COURSE ELECTRICAL ENGINEERING 2FH3

```
Duration of Examination: 3 hours
McMaster University Final Examination
April 22, 2010
THIS EXAMINATION PAPER INCLUDES 1 PAGE AND 6 QUESTIONS plus 4 pages of
formulas. YOU ARE RESPONSIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS
COMPLETE. BRING ANY DISCREPANCY TO THE ATTENTION OF YOUR INVIGILATOR.
Instructions:
1. You can use only a standard calculator (Casio-FX991).
2. Write your name and student ID on each page, the exam booklets incl.
3. You are allowed to bring 2 sheets of letter-size paper with any
writing on both sides of the sheet.
4. Answer ALL questions. Provide the solutions in the exam booklet.
```

Problem 1 [9 points] (T06, 3.30 HB)
Let $\mathbf{D}=20 \rho^{2} \mathbf{a}_{\rho} \mathrm{nC} / \mathrm{m}^{2}$. Find the total charge enclosed by the closed surface $\rho \leq 3 \mathrm{~m}, 0 \leq \mathrm{z} \leq 2 \mathrm{~m}$.
Problem 2 [42 points] (HWL04, 2.20 HB)
The portion of the z axis, for which $|z| \leq 2$, carries a nonuniform line charge density $\rho_{l}=|z| \mathrm{nC} / \mathrm{m}$. For $|z|>2, \rho_{l}=0$.
(a)Find the total charge Q. [4 points]
(b)Using the principle of superposition, find the potential V at the point $P(0,4,0) \mathrm{m}$. [9 points]
(c)Find the electric field \mathbf{E} at $P(0,4,0) \mathrm{m}$. [14 points]
(d)Write a Matlab code for the computation of the problem in (b). [15 points]

Problem 3 [18 points] (T12)
If a solenoid has 2000 turns, a length of $l=75 \mathrm{~cm}$, a radius of $a=5 \mathrm{~cm}$, and carries current of 50 mA along \mathbf{a}_{ϕ}, find the magnetic field \mathbf{H} at the centre of the solenoid and at its edges.
Problem 4 [18 points] (HL18 8.36 HB)
Let $\mathbf{A}=(3 y-z) \mathbf{a}_{x}+2 x z \mathbf{a}_{y} \mathrm{~Wb} / \mathrm{m}$ in a certain region of free space $\left(\mu=\mu_{0}\right)$. Find \mathbf{B}, \mathbf{H}, and \mathbf{J} at $P(2,-1,3) \mathrm{m}$.

Problem 5 [9 points] (L19 example)
An infinite straight filament with current I lies along the z axis. A rectangular loop lies in the $y z$ plane with its four corners at: $(0,1,0),(0,3,0),(0,3,1)$, and $(0,1,1)$. Find the magnitude of the flux $|\Phi|$ through the loop due to the current I of the filament if $I=2 \mathrm{~A}$. Medium is vacuum and coordinates are in meters.

Problem 6 [4 points] (L19 example)
Find the mutual inductance M between the straight wire and the rectangular loop in Problem \#5 if the loop consists of 150 turns.

END OF QUESTION SHEET
A sheet of mathematical formulas follows (4 more pages) TOTAL MARKS FOR THIS EXAM = 100

