

PID Contro

EE3CL4: Introduction to Linear Control Systems Section 7: PID Control

Tim Davidson

McMaster University

Winter 2019

Cascade compensation

- Throughout this lecture we consider the case of H(s) = 1.
- We have looked at using
 - lead compensators to improve the transient performance of a closed loop
 - lag compensators to improve the steady state error responses without changing the closed loop transient response too much.
- What if we wanted to do both? What did we do?

4/17 Tim Davidson

EE 3CL4, §7

Lead-lag compensation

- Apply lead design techniques to *G*(*s*) to adjust the closed loop transient response
- Then apply lag design techniques to $G_{C,\text{lead}}(s)G(s)$ to improve steady state error response without changing the closed loop transient response too much
- Resulting compensator:

$$egin{aligned} G_{\mathcal{C}}(s) &= G_{\mathcal{C},\mathsf{lag}}(s)G_{\mathcal{C},\mathsf{lead}}(s) \ &= rac{\mathcal{K}_{\mathcal{C},\mathsf{lag}}\mathcal{K}_{\mathcal{C},\mathsf{lead}}(s+z_{\mathsf{lag}})(s+z_{\mathsf{lead}})}{(s+
ho_{\mathsf{lag}})(s+
ho_{\mathsf{lead}})} \end{aligned}$$

• How can we gain insight into what the compensator is doing?

5/17 Tim Davidson

EE 3CL4, §7

EE 3CL4, §7 6/17

Tim Davidson

PID Control

Lead-lag approximation

•
$$G_{C,\text{lag}}(s)G_{C,\text{lead}}(s) = rac{K_{C,\text{lag}}K_{C,\text{lead}}(s+z_{\text{lag}})(s+z_{\text{lead}})}{(s+p_{\text{lag}})(s+p_{\text{lead}})}$$

- Recall that
 - for frequencies between z_{lead} and p_{lead}, lead compensator acts like a differentiator
 - for frequencies between p_{lag} and z_{lag}, lag compensator acts like an integrator
- Rewrite:

$$G_{C, ext{lag}}(s)G_{C, ext{lead}}(s) = rac{ ilde{\mathcal{K}}_{C, ext{II}}(s+z_{ ext{lag}})(s+z_{ ext{lead}})}{(s+
ho_{ ext{lag}})(1+s/
ho_{ ext{lead}})}$$

as p_{lead} gets big, and p_{lag} gets small this starts to look like

$$G_{C, ext{lag}}(s)G_{C, ext{lead}}(s)pprox rac{ ilde{\mathcal{K}}_{C, ext{ll}}(s+z_ ext{lag})(s+z_ ext{lead})}{s}$$

for the values of *s* that are of greatest interest.

• Not physically realizable (more zeros than poles), but helpful approximation

Lead-lag to PID

$$G_{\mathcal{C},\mathsf{lag}}(s)G_{\mathcal{C},\mathsf{lead}}(s) pprox rac{ ilde{\mathcal{K}}_{\mathcal{C},\mathsf{II}}(s+z_{\mathsf{lag}})(s+z_{\mathsf{lead}})}{s}$$

Do a partial fraction on RHS and you get

$$G_{C, ext{lag}}(s)G_{C, ext{lead}}(s)pprox {\it K_P}+rac{{\it K_I}}{s}+{\it K_Ds}$$

• With H(s) = 1, input to the compensator is e(t) = r(t) - y(t)

Compensator output: u(t) = L⁻¹ {G_{C,lag}(s)G_{C,lead}(s)E(s)}

$$\implies \quad u(t) \approx K_{P} e(t) + K_{I} \int e(t) dt + K_{D} \frac{de(t)}{dt}$$

That is, (approximately) PID control

7/17 Tim Davidson

EE 3CL4, §7

Variants of PID control

PID: $G_c(s) = K_P + K_I/s + K_D s$.

- With $K_D = 0$ we have a PI controller, $G_{PI}(s) = \hat{K}_P + \hat{K}_I/s.$
- With $K_I = 0$ we have a PD controller, $G_{PD}(s) = \bar{K}_P + \bar{K}_D s.$
- As implicit in our derivation, a PID controller can be realized as the cascade of a PI controller and a PD controller; i.e., $G_{PI}(s)G_{PD}(s)$ can be written as $K_P + K_I/s + K_Ds$

EE 3CL4, §7 8/17 Tim Davidson

PID control and root locus

• Transfer function of idealized PID controller:

$$G_{\mathcal{C}}(s) = \mathcal{K}_{\mathcal{P}} + \mathcal{K}_{\mathcal{I}}/s + \mathcal{K}_{\mathcal{D}}s = rac{\mathcal{K}_{\mathcal{D}}(s+z_1)(s+z_2)}{s}$$

- That is, controller adds two zeros and a pole to the open loop transfer function
 - The pole is at the origin
 - The zeros can be arbitrary real numbers, or an arbitrary complex conjugate pair
- This provides considerable flexibility in re-shaping the root locus

EE 3CL4, §7 9/17 Tim Davidson

PID Tuning

$R(s) \xrightarrow{+} G_{c}(s) \xrightarrow{-} G_{c}(s) \xrightarrow{-} Y(s)$

with $G_c(s) = K_P + K_I/s + K_D s$.

- How should we choose K_P, K_I and K_D?
- Can formulate as a optimization problem; e.g., Find K_P, K_I and K_D that minimize the settling time, subject to
 - the damping ratio being greater than ζ_{min} ,
 - the position and velocity error constants being greater than K_{posn,min} and K_{v,min},
 - the error constant for a step disturbance being greater than K_{dist,posn,min},
 - and the loop being stable
- Typically difficult to find the optimal solution
- Many ad-hoc techniques that usually find "good" solutions have been proposed.

Tim Davidson

EE 3CL4, §7

EE 3CL4, §7 11/17

Tim Davidson

PID Control

Zeigler–Nichols Tuning

- Two well established methods for finding a "good" solution in some common scenarios
- Often useful in practice because they can be applied to cases in which the model has to be measured (no analytic transfer function)
- We will look at the "ultimate gain" method
- This is based on the step response of the system
- However, the method is only suitable for a certain class of systems and a certain class of design goals
 - You need to make sure that the system you wish to control falls into an appropriate class.
 - You also need to ensure that the ZN tuning goals match your design goals. The ZN tuning scheme gives considerable weight to the response to disturbances

EE 3CL4, §7 12/17

Tim Davidson

PID Control

"Ultimate Gain" Zeigler–Nichols Tuning

- **1** Set K_l and K_D to zero.
- Increase K_P until the system is marginally stable (Poles on the *j*ω-axis)
- **3** The value of this gain is the "ultimate gain", K_U
- The period of the sustained oscillations is called the "ultimate period", *T_U* (or *P_U*). (The position of the poles on the *j*ω-axis is 2π/*T_U*)
- 5 The gains are then chosen using the following table

EE 3CL4, §7 13/17

Tim Davidson

PID Control

"Ultimate Gain" Zeigler–Nichols Tuning

Table 7.7 Ziegler-Nichols PID Tuning Using Ultimate Gain, K_U, and Oscillation Period, P_U

Ziegier-Nichols PID Controller Gain Tuning Using Closed-loop Concepts				
Controller Type	K _P	Kı	KD	
Proportional (P) $G_c(s) = K_P$	$0.5K_U$	_	_	
Proportional-plus-integral (PI) $G_c(s) = K_P + \frac{K_I}{s}$	0.45K _U	$\frac{0.54K_U}{T_U}$	-	
Proportional-plus-integral-plus-derivative (PI $G_c(s) = K_P + \frac{K_I}{s} + K_D s$	D) $0.6K_U$	$\frac{1.2K_U}{T_U}$	$\frac{0.6K_UT_U}{8}$	

Ziegler-Nichols PID Controller Gain Tuning Using Closed-loop Concepts

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

PID Control

Manual refinement

- One way in which the design can be improved, is searching for "nearby" gains that improve the performance
- The following table provides guidelines for that local search. These are appropriate for a broad class of systems

Table 7.6	Effect of Increasing	the PID Gains K _p ,	K_D , and K_I on the	Step Response
-----------	----------------------	--------------------------------	--------------------------	----------------------

	Percent		Steady-State	
PID Gain	Overshoot	Settling Time	Error	
Increasing K_P	Increases	Minimal impact	Decreases	
Increasing K_I	Increases	Increases	Zero steady-state error	
Increasing K_D	Decreases	Decreases	No impact	

Copyright @ 2011 Pearson Education, Inc. publishing as Prentice Hall

Example

PID Control

EE 3CL4, §7 15/17

Tim Davidson

 $G(s) = \frac{1}{s(s+b)(s+2\zeta\omega_n)}, \text{ with } b = 10, \zeta = 1/\sqrt{2} \text{ and } \omega_n = 4.$ • Step 2: Plot root locus of G(s) to find K_U and T_U

• Step 3: *K*_U = 885.5,

- Step 4: marginally stable poles: $\pm j7.5$; $\Rightarrow T_U = 0.83s$
- Step 5: *K*_P = 521.3, *K*_I = 1280.2, *K*_D = 55.1

PID Control

Step response of ZN tuned closed loop, $K_P = 521.3, K_I = 1280.2, K_D = 55.1$

Example

PID Control

Step response with manually modified gains, $K_P = 370, K_I = 100, K_D = 60$

Example