Lecture 24: Magnetostatics

Inductors and inductances, Chapter 8, 362-366

@Copyright Dr. Mohamed Bakr, EE 2FH3, 2014

Flux Linkage

Flux linkage is the sum of all fluxes piercing the surfaces bounded by all turns (the total flux "linking" the turns)

ideal scenario: each turn creates the same flux ψ and this flux "links" all turns (no leakage)

$$\lambda = N\psi$$
, Wb

if flux density **B** is uniform inside the coil, the flux linkage is

$$\lambda = NBS$$
, Wb $B \sim NI \Rightarrow \lambda \sim N^2 I$

@Copyright Dr. Mohamed Bakr, EE 2FH3, 2014

 $\psi = B \cdot S$ $\lambda = N \psi$

Self Inductance

for a linear medium, flux linkage is linearly proportional to the current $\lambda = LI$, where *L* is the self inductances

$$L = \frac{\lambda_{\text{self}}}{I}$$

self inductance (or simply inductance) is defined for a single inductor

the inductance is related to the stored energy through the expression

$$W_m = \frac{1}{2}LI^2 \implies L = \frac{2W_m}{I^2}$$

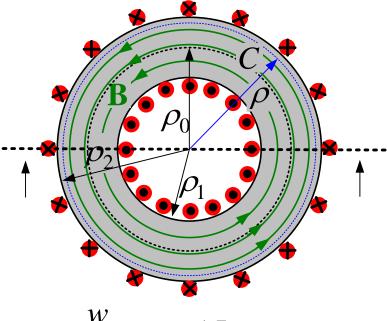
self inductance may be defined in terms of energy!

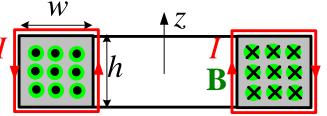
Example: A toroid

$$H_{\phi} = \frac{N \cdot I}{2\pi\rho}, \text{ H/m, } \rho_{1} \leq \rho \leq \rho_{2}$$
$$\psi = \int_{0}^{h} \int_{\rho_{1}}^{\rho_{2}} \mu H_{\phi} d\rho dz = \mu \frac{NIh}{2\pi} \ln\left(\frac{\rho_{2}}{\rho_{1}}\right)$$
$$\lambda = N\psi = \mu \frac{N^{2}Ih}{2\pi} \ln\left(\frac{\rho_{2}}{\rho_{1}}\right), \text{ Wb}$$
$$L = \mu \frac{N^{2}h}{2\pi} \ln\left(\frac{\rho_{2}}{\rho_{1}}\right), \text{ H}$$

if toroid is thin, field is mostly uniform

$$H_{\phi} = \frac{N \cdot I}{2\pi\rho_0} \Longrightarrow \psi = \mu \frac{NIA}{2\pi\rho_0} \Longrightarrow L = \mu \frac{N^2 A}{2\pi\rho_0}$$





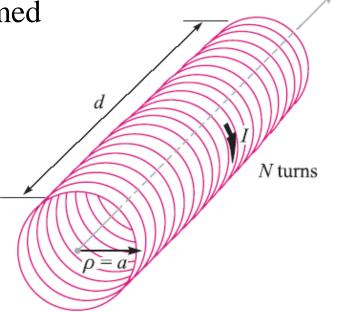
 $\rho_0 = 0.5(\rho_1 + \rho_2) \\ A = h(\rho_2 - \rho_1)$ w

@Copyright Dr. Mohamed Bakr, EE 2FH3, 2014

Inductance of a Solenoid

the field of a long thin solenoid is assumed uniform inside the solenoid

$$H_{z} = \frac{NI}{d}, \text{ A/m}$$
$$\psi = \mu \cdot \frac{NI}{d} \cdot A$$
$$\Rightarrow \lambda = N\psi = \mu \frac{N^{2}IA}{d}, \text{ Wb}$$
$$\Rightarrow L = \mu \frac{N^{2}A}{d}, \text{ H}$$

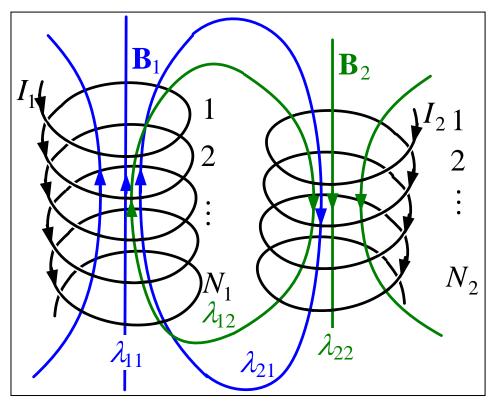


Mutual Flux Linkage

mutual-flux linkage is due to currents in other inductors

mutual-flux linkage implies two coupled coils

$$\begin{split} \psi_{12} &= \int_{S1} \mathbf{B}_{2} \cdot d\mathbf{S} \\ \lambda_{1} &= \lambda_{11} + \lambda_{12}, \ \lambda_{2} &= \lambda_{22} + \lambda_{21} \\ \lambda_{11} &= N_{1} \psi_{11} \sim N_{1}^{2} I_{1} \\ \lambda_{12} &= N_{1} \psi_{12} \sim N_{1} N_{2} I_{2} \\ \lambda_{22} &= N_{2} \psi_{22} \sim N_{2}^{2} I_{2} \\ \lambda_{21} &= N_{2} \psi_{21} \sim N_{2} N_{1} I_{1} \end{split}$$



Mutual Inductance

mutual inductance M_{12} is the flux linking the first conductor due to the current in the second conductor

$$M_{12} = \frac{\lambda_{12}}{I_2} = \frac{N_1 \Psi_{12}}{I_2}, H$$

similarly, the mutual inductance M_{21} is the flux linking the second conductor due to the current in the first conductor

$$M_{21} = \frac{\lambda_{21}}{I_1} = \frac{N_2 \psi_{21}}{I_1}, \,\mathrm{H}$$

it can be shown that for a linear surrounding medium $M_{12}=M_{21}$ the magnetic energy of the system is

$$W_{m} = W_{1} + W_{2} + W_{12} = \frac{1}{2} L_{1} I_{1}^{2} + \frac{1}{2} L_{2} I_{2}^{2} \pm M_{12} I_{1} I_{2}$$

Mutual Inductance Between a Wire and a Loop

straight wire with current and rectangular loop

$$B_{\phi} = \frac{\mu}{2\pi} \cdot \frac{I}{\rho}, \text{ T}$$

$$\psi_{21} = \int_{0}^{h} \int_{\rho_{1}}^{\rho_{2}} B_{\phi} d\rho dz = \frac{\mu I}{2\pi} \cdot h \cdot \ln\left(\frac{\rho_{2}}{\rho_{1}}\right), \text{ Wb}$$

$$I$$

$$M_{21} = \frac{\psi_{21}}{I} = \frac{\mu h}{2\pi} \ln\left(\frac{\rho_{2}}{\rho_{1}}\right), \text{ H}$$

$$I$$

$$I$$

if rectangular loop consists of N tightly wound turns

$$M_{21} = \frac{N\psi_{21}}{I} = \frac{\mu h N}{2\pi} \ln\left(\frac{\rho_2}{\rho_1}\right)$$

@Copyright Dr. Mohamed Bakr, EE 2FH3, 2014