## COURSE ELECTRICAL ENGINEERING 2FH3

Duration of Examination: 2 hours
Second Midterm Examination March 24th, 2014
THIS EXAMINATION PAPER INCLUDES 2 PAGES AND 5 QUESTIONS. YOU ARE
RESPONSIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE. BRING
ANY DISCREPANCY TO THE ATTENTION OF YOUR INVIGILATOR.
Instructions:

1. You can use only a standard calculator (Casio-FX991).
2. Write your name and student ID on each page, the exam booklets incl.
3. You are allowed to bring 2 sheets of letter-size paper with any
writing on both sides of the sheet.
4. Attempt all questions.

Question 1 [30 points]
Consider the shown square loop. The loop, which lies in the $x y$ plane with centre at the origin, has a side length of 10.00 cm . The current $I$ going through the loop is 2.0 A . Find:
a) the magnetic field strength $\mathbf{H}$ at $(0,0,0) \mathrm{m}$
b) the magnetic field strength $\mathbf{H}$ at $(0,0,0.5) \mathrm{m}$
c) if a charged particle with charge of 0.1 nC and velocity $\mathbf{u}=5.0 \mathbf{a}_{y} \mathrm{~m} / \mathrm{s}$ is at the point $(0,0,0.5) \mathrm{m}$, evaluate the magnetic
 force affecting this particle.

Question 2 [20 points]
Consider the shown magnetic circuit. The current is 5.0 A and the number of turns is 100 . The magnetic core has a relative permeability of $\mu_{r}=1000$. The air gaps have a length of 4.0 mm each. The cross section area of all arms is $4.0 \mathrm{~cm}^{2}$. Find:
a) the magnetic flux $\psi$ in all arms
b) the magnetic flux density in all arms

c) the magnetomotive force across air gaps

```
Student Name:
Student ID:
```

Question 3 [20 points]
The magnetic vector potential in free space due to a certain current is given by $\mathbf{A}=10 \rho^{2} \times 10^{-6} \mathbf{a}_{z}$ $\mathrm{Wb} / \mathrm{m}$. Find:
a) the magnetic flux density vector $\mathbf{B}$
b) the magnetic field strength $\mathbf{H}$
c) the current density $\mathbf{J}$
d) the current flowing through the surface $z=1,0 \leq \rho \leq 2,0 \leq \varphi \leq 2 \pi$.

Question 4 [20 points]

A current sheet with $\mathbf{K}=10 \mathbf{a}_{x} \mathrm{~A} / \mathrm{m}$ lies in free space in the $z=2$ plane. A filamentary conductor on the $x$-axis carries a current of 2.5 A in the $\mathbf{a}_{x}$ direction. Determine the force per unit length on the conductor.

Question 5 [20 points]
Inside a right circular cylinder whose axis is the z -axis, we have $\mu_{1}=400 \mu_{\mathrm{o}}$, while the exterior is free space. Given that $\mathbf{H}_{1}=22 \mathbf{a}_{\rho}+45 \mathbf{a}_{\varphi} \mathrm{A} / \mathrm{m}$ inside the cylinder, find $\mathbf{B}_{1}, \mathbf{M}_{1}, \mathbf{B}_{2}, \mathbf{H}_{2}$, and $\mathbf{M}_{2}$.

END OF QUESTION SHEET
TOTAL MARKS FOR THIS EXAM = 100 plus 10 bonus marks

