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Linear Time-Invariant Systems

How do we describe the relationship between x(t) and y(t)?

Direct description (time domain):

dny(t)
dtn + an−1

dn−1y(t)
dtn−1 + · · ·+ a1

dy(t)
dt

+ a0y(t)

= bn
dnx(t)

dtn + bn−1
dn−1x(t)

dtn−1 + · · ·+ b1
dx(t)

dt
+ b0x(t)

• Difficult to solve
• Hard to gain insight
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Linear Time-Invariant Systems

Transformed description (Laplace domain), when all init.
conds are zero

snY (s) + an−1sn−1Y (s) + · · ·+ a1sY (s) + a0Y (s)

= bnsnX (s) + bn−1sn−1X (s) + · · ·+ b1sX (s) + b0X (s)

• Y (s) = F (s)X (s), where

F (s) =
bnsn + bn−1sn−1 + · · ·+ b1s + b0

sn + an−1sn−1 + · · ·+ a1s + a0

• Simple to find Y (s); Can then find y(t), if you’d like
• We will do some work so that we can avoid doing that
• We will draw pictures of y(t) and gain insight into y(t)

from F (s) and X (s).
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Transfer function

• Y (s) = F (s)X (s)

• Stability (more details later):

the output y(t) is bounded for all bounded inputs x(t)
if and only if
the poles of F (s) are in the open left half plane
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Closed loop control

• Error: E(s) = R(s)− Y (s)

• Measured error: Ea(s) = R(s)− H(s)
(

Y (s) + N(s)
)

.

• In the general case, Ea(s) 6= E(s).

• When H(s) = 1 and N(s) = 0, Ea(s) = E(s).
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The output signal

What is the output Y (s)? (Calculate yourself for practice)

Y (s) =
Gc(s)G(s)

1 + H(s)Gc(s)G(s)
R(s)

+
G(s)

1 + H(s)Gc(s)G(s)
Td(s)

− H(s)Gc(s)G(s)
1 + H(s)Gc(s)G(s)

N(s)



EE 3CL4, §3
10 / 95

Tim Davidson

Transfer
functions

Closed loop
Stability &
Performance

Step response
First-order

Second-order

A taste of
pole-placement
design

Extensions

Steady-state
error

Summary and
plan

The error signal, H(s) = 1

What is the error E(s) = R(s)− Y (s)?
To simplify things, consider the case where H(s) = 1

E(s) =
1

1 + Gc(s)G(s)
R(s)

− G(s)
1 + Gc(s)G(s)

Td (s)

+
Gc(s)G(s)

1 + Gc(s)G(s)
N(s)

Recall, Ea(s) = E(s) only if H(s) = 1 and N(s) = 0.
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Loop gain, H(s) = 1

Define loop gain: L(s) = Gc(s)G(s)

E(s) =
1

1 + L(s)
R(s)− G(s)

1 + L(s)
Td(s) +

L(s)
1 + L(s)

N(s)

G(s) is fixed, but we can design Gc(s)

What insight can we gain into how to design Gc(s)?
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Stability, H(s) = 1

E(s) =
1

1 + L(s)
R(s)− G(s)

1 + L(s)
Td (s) +

L(s)
1 + L(s)

N(s)

• Stability: bounded inputs lead to bounded errors
poles of transfer function in left half plane

• For simplicity, let Td (s) = 0, N(s) = 0

• G(s) = nG(s)
dG(s)

; Gc(s) =
nC(s)
dC(s)

; L(s) = nC(s)
dC(s)

nG(s)
dG(s)

• Hence,
1

1 + L(s)
=

dC(s)dG(s)
dC(s)dG(s) + nC(s)nG(s)

• =⇒ closed loop poles are roots of dC(s)dG(s) + nC(s)nG(s)

• These can be in left half plane even if G(s) is unstable,
but they can also be in the right half plane if G(s) is stable
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Performance: s-domain,
H(s) = 1

E(s) =
1

1 + L(s)
R(s)− G(s)

1 + L(s)
Td(s) +

L(s)
1 + L(s)

N(s)

What else do we want, in addition to stability?
• Good tracking: E(s) depends only weakly on R(s)

=⇒ L(s) large where R(s) large

• Good disturbance rejection:
=⇒ L(s) large where Td(s) large

• Good noise suppression:
=⇒ L(s) small where N(s) large
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A taste of loop shaping,
H(s) = 1

Possibly easier to understand in pure freq. domain, s = jω

Recall that L(s) = Gc(s)G(s),
G(s): fixed; Gc(s): controller to be designed

• Good tracking: =⇒ L(s) large where R(s) large
|L(jω)| large in the important frequency bands of r(t)

• Good dist. rejection: =⇒ L(s) large where Td (s) large
|L(jω)| large in the important frequency bands of td (t)

• Good noise suppr.: =⇒ L(s) small where N(s) large
|L(jω)| small in the important frequency bands of n(t)

Typically, L(jω) is a low-pass function,

Any constraints? Stability! Limits how fast we transition from pass
band to stop band of low pass function (more later). Any others?
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Inherent constraints, H(s) = 1

Define sensitivity: S(s) =
1

1 + L(s)

Define complementary sensitivity: C(s) =
L(s)

1 + L(s)

E(s) = S(s)R(s)− S(s)G(s)Td(s) + C(s)N(s)

Note that S(s) + C(s) = 1.
Trading S(s) against C(s), with stability,

is a key part of the art of control design
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Performance: time-domain
• Trade-offs in time-domain performance are also a key

part of the art of control design

• Difficult for arbitrary inputs

• In classical control techniques, typically assessed via

• nature of transient component of step response
• how fast does system respond?
• how long does it take to settle to new operating point

• steady-state error for constant changes in position, or
velocity or acceleration; that is steady-state error for

• step input; ramp input, parabolic input
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Trade-off example
Let’s briefly examine some of those design trade-offs using
the disk drive system

Y (s) =
5000Ka

s3 + 1020s2 + 20000s + 5000Ka
R(s)

+
s + 1000

s3 + 1020s2 + 20000s + 5000Ka
Td(s)

Coarsely design Ka to balance properties of step response
and response to step disturbance
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Responses for Ka = 10

Disturbance step response and step response

Low gain:
• steady-state disturbance might not be negligible
• slow transient response for step input
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Responses for Ka = 10,100

Disturbance step response and step response

Medium gain:
• steady-state disturbance much reduced
• faster transient response for step input,

but now some overshoot
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Responses for
Ka = 10,100,1000

Disturbance step response and step response

High gain:
• steady-state disturbance almost completely rejected
• fast transient response for step input,

but now significant overshoot
• Actually can show by Routh Hurwitz technique (later)

that loop is unstable for Ka ≥ 4080
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Step response

• As earlier, the step response is the time-domain output
of a system that is initially at rest (zero initial
conditions), when the input is a unit step function

• We can compute this directly from the differential
equation, if we would like to do that

• Alternatively, we can compute it using Laplace
transforms:

ystep_resp(t) = L−1
(

F (s)1
s

)
where L−1(·) represents the inverse Laplace transform
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A first-order system

• Consider the first-order system F (s) = F1(s) =
p1

s+p1

• For step response,

Ystep_resp,F1(s) =
p1

s(s + p1)
=

1
s
− 1

s + p1

• Hence,
ystep_resp,F1(t) = 1− e−p1t

• Note that speed of response depends on pole position
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Pole positions and responses

Ystep_resp,F1(s) =
p1

s(s + p1)
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Response time
• How long does it take to get there? Forever!

• How long does it take to get close? Say 98%

• How long does it take before
ystep_resp(t) = 1− e−p1t > 0.98?

• How long does it take before e−p1t < 0.02?

• We need t > log(50) 1
p1

• Now log(50) ≈ 4, so time taken is ≈ 4 time constants

• That is, 4
pole position .

• Don’t need inverse Laplace to compute this

• Getting within 5% requires around three time constants;
i.e., 3

pole position
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A second-order system

• Second-order system F (s) = F2(s) =
ω2

n
s2+2ζωns+ω2

n

• For step response, Ystep_resp,F2(s) =
ω2

n
s(s2+2ζωns+ω2

n)

• For the case of ζ > 1, system is over-damped
• System has two real-valued poles, −p1,−p2.

• Ystep_resp,F2,o(s) takes the form 1
s −

A
s+p1

− B
s+p2

• ystep_resp,F2,o(t) = 1− Ae−p1t − Be−p2t

• Pole position insights analogous to first-order case

• For completeness, −p1,2 = −ζωn ± ωn
√
ζ2 − 1,

A = p2
p2−p1

, B = −p1
p2−p1



EE 3CL4, §3
27 / 95

Tim Davidson

Transfer
functions

Closed loop
Stability &
Performance

Step response
First-order

Second-order

A taste of
pole-placement
design

Extensions

Steady-state
error

Summary and
plan

A second-order system
• For the case of 0 < ζ < 1, system is under-damped

• System has a complex-conjugate pair of poles
−p1,2 = −ζωn ± jωn

√
1− ζ2

• Step response can be written as

ystep_resp,F2,u (t) = 1− 1
β

e−ζωnt sin(ωnβt + θ)

where β =
√

1− ζ2 and θ = cos−1 ζ.
• Need new insights; shape depends on pole pos’ns;

si = −pi
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Typical step responses, fixed ωn
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Typical step responses, fixed ζ
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Key parameters of
(under-damped) step response

With β =
√

1− ζ2 and θ = cos−1 ζ,

ystep_resp,F2,u(t) = 1− 1
β

e−ζωnt sin(ωnβt + θ)
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Peak time and peak value

ystep_resp,F2,u(t) = 1− 1
β

e−ζωnt sin(ωnβt + θ)

• Peak time: first time dy(t)/dt = 0
• Can show that this corresponds to ωnβTp = π

• Hence, Tp =
π

ωn
√

1− ζ2

• Hence, peak value, Mpt = 1 + e−
(
ζπ/
√

1−ζ2
)
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Percentage overshoot
Let fv denote the final value of the step response.

Percentage overshoot defined as: P.O. = 100 Mpt−fv
fv

In our example, fv = 1, and hence

P.O. = 100 e−
(
ζπ/
√

1−ζ2
)

• Depends only on ζ
• That is, depends only on (the cosine of) the angle that

the poles make with negative real axis
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Overshoot vs Peak Time

This is one of the classic trade-offs in control
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Steady-state error, ess, for step
input

In general this is not zero. (See “Steady-state error” section)

However, for our second-order system,

ystep_resp,F2,u(t) = 1− 1
β

e−ζωnt sin(ωnβt + θ)

Hence ess = 0
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Settling time

ystep_resp,,F2,u(t) = 1− 1
β

e−ζωnt sin(ωnβt + θ)

• How long does it take to get (and stay) within ±x% of
final value?

• Tricky.
• Instead, approximate by time constants of envelopes:

1± 1
β

e−ζωnt
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Exponential decay
• We are interested in decay of e−ζωnt

• We have already seen that in the first-order case
• Decays to around 5% in 3 time constants

i.e., when t = 3
ζωn

, e−ζωnt = 1/e3 ≈ 0.0498 ≈ 0.05
• Decays to around 2% in 4 time constants

i.e., when t = 4
ζωn

, e−ζωnt = 1/e4 ≈ 0.0183 ≈ 0.02
• Time constant is reciprocal of the real part of the poles
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5% settling time

• Green error bounds at ±0.05.
• ζ = 0.5, ωn = 1. Hence time constant = 1

ζωn
= 2

• After t = 6, envelopes are almost within ±5%
Response is within ±5%
• Ts,5 ≈ 3

ζωn
; approx. good for ζ . 0.9
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2% settling time

• Green error bounds at ±0.02.
• ζ = 0.5, ωn = 1. Hence time constant = 1

ζωn
= 2

• After t = 8, envelopes are almost within ±2%
Response is also almost within ±2%
• Ts,2 ≈ 4

ζωn
; approx. good for ζ . 0.9
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Rise time (under-damped)

ystep_resp,F2,u(t) = 1− 1
β

e−ζωnt sin(ωnβt + θ)

• How long to get to the target (for first time)?
• Tr , the smallest t such that y(t) = 1
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10%–90% Rise time

• What is Tr in over-damped case? ∞
• Hence, typically use Tr1, the 10%–90% rise time
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10%–90% Rise time

• Difficult to get an accurate formula
• Linear approx. for 0.3 ≤ ζ ≤ 0.8 (under-damped),
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Design problem

For what values of K and p is the loop under-damped, with
• the 2% settling time ≤ 4 secs, and
• the percentage overshoot ≤ 4.3%?

T (s) =
Y (s)
R(s)

=
G(s)

1 + G(s)
=

K
s2 + ps + K

=
ω2

n

s2 + 2ζωns + ω2
n
,

where ωn =
√

K and ζ = p/(2
√

K )
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Pole positions

Ts,2 ≈
4
ζωn

P.O. = 100 e−
(
ζπ/
√

1−ζ2
)

• For Ts,2 ≤ 4, ζωn ≥ 1
• For P.O. ≤ 4.3%, ζ ≥ 1/

√
2

Where should we put the poles of T (s)?
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Pole positions

ζωn ≥ 1 ζ ≥ 1/
√

2

s1, s2 = −ζωn ± jωn
√

1− ζ2 = −ωn cos(θ)± jωn sin(θ)

where θ = cos−1(ζ).
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Design constraints

ζωn ≥ 1 ζ ≥ 1/
√

2

p ≥ 2 p ≥
√

2K
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Design example

What went wrong?
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Final design constraints

ζωn ≥ 1 ζ ≥ 1/
√

2 ζ < 1

p ≥ 2 p ≥
√

2K p < 2
√

K
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Final design example
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Caveat

• Our work on transient response to step input has been
for systems with

F (s) = F1(s) =
p1

s + p1

or

F (s) = F2(s) =
ω2

n

s2 + 2ζωns + ω2
n

• Note that they both have a DC Gain of 1.
• What about other systems?
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Poles, zeros and transient
response

• Consider a general transfer function F (s) = Y (s)
R(s)

• Step response: Ystep_resp(s) = F (s)1
s

• Consider case with DC gain = 1; no repeated poles
• Partial fraction expansion

Ystep_resp(s) =
1
s
+
∑

i

Ai

s + σi
+
∑

k

Bks + Ck

s2 + 2αks + (α2
k + ω2

k )

• Step response

ystep_resp(t) = 1+
∑

i

Aie−σi t +
∑

k

Dke−αk t sin(ωk t + θk )
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Effect of an additional pole
• Let’s begin with our second-order under-damped system

where F (s) = F2,u(s) =
ω2

n
s2+2ζωns+ω2

n
, with ζ < 1.

• Recall, that if β =
√

1− ζ2 and θ = cos−1(ζ),

ystep_resp,F2,u (t) = 1− 1
βe−ζωnt sin(ωnβt + θ)

• What if we cascade a system that has a real pole?

• Now, Y (s) = P(s)F2,u(s)X (s), with P(s) = p
s+p

• Step response is now

ystep_resp,PF2,u (t) = 1− Ae−ζωnt sin(ωnβt + φ)− Be−pt

where A, B, and φ are functions of ωn, ζ and p
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Observations

• The step responses are:

ystep_resp,F2,u(t) = 1− 1
βe−ζωnt sin(ωnβt + θ)

ystep_resp,PF2,u(t) = 1− Ae−ζωnt sin(ωnβt + φ)− Be−pt

• Observations:
• If p � ζωn,

• the extra term decays much faster than the original term
• Complex poles dominate

• If p is close to ζωn, need to consider all poles
• If p � ζωn,

• the extra term decays much slower than original terms
• Begins to resemble a first-order system
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Additional pole positions and
responses

YPF2,u(s) =
(

p
s + p

)(
ω2

n

s2 + 2ζωns + ω2
n

)

• Why does the new system respond more slowly?
• The additional pole suppresses higher-frequency

signals; recall what a pole does to the Bode diagram
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Additional pole Bode diagram

YPF2,u(s) =
(

p
s + p

)(
ω2

n

s2 + 2ζωns + ω2
n

)
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Effect of add. pole and zero

What happens if we also add a zero?

• Y (s) = C(s)F2,u(s)X (s), with C(s) = p
z
(s+z)
(s+p) .

• For convenience let us redraw

Y (s) = Z (s)P(s)F2,u(s)X (s)

with P(s) = p
s+p and Z (s) = s+z

z .

• Note that Z (s) is not physically realizable in hardware
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Analysis

• Note that red box is the “system with an additional pole”
that we just considered

• Let YPF2,u(s) = P(s)F2,u(s)X (s)

• Then, recalling that Z (s) = s+z
z , we have

YCF2,u(s) = Z (s)YPF2,u(s) =
1
z

sYPF2,u(s) + YPF2,u(s).

• That means that

ystep_resp,CF2,u(t) =
1
z

dystep_resp,PF2,u
(t)

dt + ystep_resp,PF2,u(t)
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Observations

• ystep_resp,PF2,u(t) is the step response of the system with
the additional pole; i.e., P(s)F2,u(s)

• The step response of the system with the additional
pole and zero is

ystep_resp,CF2,u(t) =
1
z

dystep_resp,PF2,u
(t)

dt + ystep_resp,PF2,u(t)

• So, if z is big and ystep_resp,PF2,u(t) changes slowly, then
ystep_resp,CF2,u(t) will look like ystep_resp,PF2,u(t).

• but speed at which ystep_resp,PF2,u(t) changes is related
to the pole positions!
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Additional pole and zero
positions and responses

YCF2,u(s) =
p
z

(
s + z
s + p

)(
ω2

n

s2 + 2ζωns + ω2
n

)

• Why does the new system respond more quickly?
• The additional zero enhances higher-frequency signals;

recall what a zero does to the Bode diagram
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Additional pole and zero Bode
diagram

YCF2,u(s) =
p
z

(
s + z
s + p

)(
ω2

n

s2 + 2ζωns + ω2
n

)
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Add. pole and non-min.-phase
zero

• Recall Z (s) = s+z
z

• The step response can be written as:

ystep_resp,CF2,u(t) =
1
z

dystep_resp,PF2,u
(t)

dt + ystep_resp,PF2,u(t)

• What happens if we add a zero in the right half plane?
• That is, what happens if z is negative?
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Additional pole and
non-minimum-phase zero
positions and responses

YCF2,u(s) =
p
z

(
s + z
s + p

)(
ω2

n

s2 + 2ζωns + ω2
n

)
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Pole-zero cancellation

• Cascade of original first order system F1(s) =
p1

s+p1
, and

C(s) = p
z

s+z
s+p

• Transfer function of cascade: C(s)F1(s) =
p
z

s+z
s+p

p1
s+p1

• Step response of cascade:

ystep_resp,CF1(t) = 1− p(p1−z)
z(p1−p)e

−p1t − p1(z−p)
z(p1−p)e

−pt

• Looks like we could cancel the dynamics of F1(s)
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Pole zero cancellation

C(s)F1(s) =
p
z

(
s + z
s + p

)(
p1

s + p1

)
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Warnings

• In control system design, pole-zero cancellation in one
transfer function does not necessarily result in
pole-zero cancellation in all transfer functions.

• In practice, pole positions are measured and zero
positions have to be implemented; subject to
measurement and implementation errors

• Hence, care needed when attempting in left half plane

• Never attempt in right half plane
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Steady-state error

E(s) = R(s)− Y (s) =
1

1 + Gc(s)G(s)
R(s)

If the the conditions are satisfied, the final value theorem
gives steady-state tracking error:

ess = lim
t→∞

e(t) = lim
s→0

s
1

1 + Gc(s)G(s)
R(s)

One of the fundamental reasons for using feedback, despite
the cost of the extra components, is to reduce this error.

We will examine this error for the step, ramp and parabolic
inputs
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Step, ramp, parabolic
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Step input

ess = lim
t→∞

e(t) = lim
s→0

s
1

1 + Gc(s)G(s)
R(s)

• Step input: R(s) = A
s

• ess = lims→0
sA/s

1+Gc(s)G(s) =
A

1+lims→0 Gc(s)G(s)
• Now let’s examine Gc(s)G(s). Factorize num., den.

Gc(s)G(s) =
K
∏M

i=1(s + zi)

sN
∏Q

k=1(s + pk )

where zi 6= 0 and pk 6= 0.
• Limit as s → 0 depends strongly on N.
• If N > 0, lims→0 Gc(s)G(s)→∞ and ess = 0
• If N = 0,

ess =
A

1 + Gc(0)G(0)
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Simple example

Gc(s) = Kp G(s) =
1

s + 1
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Simple example

Gc(s) =
Kps + Ki

s
G(s) =

1
s + 1
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System types

• Since N plays such a key role,
it has been given a name

• It is called the type number

• Hence, for systems of type N ≥ 1,
ess for a step input is zero

• For systems of type 0, ess = A
1+Gc(0)G(0)
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Position error constant

• For type-0 systems, ess = A
1+Gc(0)G(0)

• Sometimes written as ess = A
1+Kposn

where Kposn is the position error constant

• Recall Gc(s)G(s) = K
∏M

i=1(s+zi )

sN
∏Q

k=1(s+pk )

• Therefore, for a type-0 system

Kposn = lim
s→0

Gc(s)G(s) =
K
∏M

i=1(zi)∏Q
k=1(pk )

• Note that this can be computed from positions of the
non-zero poles and zeros



EE 3CL4, §3
74 / 95

Tim Davidson

Transfer
functions

Closed loop
Stability &
Performance

Step response
First-order

Second-order

A taste of
pole-placement
design

Extensions

Steady-state
error

Summary and
plan

Ramp input

• The ramp input, which represents a step change in
velocity is r(t) = At .
• Therefore R(s) = A

s2

• Assuming conditions of final value theorem are
satisfied,

ess = lim
s→0

s(A/s2)

1 + Gc(s)G(s)
= lim

s→0

A
s + sGc(s)G(s)

= lim
s→0

A
sGc(s)G(s)

• Again, type number will play a key role.
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Velocity error constant

• For a ramp input ess = lims→0
A

sGc(s)G(s)

• Recall Gc(s)G(s) = K
∏M

i=1(s+zi )

sN
∏Q

k=1(s+pk )

• For type-0 systems, Gc(s)G(s) has no poles at origin.
Hence, ess →∞

• For type-1 systems, Gc(s)G(s) has one pole at the origin.
Hence, ess = A

Kv
, where Kv =

K
∏

i zi∏
k pk

• Note Kv can be computed from non-zero poles and zeros

• Suggests formal definition of velocity error constant

Kv = lim
s→0

sGc(s)G(s)

• For type-N systems with N ≥ 2, for a ramp input ess = 0
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Simple example

Gc(s) =
Kps + Ki

s
G(s) =

1
s + 1
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Parabolic input

• The parabolic input, which represents a step change in
acceleration is r(t) = At2/2.
• Therefore R(s) = A

s3

• Assuming conditions of final value theorem are
satisfied,

ess = lim
s→0

s(A/s3)

1 + Gc(s)G(s)
= lim

s→0

A
s2Gc(s)G(s)

• Again, type number will play a key role.
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Acceleration error constant

• For a parabolic input ess = lims→0
A

s2Gc(s)G(s)

• Recall Gc(s)G(s) = K
∏M

i=1(s+zi )

sN
∏Q

k=1(s+pk )

• For type-0 and type-1 systems, Gc(s)G(s) has at most one
pole at origin. Hence, ess →∞

• For type-2 systems, Gc(s)G(s) has two poles at the origin.
Hence, ess = A

Ka
, where Ka =

K
∏

i zi∏
k pk

• Again, Ka can be computed from non-zero poles and zeros

• Suggests formal definition of acceleration error constant

Ka = lim
s→0

s2Gc(s)G(s)

• For type-N systems with N ≥ 3, for a parabolic input ess = 0
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Summary of steady-state errors

The Kp in this table corresponds to Kposn
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Robot steering system,
P control

Let’s examine a proportional controller:

Gc(s) = K1

• Gc(s)G(s) = K1K/(τs + 1)
• Hence, Gc(s)G(s) is a type-0 system.
• Hence, for a step input,

ess =
A

1 + Kposn

where Kposn = K1K .
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Robot steering system,
P control example

• Let G(s) = 1
s+2 = 0.5

0.5s+1 .

• Proportional control, Gc(s) = K1. Choose K1 = 18.

• Since Gc(s)G(s) is type-0:
• finite steady-state error for a step,
• unbounded steady-state error for a ramp

• In this example, Kposn = KK1 = 9

• The steady-state error for a step input will be
1

1+Kposn
= 10% of the height of the step.

• For a unit step the steady-state error will be 0.1.
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Robot steering system,
P control example

• Left: y(t) for unit step input, r(t) = u(t)
• Right: y(t) for unit ramp input, r(t) = tu(t)
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Robot steering system,
PI control

Let’s examine a proportional-plus-integral controller:

Gc(s) = K1 +
K2

s
=

K1s + K2

s

• When K2 6= 0, Gc(s)G(s) = K (K1s+K2)
s(τs+1)

• Hence, Gc(s)G(s) is a type-1 system.
• Hence, for a step input, ess = 0
• For ramp input,

ess =
A
Kv
,

where Kv = lims→0 sGc(s)G(s) = KK2
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Robot steering system,
PI control example

• Same system: G(s) = 1
s+2 = 0.5

0.5s+1 .

• Prop. + Int. control, Gc(s) = K1 +
K2
s = K1s+K2

s .
Choose K1 = 18 and K2 = 20.

• Now since Gc(s)G(s) is type-1:
• zero steady-state error for a step
• finite-steady state error for a ramp

• In this example Kv = KK2 = 10

• The steady-state error for a ramp input will be
1

Kv
= 10% of the slope of the ramp.

• For a unit ramp the steady-state error will be 0.1.
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Robot steering system,
PI control example

• Left: y(t) for unit step input, r(t) = u(t)
• Right: y(t) for unit ramp input, r(t) = tu(t)



EE 3CL4, §3
86 / 95

Tim Davidson

Transfer
functions

Closed loop
Stability &
Performance

Step response
First-order

Second-order

A taste of
pole-placement
design

Extensions

Steady-state
error

Summary and
plan

Robot steering system,
PI2I control

Let’s examine a PI plus double integral controller:

Gc(s) = K1 +
K2

s
+

K3

s2 =
K1s2 + K2s + K3

s2

• When K3 6= 0, Gc(s)G(s) = K (K1s2+K2s+K3)
s2(τs+1)

• Hence, Gc(s)G(s) is a type-2 system.
• Hence, for a step input or a ramp input, ess = 0
• For parabolic input,

ess =
A
Ka
,

where Ka = lims→0 s2Gc(s)G(s) = KK3
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Robot steering system,
PI2I control example

• Same system: G(s) = 1
s+2 = 0.5

0.5s+1 .

• Prop. + Int. + double int. control, Gc(s) = K1 +
K2
s + K3

s2 .
Choose K1 = 18, K2 = 20, K3 = 20.

• Now since Gc(s)G(s) is type-2:
• zero steady-state error for a step or a ramp
• finite-steady state error for a parabolic

• In this example Ka = KK3 = 10

• The steady-state error for a parabolic input would be
1

Kv
= 10% of the curvature of the parabola.

• For a unit parabola the steady-state error would be 0.1.
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Robot steering system,
PI2I control example

• Left: y(t) for unit step input, r(t) = u(t)
• Right: y(t) for unit ramp input, r(t) = tu(t)
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Robot steering system,
PI2I control example

• y(t) for unit step input, r(t) = u(t), extended time scale
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Robot steering system,
PI2I control example

• y(t) for unit parabolic input, r(t) = t2u(t)
• For this slide only, the gains have been reduced to

illustrate the effects, K1 = 1.8, K2 = 0.2, K3 = 0.02
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Transient responses and poles
Should we have been able to predict transient responses from pole (and
zero) positions? Return to case of K1 = 18,K2 = K3 = 20

Closed loop transfer functions, T (s) = Y (s)
R(s) :

P one real pole, time const. = 1/20 = 0.05s

PI one real pole near the P one; plus another real pole (time
const. ≈ 1s) that is close to a zero

PI2I one real pole near the P one; plus a conjugate pair with
time const. ≈ 2s, angle ≈ 60◦, but near zeros
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Step responses
To highlight the impacts of the different poles, we have done a partial fraction
expansion of the transfer function and used that to compute the step response

Control T (s) = Y (s)
R(s) Step Response, for t ≥ 0

P = 18
s+20 = 0.9− 0.9e−20t

PI = 18s+20
s2+20s+20

' 17.94
s+18.94 + 0.0557

s+1.056 ' 1− 0.947e−18.94t − 0.053e−1.056t

PI2I = 18s2+20s+20
s3+20s2+20s+20

' 17.89
s+19.00 + 0.1106(s+0.5578)

s2+0.9971s+1.0525
' 1− 0.942e−19.00t . . .

−0.108e−0.498t sin(0.897t + 2.57)

Notes:
• 10% steady state error in the P case; it is zero in other cases
• Second term for each system has a similar decay rate (similar pole

positions)
• Third term in PI case decays much more slowly; third term in PI2I case even

slower (small real parts of these poles)
• Terms related to poles that are near zeros have comparatively small

magnitudes
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Summary: Desirable properties

With H(s) = 1, E(s) = R(s)− Y (s), L(s) = Gc(s)G(s),

E(s) =
1

1 + L(s)
R(s)− G(s)

1 + L(s)
Td (s) +

L(s)
1 + L(s)

N(s)

• Stability

• Good tracking in the steady state

• Good tracking in the transient

• Good disturbance rejection (good regulation)

• Good noise suppression

• Robustness to model mismatch (discussed later in course)
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Plan: Analysis and design
techniques

Rest of course: about developing analysis and design
techniques to address these goals
• Routh-Hurwitz:

• Enables us to determine stability without having to find
the poles of the denominator of a transfer function

• Root locus
• Enables us to show how the poles move as a single

design parameter (such as an amplifier gain) changes

• Bode diagrams
• There is often enough information in the Bode diagram

of the plant/process to construct a highly effective
design technique

• Nyquist diagram
• More advanced analysis of the frequency response that

enables stability to be assessed even for complicated
systems


	Transfer Function (review)
	Closed loop control
	Stability & Performance

	Step response
	First-order
	Second-order
	A taste of pole-placement design
	Extensions

	Steady-state error
	Summary and plan

