = ad\varphi(-\sin\varphi \boldsymbol{a}_{x} + \cos\varphi \boldsymbol{a}_{y})$$

select coordinate system such that *P* has zero *y*-coordinate

$$\mathbf{R} = \mathbf{r} - \mathbf{r}' = (x\mathbf{a}_x + z\mathbf{a}_z) - (a\cos\varphi\mathbf{a}_x + a\sin\varphi\mathbf{a}_y)$$
$$\mathbf{R} = (x - a\cos\varphi)\mathbf{a}_x + (-a\sin\varphi)\mathbf{a}_y + (z)\mathbf{a}_z$$

x

 $P(r, \theta, \phi)$

 $d\mathbf{1}$

Magnetic Dipole (Cont'd)

$$R^{2} = x^{2} + z^{2} + a^{2} - 2ax\cos\varphi$$
$$R^{2} \approx (x^{2} + z^{2}) \left(1 - \frac{2ax\cos\varphi}{(x^{2} + z^{2})} \right)$$
$$R^{-1} = (x^{2} + z^{2})^{-1/2} \left(1 + \frac{ax\cos\varphi}{(x^{2} + z^{2})} \right)$$

as the *x*-component of the vector potential vanishes (why?), we have

$$A_{y} = \frac{\mu_{o}Ia}{2\pi(x^{2}+z^{2})^{1/2}} \int_{0}^{\pi} (\cos\varphi + \frac{ax\cos^{2}\varphi}{x^{2}+z^{2}}) d\varphi = \frac{\mu_{o}Ia^{2}x}{4(x^{2}+z^{2})^{3/2}}$$

using x=rsin θ , z=rcos θ , $\mathbf{a}_{y} = \mathbf{a}_{\varphi}$, we have
$$A_{\varphi} = \frac{\mu_{o}I\pi a^{2}\sin\theta}{4\pi r^{2}}$$

@Copyright Dr. Mohamed Bakr, EE 2FH3, 2014

Magnetic Dipole (Cont'd)

magnetic vector potential can be written as

$$\mathbf{A} = \frac{\mu_{o} \mathbf{m} \times \mathbf{a}_{r}}{4\pi r^{2}}, \ \mathbf{m} = I\pi a^{2} \mathbf{a}_{z}$$

the corresponding magnetic flux density vector is given by

$$\boldsymbol{B} = \frac{\mu_{o}m}{4\pi r^{3}} (2\cos\theta \boldsymbol{a}_{r} + \sin\theta \boldsymbol{a}_{\theta})$$

these two expressions are very similar to the ones for the electric dipole!

the magnetic field resulting from a magnetic loop and a small bar magnet are similar

the bar magnet can be used to define an equivalent magnetic dipole

Small Bar Magnet (Cont'd)

 $T=m \times B = Q_m l \times B$

torque tends to align the bar in the direction of the external magnetic field!

same effect can be observed for small current loops