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Stability

A system is said to be stable if all bounded inputs r(t) give
rise to bounded outputs y(t)

Counterexamples
• Albert Collins, Jeff Beck (Yardbirds),

Pete Townshend (The Who), Jimi Hendrix,
Tom Morello (Rage Against the Machine),
Kurt Cobain (Nirvana)

• Tacoma Narrows
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Conditions for stability

y(t) =

∫ ∞
−∞

g(τ)r(t − τ) dτ

Let r(t) be such that |r(t)| ≤ r̄

|y(t)| =
∣∣∣∫ ∞
−∞

g(τ)r(t − τ) dτ
∣∣∣

≤
∫ ∞
−∞

∣∣g(τ)r(t − τ)
∣∣dτ

≤ r̄
∫ ∞
−∞

∣∣g(τ)
∣∣dτ

Using this: system G(s) is stable iff
∫∞
−∞

∣∣g(τ)
∣∣dτ is finite
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Condition in terms of poles?
We want

∫∞
−∞

∣∣g(τ)
∣∣dτ to be finite

Can we determine this from G(s)?

We can write a general rational transfer function in the form

G(s) =
K
∏

i (s + zi )

sN
∏

k (s + σk )
∏

m(s2 + 2αms + (α2
m + ω2

m))

Poles: 0, −σk , −αm ± jωm

Assuming N = 0 and no repeated roots, the impulse response is
zero for t < 0 and for t ≥ 0 it is

g(t) =
∑

k

Ak e−σk t +
∑

m

Bme−αm t sin(ωmt + θm)

Stability requires
∫∞
−∞ |g(t)|dt to be bounded;

that requires σk > 0, αm > 0
In fact, system is stable iff poles have negative real parts
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Marginal stability

• Consider integrator: G(s) = 1/s; simple pole at origin
• y(t) =

∫ t
−∞ r(λ) dλ

• if r(t) = cos(t), which is bounded,
then y(t) = sin(t). Bounded

• If r(t) = u(t), which is bounded,
then y(t) = t . Not bounded

• Consider G(s) = 1/(s2 + 1), simple poles at s = ±j1
• Unit step response: u(t)− cos(t). Bounded
• What if r(t) is a sinusoid of frequency 1/(2π) Hz?

Not bounded

If G(s) has a pole with positive real part,
or a repeated pole on jω-axis
output is always unbounded
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Routh-Hurwitz condition

We have seen how to determine stability from the poles.

Much easier than having to find impulse response
and then determining if

∫∞
−∞ |g(τ)|dτ <∞

Can we determine stability without having to determine the
poles?

Yes! Routh-Hurwitz condition
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Routh-Hurwitz condition

Let G(s) = p(s)
q(s) , where

q(s) = ansn + an−1sn−1 + . . . a1s + a0

= an(s − r1)(s − r2) . . . (s − rn)

where ri are the roots of q(s) = 0.

By multiplying out, q(s) = 0 can be written as

q(s) = ansn − an(r1 + r2 + · · ·+ rn)sn−1

+ an(r1r2 + r2r3 + . . . )sn−2

− an(r1r2r3 + r1r2r4 + . . . )sn−3

+ · · ·+ (−1)nan(r1r2r3 . . . rn) = 0

If all ri are real and in left half plane, what is sign of coeffs of sk ?
the same!
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Routh-Hurwitz condition

That observation leads to a necessary condition.

Hence, not that useful for design

A more sophisticated analysis leads to the Routh-Hurwitz
condition, which is necessary and sufficient

Hence, can be quite useful for design
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R-H cond: A first look
Consider G(s) = p(s)

q(s) . Poles are solutions to q(s) = 0; i.e.,

ansn + an−1sn−1 + an−2sn−2 + · · ·+ a1s + a0 = 0

Construct a table of the form
Row n an an−2 an−4 . . .
Row n − 1 an−1 an−3 an−5 . . .
Row n − 2 bn−1 bn−3 bn−5 . . .
Row n − 3 cn−1 cn−3 cn−5 . . .
...

...
...

... . . .
Row 0 hn−1

where

bn−1 =
an−1an−2 − anan−3

an−1
=
−1

an−1

∣∣∣∣ an an−2
an−1 an−3

∣∣∣∣
bn−3 =

−1
an−1

∣∣∣∣ an an−4
an−1 an−5

∣∣∣∣ cn−1 =
−1

bn−1

∣∣∣∣ an−1 an−3
bn−1 bn−3

∣∣∣∣
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R-H cond: A first look

Now consider the table that we have just constructed

Row n an an−2 an−4 . . .
Row n − 1 an−1 an−3 an−5 . . .
Row n − 2 bn−1 bn−3 bn−5 . . .
Row n − 3 cn−1 cn−3 cn−5 . . .
...

...
...

... . . .
Row 0 hn−1

Loosely speaking:

• Number of roots in the right half plane is equal to the number
of sign changes in the first column of the table

• Stability iff no sign changes in the first column

Now let’s move towards a more sophisticated statement
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Stability (Revision)

Let G(s) = p(s)
q(s) , where

q(s) = ansn + an−1sn−1 + . . . a1s + a0

System is stable iff all poles of G(s) have negative real parts

Recall, poles are solutions to q(s) = 0

Can we find a necessary and sufficient condition that depends
only on the set of coefficients {ak}n

k=0 so that we don’t have to
solve q(s) = 0?
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Routh-Hurwitz condition
1 Consider q(s) with an > 0

ansn + an−1sn−1 + an−2sn−2 + . . . a1s + a0 = 0

2 Construct a table of the form

Row n an an−2 an−4 . . .
Row n − 1 an−1 an−3 an−5 . . .
Row n − 2 bn−1 bn−3 bn−5 . . .
Row n − 3 cn−1 cn−3 cn−5 . . .
...

...
...

... . . .
Row 0 hn−1

Procedure provided on the following slides

3 Count the sign changes in the first column

4 That is the number of roots in the right half plane

Stability (poles in LHP) iff all terms in first col. have same sign
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Constructing RH table

ansn + an−1sn−1 + an−2sn−2 + . . . a1s + a0 = 0

Step 2.1: Arrange coefficients of q(s) in first two rows

Row n an an−2 an−4 . . .
Row n − 1 an−1 an−3 an−5 . . .
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Interlude

Determinant of a 2× 2 matrix:∣∣∣∣ a b
c d

∣∣∣∣ = ad − cb
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Constructing RH table

Step 2.2: Construct 3rd row using determinants of 2× 2
matrices constructed from rows above

Row n an an−2 an−4 . . .
Row n − 1 an−1 an−3 an−5 . . .
Row n − 2 bn−1

bn−1 =
−1

an−1

∣∣∣∣ an an−2
an−1 an−3

∣∣∣∣
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Constructing RH table

Step 2.2, cont: Construct 3rd row using determinants of
2× 2 matrices constructed from rows above

Row n an an−2 an−4 . . .
Row n − 1 an−1 an−3 an−5 . . .
Row n − 2 bn−1 bn−3 . . .

bn−3 =
−1

an−1

∣∣∣∣ an an−4
an−1 an−5

∣∣∣∣
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Constructing RH table

Step 2.3: Construct 4th row using determinants of 2× 2
matrices constructed from rows above

Row n an an−2 an−4 . . .
Row n − 1 an−1 an−3 an−5 . . .
Row n − 2 bn−1 bn−3 . . .
Row n − 3 cn−1 . . .

cn−1 =
−1

bn−1

∣∣∣∣ an−1 an−3
bn−1 bn−3

∣∣∣∣
Step 2.4: Continue in this pattern.

Caveat: Requires all elements of first column to be non-zero
Will come back to that. Let’s see some examples, first
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RH table, second-order system

q(s) = a2s2 + a1s + a0

Row 2 a2 a0
Row 1 a1 0
Row 0 b1

b1 =
−1
a1

∣∣∣∣ a2 a0
a1 0

∣∣∣∣ = a0

Therefore, second order system is stable iff all three denominator
coefficients have the same sign
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RH table, third order system

q(s) = a3s3 + a2s2 + a1s + a0

Row 3 a3 a1
Row 2 a2 a0
Row 1 b1 0
Row 0 c1 0

b1 =
−1
a2

∣∣∣∣ a3 a1
a2 a0

∣∣∣∣ c1 =
−1
b1

∣∣∣∣ a2 a0
b1 0

∣∣∣∣ = a0

Therefore, if a3 > 0, necessary and sufficient condition for
third-order system to be stable is that a2 > 0, b1 > 0 and a0 > 0.

b1 > 0 is equiv. to a2a1 > a0a3, and this implies a1 > 0.
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Disk drive read control
Add velocity feedback (switch closed)

Using block diagram manipulation

G1(s) =
5000

s + 1000
G2(s) =

1
s(s + 20)
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Closed loop

T (s) =
Y (s)

R(s)
=

KaG1(s)G2(s)

1 + KaG1(s)G2(s)(1 + K1s)

Hence, char. eqn:
s3 + 1020s2 + (20000 + 5000KaK1)s + 5000Ka = 0
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Stabilizing values of K1 and Ka
s3 + 1020s2 + (20000 + 5000KaK1)s + 5000Ka = 0
Routh table

Row 3 1 20000 + 5000KaK1
Row 2 1020 5000Ka
Row 1 b1
Row 0 5000Ka

b1 =
1020(20000 + 5000KaK1)− 5000Ka

1020

For stability we require b1 > 0 and Ka > 0. That is,

Ka > 0 and K1 >
Ka − 4080

1020Ka

Note that for 0 < Ka < 4080, any positive K1 will stabilize
the loop, and some negative ones will, too.

For example, Ka = 100 and K1 = 0.05.
That pair gives a 2% settling time of 260ms
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Reminder: Construction
procedure

Row k + 2 p1 p3 p5 . . .
Row k + 1 q1 q3 q5 . . .
Row k r1 r3 r5 . . .

To compute r3, multiply
• −1

first element of previous row = −1
q1

by
• determinant of 2×2 matrix formed in the following way:

• The first column contains the first elements of the two
rows above the element to be calculated

• The second column contains the elements of the two
rows above that lie one column to the right of the
element to be calculated

• Therefore

r3 =
−1
q1

∣∣∣∣ p1 p5
q1 q5

∣∣∣∣ =
−1
q1

(
p1q5 − q1p5

)
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RH table, dealing with zeros

• The Routh-Hurwitz table encounters trouble when there
is a zero in the first column

• The next row involves (−1/0) times a determinant

• When some other elements in that row are not zero, we
can proceed by replacing the zero by a small positive
number ε, and then taking the limit as ε→ 0 after the
table has been constructed.

• When a whole row is zero, we need to be a bit more
sophisticated (later)
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RH table, zero first element in
non-zero row

As an example, consider

q(s) = s5 + 2s4 + 2s3 + 4s2 + 11s + 10

Routh table

Row 5 1 2 11
Row 4 2 4 10
Row 3 0← ε 6 0
Row 2 c1 10 0
Row 1 d1 0 0
Row 0 10 0 0

c1 =
4ε− 12

ε
=
−12
ε

d1 =
6c1 − 10ε

c1
→ 6

Two sign changes, hence unstable with two RHP poles
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Zero row
• It is possible that the Routh Hurwitz procedure can

produce a zero row

• While this complicates the procedure, it yields useful
information for design

• Zero rows occur when polynomial has roots that are
radially symmetric.

• Since the roots must also occur in conjugate pairs, this
means that there is at least one pair of roots that is
symmetric in the imaginary axis.
(All roots are symmetric in the real axis.)
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Zero row

• Common examples include:
• equal and opposite roots on the real axis,
• a pair of complex conjugate roots on the imaginary axis.

• The latter is more common, and more useful in design

• So how can we deal with the zero row?
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Dealing with a zero row
• Routh Hurwitz procedure provides an “auxiliary polynomial”,

a(s), that contains the roots of interest as factors

• The auxiliary polynomial is a factor of the original polynomial;
i.e., q(s) = a(s)b(s); b(s) can be found by polyn. division

• Given the symmetry of the roots, the auxiliary polynomial is
of even order (or will have all its roots at the origin)

• The coefficients of the auxiliary polynomial appear in the row
above the zero row

• Let k denote the row number of the row above the zero row,
and let ck,1, ck,2, ck,3 denote the coefficients in that row. The
auxiliary polynomial is constructed as

a(s) = ck,1sk + ck,2sk−2 + ck,3sk−4 + . . .

• Finally, we replace the zero row by the coefficients of the
derivative of the auxiliary polynomial; i.e., the zero row is
replaced by kck,1, (k − 2)ck,2, (k − 4)ck,3
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Zero row example
• q(s) = s5 + 2s4 + 24s3 + 48s2 − 25s − 50 = 0

• Construct table
Row 5 1 24 −25
Row 4 2 48 −50
Row 3 0 0

• Auxiliary polynomial: a(s) = 2s4 + 48s2 − 50
This is actually a factor of q(s).
Using quadratic formula, roots of a(s) are s2 = 1,−25
Hence roots of a(s) are s = ±1,±j5

• da(s)
ds = 8s3 + 96s.

Replace zero row by these coefficients
Row 5 1 24 −25
Row 4 2 48 −50
Row 3 8 96
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Zero row example, cont
• Now complete the table in the usual way

Row 5 1 24 −25
Row 4 2 48 −50
Row 3 8 96
Row 2 24 −50
Row 1 112.7 0
Row 0 −50

• One sign change in first column.
Indicates one root in right half plane.

• Recall a(s) is a factor of q(s).
Indeed, by polyn division q(s) = (s + 2)a(s)
We have seen that roots of a(s) are ±1 and ±j5.

• Hence q(s) does indeed have one root with a positive
real part.
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Turning control of a tracked
vehicle

Select K and a so that
• the closed-loop is stable, and
• the steady-state error due to a ramp is at most 24% of

the magnitude of the command
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Deal with stability first

Transfer function: T (s) = Gc(s)G(s)
1+Gc(s)G(s)

Char. equation: s4 + 8s3 + 17s2 + (K + 10)s + Ka = 0

Routh table

Row 4 1 17 Ka
Row 3 8 K + 10
Row 2 b3 Ka
Row 1 c3
Row 0 Ka

b3 =
126− K

8
c3 =

b3(K + 10)− 8Ka
b3

For stability we require b3 > 0, c3 > 0 and Ka > 0
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Stability region
For positive K , these constraints can be rewritten as

K < 126
a > 0

a <
(K + 10)(126− K )

64K

Region of stable parameters is between blue curves
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Steady-state error to ramp

• For a ramp input r(t) = At , we have ess = A
Kv

, where

Kv = lim
s→0

sGc(s)G(s) = Ka
10

• Therefore, ess = A
Kv

= 10A
Ka

• To obtain ess < 0.24A ' A
4.167 , we need Kv > 4.167

• That means we need Ka > 41.67.

• Any (K ,a) pair in stable region with a > 41.67
K will satisfy

design constraints
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Set of parameters with desired
performance

For positive K ,
• stability region is between the blue solid curves
• desired steady-state error region is above the black

dashed curve and between the blue solid curves
• Design example: K = 70, a = 0.6, marked by + sign
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Ramp response

• Steady-state error criterion satisfied
(Kv = 4.200 > 4.167)

• Transient time is quite long
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What about settling times?

• That system takes a long time to settle.
• What does the step response look like?

• Could we have predicted the long settling time and large overshoot?
• We know that the settling time of each component of the response

is related to the real parts of the poles
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Closed-loop poles and zeros

• One “fast” real pole
• One “reasonably slow” real pole that is close to a zero
• Complex conjugate pair with small real parts (≈ 0.17), and large

angles with negative real axis (≈ 87◦). Conjugate pair dominates
• 2% settling time of response to conjugate pair is 4 time constants,

4( 1
0.17 ) ≈ 23

• Damping ratio of conjugate pair ζ = cos(87◦) ≈ 0.053.
Corresponds to overshoot of ≈ 85% = 0.85

• Actual performance of the fourth-order system with one zero is quite
close to this guidance from second-order system with no finite zeros
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Managing settling times
• It is disappointing that using Routh-Hurwitz for design gives

us control over stability, but does not allow us to manage
settling times

• Particularly disappointing, given “shape” of region to left of a
certain real number is same as that to left of origin

• Can we do anything?
• Recall closed-loop denominator polynomial is:

q(s) = an

n∏
j=1

(s − (−pcl,j ))

where −pcl,j are the closed-loop poles
• If we want q(s) to have closed-loop poles to left of −σ,

then we need

q̃(s) = an

n∏
j=1

(
s − (−pcl,j + σ)

)
to be stable
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Managing settling times, II
• That means we want

q̃(s) = q(s − σ)

= an(s − σ)n + an−1(s − σ)n−1+

· · ·+ a1(s − σ) + a0

to be stable

• Using binomial theorem, (x + y)n =
∑n

k=0

(n
k

)
xn−k yk , we can

write
q̃(s) = ãnsn + ãn−1sn−1 + · · ·+ ã1s + ã0

where
(n

k

)
= n!

(n−k)!k!

• Now you can apply Routh-Hurwitz procedure to q̃(s)

• What happens if there is a pair of closed-loop poles with real
parts equal to −σ? A zero row in the table
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Application to tracked vehicle
• Settling time of component due to complex-conjugate pair in current

design is around 23 seconds
• Can we reduce this? Let’s try to get it down to around 16 seconds.
• That means that we want poles to the left of −σ = −0.25

• q̃(s) ' s4 + 7s3 + 11.375s2 + (K + 2.9375)s + ã0(K , a),
where ã0(K , a) = Ka− 0.25K − 1.3086

• Routh table

Row 4 1 11.375 ã0(K , a)
Row 3 7 K + 2.9375
Row 2 b̃3 ã0(K , a)
Row 1 c̃3

Row 0 ã0(K , a)

b̃3 =
76.6876− K

7
, c̃3 =

b̃3(K + 2.9375)− 7ã0(K , a)
b̃3

• Hence, we require b̃3 > 0, c̃3 > 0 and ã0(K , a) > 0
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Settling time region
• For positive K , the constraints can be rewritten as

K < 76.6876

a > 0.25 + 1.3086
K

a <
(76.6896− K )(K + 2.9375) + 12.25K + 64.12

49K
• Region between the red lines (inside blue region)
• For steady state error we need a > 41.67

K ; above dashed line

• Not much choice this time. Example: K = 47, a = 0.9, marked by ∗
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Closed-loop poles and zeros

Since complex conjugate pair of poles still dominates, this suggests
new design (red) will have
• Somewhat reduced settling time (poles are to left of 0.25)
• Slightly reduced overshoot in step response (angle slightly reduced)
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Step response

• Settling time has come down; not far from 16 seconds
• Overshoot has been reduced a little bit
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Ramp response

• Steady-state error criterion still satisfied
(Kv = 4.230 > 4.167)

• Transient time has been reduced
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Ramp response, zoomed in
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Discussion
• Transient times have been reduced, but only a little bit
• Unfortunately, not much room to do any better

• Current compensator is Gc(s) = s+a
s+1 and gain is K

• To get significantly better performance, we need to be able to adjust
the pole of the compensator, as well as the zero and the gain

• For example, consider Gc(s) = (s+a)
(s+b) =

s+1.9
s+6 with K = 133.

• Note Kv = lims→0 sGc(s)G(s) ' 4.212 > 4.167,
so ramp steady-state error criterion still satisfied
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Closed-loop poles and zeros

Since complex conjugate pair of poles still dominates, this suggests
new design (green) will have
• Significantly reduced settling time (dominant poles further to left)
• Somewhat reduced overshoot in step response (smaller angle)
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Step response

• Insight from pole and zero positions reasonably
accurate
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Ramp response, zoomed in

• Steady-state error criterion still satisfied for new design
(Kv = 4.212 > 4.167)
• Transient time reduced
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Discussion, cont.

• New design does indeed do better in our chosen metrics

• However, design problem now has three parameters, not
two; zero pos’n (−a), gain (K ), and also pole pos’n (−b)

• Hence desired parameter region is a volume, not an area

• Routh-Hurwitz procedure and resulting equations for
boundaries of desired parameter space get even more
complicated

• Is there an easier way to gain insight into how to choose the
pole and zero positions, and to choose the gain?

• One option is the root locus procedure that we will develop in
the next section
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