Lecture 9: Electrostatics

Electric Flux Density, Gauss Law, Applications of
Gauss Law, Chapter 4: pages 126-137
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Electric Flux Density D (C/m?)

the electric field i1s material-dependent and this makes it not
suitable for calculating flux which should be material-

Independent
E= L -Qar
Are 12
define D=cE ) p-1.9
A r?

In vacuum D = giE

the principle of superposition applies to D as well
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Electric Flux Density (Cont’d)

multiple point charges
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Infinite sheet of uniform charge:
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The Electric Flux (C)

general expression for differential
flux through a differential surface

d¥Y =D-ds

D?*

a,

the total flux through a surface

|
. — low density
s given by ¥ = [[D-ds high densityb
flux through a closed surface \

Y= 435 D-ds flux lines show the direction and
density of the flux




Electric Flux (Cont’d)

electric flux through a closed surface is a measure of the
electric sources in the enclosed volume.
Y = <ﬂ> D-ds
S
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source (positive flux)

sink (negative flux)

no source (zero net flux)



Gauss’ Law

the electric flux through a closed surface is equal to the electric
charge enclosed by that surface

W — <ﬁ> D-ds=Q = ”I p,adv integral form
S Vv

no charge enclosed means no flux

using Divergence theorem, we have
{pD-ds = [[[VDdv = [[[ p,dv
S Vv '

VeD=p, differential form



Cases of Gauss’ Law

® |5 nC

e 20 nC

net electric flux =5.0nC net electric flux =0
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Applications of Gauss Law

Gauss’ law makes solutions to problems with planar, cylindrical
or spherical symmetry easy

procedure: choose an integration surface so that

—) D is everywhere either normal or tangential to surface
normal: D-ds = Dds; tangential: D-ds =0
:> when normal to surface, D is also constant on surface

[[D-ds=[[D-ds=D-s
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Case Study: A Point Charge

D field is in the a, direction
and depends only onr

J

., Select Gaussian surface as a

sphere centred at the charge

i ¥

Gaussian surface

HD-ds:HDr-ds:Dr-MrZ:Q
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Case Study: An Infinite Line Charge

| ‘ because of symmetry, field is in the a
__Line charge p, C/m . _ 1%
Direction and depends only on p

__— Gaussian surface

=

, choose Gaussian surface as a cylinder
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due to symmetry, result is 2710 P 2rep
obtained in a simple way!
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Case Study: because of symmetry, field is
: normal to plane and changes
Infinite sheet of Only along /

charge p¢ C/m?
op /
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i "’ choose Gaussian surface as

Aread - shown (side integrals cancel)

/ Gaussian surface
X l

”D ds = ”D ds + H D-ds = 2ij2 ds=2D,A=p.A
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Case Study: A Uniformly Charged Sphere

Gaussian surface

field is in the a, direction
and depends only on r

J

select Gaussian surface as
a sphere centred at the
charge

LjD-ds:LjDr-ds:Dr-47zr2:g7zr3pv,r<a

r
DI’:§ V,r<a
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A Uniformly Charged Sphere (Cont’d)

D, outside the sphere
a tr
- §pD-ds=Q=[[[ pdv=p, 2ra
_ 1/ R2 S(r) Vv 3
; D, (r)-4zr? =Q=pvﬁ7za3
a R 3
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Q p a
= D, (r) = = :
(1) Azr? 3 r?

outside the sphere, the field is identical to a point charge at
the centre
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