## COURSE ELECTRICAL ENGINEERING 2FH3

Duration of Examination: 2 hours

## Midterm Examination

February 27th, 2014
THIS EXAMINATION PAPER INCLUDES 2 PAGES AND 5 QUESTIONS. YOU ARE RESPONSIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE. BRING ANY DISCREPANCY TO THE ATTENTION OF YOUR INVIGILATOR.

Instructions:

1. You can use only a standard calculator (Casio-FX991).
2. Write your name and student ID on each page, the exam booklets incl.
3. You are allowed to bring 1 sheet of letter-size paper with any writing on both sides of the sheet.
4. Attempt all questions.

Question 1 [20 points]
Six equal point charges of value $Q=2.0 \mathrm{nC}$ are uniformly positioned on the circumference of a circle of radius 25.0 cm in the $x y$ plane as shown.
a) Find the electric field at the point $(0,0,0) \mathrm{m}$.
b) Find the electric potential at the same point in (a).
c) Find the electric potential at the point $(0,0,1.0) \mathrm{m}$.
d) Find the electric field at the same point in (c).
e) What is the force affecting a test charge of value 0.1 nC at the point $(0,0,1.0) \mathrm{m}$ ?


## Question 2 [30 points]

Consider the shown spherical capacitor.
The inner sphere is perfectly conducting and has a radius of $r_{1}=2.0 \mathrm{~cm}$. The outer metal shell has a radius of $r_{2}=3.0 \mathrm{~cm}$. The spherical region between the two electrodes is filled with two different types of dielectrics. For $0 \leq \theta \leq \pi / 2$, the relative permittivity is $\varepsilon_{r 1}=2.0$. For $\pi / 2 \leq \theta \leq \pi$, the relative permittivity is $\varepsilon_{r 2}=3.0$. Both dielectrics are assumed ideal.
a) Find the electric field intensity $\mathbf{E}$ everywhere.
b) Find the electric flux density $\mathbf{D}$ everywhere.

c) Find the total charge on the positive electrode.
d) Find the capacitance of the capacitor.
e) What is the total electric energy stored in this capacitor?

Question 3 [20 points]
Verify Stoke's theorem for the vector field $\mathbf{B}=\rho \cos (\varphi) \boldsymbol{a}_{\rho}+\sin (\varphi) \boldsymbol{a}_{\varphi}$ using the shown contour. All shown dimensions are in meters.


Question 4 [25 points]
An air-filled cube is defined by $1 \leq x \leq 1.2,1 \leq y \leq 1.2$, and $1 \leq z \leq 1.2$, where the limits are in meters. The electric flux density in the cube is given by $\mathbf{D}=2 x^{2} y \mathbf{a}_{x}+3 x^{2} y^{2} \mathbf{a}_{y}, \mathrm{C} / \mathrm{m}^{2}$.
a) Find the charge density $\rho_{v}$ as a function of position $(x, y, z)$.
b) Find the total charge enclosed by the cube.
c) What is total electric flux out of this cube?
d) Find the electric field vector $\mathbf{E}$ in the cube as a function of position $(x, y, z)$.
e) Find the potential difference $V_{A-} V_{B}$ between the points $A(1,1.2,1)$ and $B(1.2,1,1)$. Coordinates are in meters.

Question 5 [15 points]
If the electrostatic potential is given by $V=3 x^{2}+6 y^{2} \mathrm{~V}$ in free space, find the energy stored in the volume defined by $-1.0 \leq x \leq 1.0,-1.0 \leq y \leq 1.0$, and $-1.0 \leq z \leq 1.0$. All dimensions are in meters.

TOTAL MARKS FOR THIS EXAM = 100 plus 10 bonus marks

