COURSE ELECTRICAL ENGINEERING 2FH3

Duration of Examination: 2 hours Second Midterm Examination March 24th, 2014 THIS EXAMINATION PAPER ARE INCLUDES 2 PAGES 5 QUESTIONS. YOU AND RESPONSIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE. BRING ANY DISCREPANCY TO THE ATTENTION OF YOUR INVIGILATOR. Instructions: 1. You can use only a standard calculator (Casio-FX991). 2. Write your name and student ID on each page, the exam booklets incl. 3. You are allowed to bring 2 sheets of letter-size paper with any writing on both sides of the sheet. 4. Attempt all questions. Question 1 [30 points] Consider the shown square loop. The loop, which lies in the xy plane with centre at the origin, has a side length of 10.00 cm. The current I going through the loop is 2.0 A. Find: a) the magnetic field strength **H** at (0,0,0) m b) the magnetic field strength **H** at (0,0,0.5) m x c) if a charged particle with charge of 0.1 nC and velocity $u=5.0 a_v m/s$ is at the point (0,0,0.5) m, evaluate the magnetic force affecting this particle. 14.0 cm Question 2 [20 points] Consider the shown magnetic circuit. The current is

5.0 A and the number of turns is 100. The magnetic

core has a relative permeability of μ_r =1000. The air

gaps have a length of 4.0 mm each. The cross

section area of all arms is 4.0 cm^2 . Find:

- a) the magnetic flux ψ in all arms
- b) the magnetic flux density in all arms
- c) the magnetomotive force across air gaps

10.0 cm

Question 3 [20 points]

The magnetic vector potential in free space due to a certain current is given by $\mathbf{A} = 10\rho^2 \times 10^{-6} \mathbf{a}_z$ Wb/m. Find:

a) the magnetic flux density vector **B**

b) the magnetic field strength **H**

c) the current density **J**

d) the current flowing through the surface $z=1, 0 \le \rho \le 2, 0 \le \phi \le 2\pi$.

Question 4 [20 points]

A current sheet with $\mathbf{K}=10 \mathbf{a}_x$ A/m lies in free space in the *z*=2 plane. A filamentary conductor on the *x*-axis carries a current of 2.5 A in the \mathbf{a}_x direction. Determine the force per unit length on the conductor.

Question 5 [20 points]

Inside a right circular cylinder whose axis is the z-axis, we have μ_1 =400 μ_0 , while the exterior is free space. Given that \mathbf{H}_1 =22 \mathbf{a}_{ρ} +45 \mathbf{a}_{φ} A/m inside the cylinder, find \mathbf{B}_1 , \mathbf{M}_1 , \mathbf{B}_2 , \mathbf{H}_2 , and \mathbf{M}_2 .

END OF QUESTION SHEET TOTAL MARKS FOR THIS EXAM = 100 plus 10 bonus marks