Lecture 8: Electrostatics

Superposition: line charges, surface charges, volume charges, Chapter 4: pages 115-126

Charge Distributions

Point charge

Surface charge

Volume charge
line charge: charges are aligned in a line. linear charge density C / m surface charge: charges are distributed over a surface. surface charge density $\mathrm{C} / \mathrm{m}^{2}$
volume charge: charges distributed over a volume. volumetric charge density $\mathrm{C} / \mathrm{m}^{3}$

ESF of a Uniform Line Charge

 the line charge is represented by an infinite number of infinitesimal line elements of charge$$
d Q=\rho_{l} d z^{\prime}
$$

the field of the line charge is a superposition of the fields created by each linear charge element $d Q$.

$$
R=\frac{\rho}{\sin \alpha} \left\lvert\,, z^{\prime}=\rho \cot \alpha \Rightarrow d z^{\prime}=-\frac{\rho}{\sin ^{2} \alpha} d \alpha\right.
$$

ESF of a Uniform Line Charge (Cont'd)

 the contribution of each differential element is$$
\begin{aligned}
& d \mathbf{E}=\frac{\rho_{l} d z^{\prime}}{4 \pi \varepsilon} \cdot \frac{\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} \\
& \mathbf{r}^{\prime}=z^{\prime} \mathbf{a}_{z}, \rho^{\prime}=0 \\
& \mathbf{r}=\rho \mathbf{a}_{\rho}, z=0,0 \leq \phi<2 \pi
\end{aligned}
$$

problem is cylindrically symmetric - choice of ϕ does not matter. assume $\phi=0$ and work in the $\rho-z$ plane.

$$
\mathbf{r}-\mathbf{r}^{\prime}=\rho \mathbf{a}_{\rho}-z^{\prime} \mathbf{a}_{z}
$$

$$
\square d E_{\rho}=\frac{\rho_{l} d z^{\prime}}{4 \pi \varepsilon} \cdot \frac{\rho}{R^{3}}, \quad d E_{z}=-\frac{\rho_{l} d z^{\prime}}{4 \pi \varepsilon} \cdot \frac{z^{\prime}}{R^{3}}
$$

ESF of a Uniform Line Charge (Cont'd)

 integrating along z^{\prime}, the directions of \mathbf{a}_{ρ} and \mathbf{a}_{z} do not change (why?)$$
\mathbf{E}=\mathbf{a}_{\rho} \int_{z^{\prime}=z_{\min }}^{z_{\max }} \underbrace{\left(\frac{\rho_{l}}{4 \pi \varepsilon} \cdot \frac{\rho}{R^{3}}\right) d z^{\prime}}_{d E_{\rho}}+\mathbf{a}_{z} \int_{z^{\prime}=z_{\min }}^{z_{\max }} \underbrace{\left(-\frac{\rho_{l}}{4 \pi \varepsilon} \cdot \frac{z^{\prime}}{R^{3}}\right) d z^{\prime}}_{d E_{z}}
$$

changing variable to α, we have

$$
\Rightarrow \mathbf{E}=\frac{\rho_{l}}{4 \pi \varepsilon} \cdot \frac{1}{\rho} \cdot\left[\mathbf{a}_{\rho} \int_{\alpha_{1}}^{\alpha_{2}}(-\sin \alpha) d \alpha+\mathbf{a}_{z} \int_{\alpha_{1}}^{\alpha_{2}} \cos \alpha d \alpha\right]
$$

ESF of a Uniform Line Charge (Cont'd)

$$
\begin{aligned}
& E_{\rho}=\frac{\rho_{l}}{4 \pi \varepsilon} \cdot \frac{1}{\rho} \cdot\left(\cos \alpha_{2}-\cos \alpha_{1}\right) \\
& E_{z}=\frac{\rho_{l}}{4 \pi \varepsilon} \cdot \frac{1}{\rho} \cdot\left(\sin \alpha_{2}-\sin \alpha_{1}\right)
\end{aligned}
$$

for an infinite and uniform line charge: $\alpha_{1}=180^{\circ}, \alpha_{2}=0^{\circ}$

$$
\Rightarrow E_{\rho}=\frac{1}{2 \pi \varepsilon} \cdot \frac{\rho_{l}}{\rho}, E_{z}=0
$$

the contributions of the upper and lower halves of the infinite line charge add up in the radial direction while canceling in the z direction.

Infinite Plane with a Uniform Surface Charge

$$
\begin{aligned}
& d Q=\rho_{s} d s=\rho_{s} \rho d \rho d \varphi \\
& d \mathbf{E}=\frac{1}{4 \pi \varepsilon} \frac{d Q}{R^{2}} \mathbf{a}_{R} \\
& R=|\boldsymbol{R}|=\left(\rho^{2}+h^{2}\right)^{1 / 2} \\
& \boldsymbol{R}=\rho\left(-\boldsymbol{a}_{\rho}\right)+h \boldsymbol{a}_{z}
\end{aligned}
$$

Infinite Plane (Cont'd)

$$
d \mathbf{E}=\frac{\rho_{s} \rho d \rho d \varphi\left(\rho\left(-\mathbf{a}_{\rho}\right)+h \mathbf{a}_{z}\right)}{4 \pi_{\varepsilon_{0}}\left(\rho^{2}+h^{2}\right)^{3 / 2}}
$$

because of symmetry, ρ component of total electric field vanishes!
$\mathbf{E}=\int_{0}^{2 \pi} \int_{0}^{\infty} \frac{\rho_{s} h \rho d \rho d \varphi}{4 \pi \varepsilon_{\varepsilon_{0}}\left(\rho^{2}+h^{2}\right)^{3 / 2}} \mathbf{a}_{z}=\frac{\rho_{s}}{4 \pi \varepsilon_{0}} \int_{0}^{2 \pi} \int_{0}^{\infty} \frac{h \rho d \rho d \varphi}{\left(\rho^{2}+h^{2}\right)^{3 / 2}} \mathbf{a}_{z}$
$\mathbf{E}=\frac{\rho_{s} h^{\infty}}{2 \varepsilon_{0}} \int_{0} \frac{\rho d \rho}{\left(\rho^{2}+h^{2}\right)^{3 / 2}} \mathbf{a}_{z}=\left.\frac{\rho_{s} h}{2 \varepsilon_{0}}\left\{-\left(\rho^{2}+h^{2}\right)^{-1 / 2}\right\}\right|_{0} ^{\infty} \mathbf{a}_{z}$
$\mathbf{E}=\frac{\rho_{s}}{2 \mathcal{\varepsilon}_{0}} \mathbf{a}_{z}$ independent of $h!$

Infinite Plane (Cont'd)

$$
E_{x}=\left\{\begin{array}{c}
\frac{\rho_{s}}{2 \varepsilon}, x \geq 0 \\
-\frac{\rho_{s}}{2 \varepsilon}, x \leq 0
\end{array}\right.
$$

for a plane with finite area, the field is not uniform and is a function of position

Parallel Plate Capacitor

two infinite planes with opposite uniform surface distributions
field between planes double while field outside vanishes!
$\mathbf{E}_{n}=\frac{\rho_{s}}{\varepsilon} \mathbf{a}_{n}$
in practice, the area of the plates are finite and there is fringing fields!

Field Plot of Capacitor

Sphere with Uniform Volumetric Density

for a certain φ, the field contribution is defined by r^{\prime} and R

$$
\begin{aligned}
& d \mathbf{E}=\frac{1}{4 \pi \varepsilon} \frac{d Q}{R^{2}} \mathbf{a}_{R} \\
& d Q=\rho_{\nu} d \nu \\
& d \nu=r^{\prime 2} \sin \theta^{\prime} d r^{\prime} d \theta^{\prime} d \varphi^{\prime} \\
& \boldsymbol{a}_{R}=\cos \alpha \boldsymbol{a}_{z}+\sin \alpha \boldsymbol{a}_{\rho}
\end{aligned}
$$

because of symmetry, ρ component vanishes!
$\mathbf{E}_{z}=\frac{\rho_{v}}{4 \pi_{\varepsilon_{0}}} \iiint \frac{\cos \alpha d v}{R^{2}} \mathbf{a}_{z}$

Sphere (Cont'd)

using cosine rule for triangles
$\cos \alpha=\frac{z^{2}+R^{2}-r^{\prime 2}}{2 z R}$
$\cos \theta^{\prime}=\frac{z^{2}+r^{\prime 2}-R^{2}}{2 z r^{\prime}}$
$\sin \theta^{\prime} d \theta^{\prime}=\frac{R d R}{z r^{\prime}}$

as θ^{\prime} changes from 0 to π, R changes from

$$
z-r^{\prime} \text { to } z+r^{\prime}\left(\text { why is } z \text { greater than } r^{\prime} ?\right)
$$

Sphere (Cont'd)

$$
\begin{aligned}
& E_{z}=\frac{\rho_{v}}{4 \pi \varepsilon_{0}} \int_{\varphi^{\prime}=0}^{2 \pi} d \varphi^{\prime} \int_{r^{\prime}=0}^{a} \int_{R=z-r^{\prime}}^{R=z+r^{\prime}} r^{\prime 2} \frac{R d R}{z r^{\prime}} d r^{\prime} \frac{z^{2}+R^{2}-r^{\prime 2}}{2 z R} \frac{1}{R^{2}} \\
& E_{z}=\frac{\rho_{v}}{4 \varepsilon_{0} z^{2}} \int_{r^{\prime}=0}^{a} \int_{R=z, r^{\prime}}^{R=z+r^{\prime}} r^{\prime} \frac{z^{2}+R^{2}-r^{\prime 2}}{R^{2}} d R d r^{\prime} \\
& E_{z}=\frac{\rho_{v}}{4 \varepsilon_{0} z^{2}} \int_{r^{\prime}=0}^{a} \int_{R=z-r^{\prime}}^{R=z+r^{\prime}} r^{\prime}\left(1+\frac{z^{2}-r^{\prime 2}}{R^{2}}\right) d R d r^{\prime}
\end{aligned}
$$

Sphere (Cont'd)

$$
\begin{aligned}
& \text { Sphere (Cont }{ }^{E_{z}=\left.\frac{\rho_{v}}{4 \varepsilon_{0} z^{2}} \int_{r^{\prime}=0}^{2} r^{\prime}\left(R-\frac{z^{2}-r^{\prime 2}}{R}\right)\right|_{R=z-r^{\prime}} ^{R=z+r^{\prime}} d r^{\prime}} \\
& E_{z}=\frac{\rho_{v}}{4 \varepsilon_{0} z^{2}} \int_{r^{\prime}=0}^{a} 4 r^{\prime 2} d r^{\prime} \\
& E_{z}=\frac{1}{4 \pi \varepsilon_{0} z^{2}}\left(\frac{4}{3} \pi a^{3} \rho_{v}\right)=\frac{Q}{4 \pi \varepsilon_{0} z^{2}}
\end{aligned}
$$

in general, for any point outside the sphere at a distance r from the centere

$$
\mathbf{E}=\frac{Q}{4 \pi \varepsilon_{\mathrm{o}} r^{2}} \mathbf{a}_{r} \quad \text { equivalent charge at the origin! }
$$

Sphere with Uniform Charge (Cont'd)

