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Differential equation models

• Most of the systems that we will deal with are dynamic
• Differential equations provide a powerful way to

describe dynamic systems
• Will form the basis of our models

• We saw differential equations for inductors and
capacitors in 2CI, 2CJ
• What about mechanical systems?

both translational and rotational
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Translational Spring

F (t): resultant force in direction x
Recall free body diagrams and “action and reaction”

• Spring. k : spring constant, Lr : relaxed length of spring

F (t) = k
(
[x2(t)− x1(t)]− Lr

)
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Translational Damper

F (t): resultant force in direction x

• Viscous damper. b: viscous friction coefficient

F (t) = b
(dx2(t)

dt
− dx1(t)

dt

)
= b

(
v2(t)− v1(t)

)
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Mass

F (t): resultant force in direction x

• Mass: M

F (t) = M
d2xm(t)

dt2 = M
dvm(t)

dt
= Mam(t)
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Rotational spring

T (t): resultant torque in direction θ

• Rotational spring. k : rotational spring constant,
φr : rotation of relaxed spring

T (t) = k
(
[θ2(t)− θ1(t)]− φr

)
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Rotational damper

T (t): resultant torque in direction θ

• Rotational viscous damper.
b: rotational viscous friction coefficient

T (t) = b
(dθ2(t)

dt
− dθ1(t)

dt

)
= b

(
ω2(t)− ω1(t)

)
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Rotational inertia

T (t): resultant torque in direction θ

• Rotational inertia: J

T (t) = J
d2θm(t)

dt2 = J
dωm(t)

dt
= Jαm(t)
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Example system (translational)
Horizontal. Origin for y : y = 0 when spring relaxed

• F = M dv(t)
dt

• v(t) = dy(t)
dt

• F (t) = r(t)− b dy(t)
dt − ky(t)

M
d2y(t)

dt
+ b

dy(t)
dt

+ ky(t) = r(t)
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Example, continued

M
d2y(t)

dt
+ b

dy(t)
dt

+ ky(t) = r(t)

Resembles equation for parallel RLC circuit.
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Example, continued

• Stretch the spring a little and hold.
• Assume an under-damped system.
• What happens when we let it go?
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Taylor’s series

• Nature does not have many linear systems
• However, many systems behave approximately linearly

in the neighbourhood of a given point
• Apply first-order Taylor’s Series at a given point
• Obtain a locally linear model
• Use this to obtain insight into behaviour of physical

system via Laplace Transforms, poles and zeros, etc

• In this course we will focus on the case of a single
linearized differential equation model for the system, in
which the coefficients are constants
• e.g., in previous examples mass, viscosity and spring

constant did not change with time, position, velocity,
temperature, etc
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Pendulum example

• Assume shaft is light with respect to M,
and stiff with respect to gravitational forces
• Torque due to gravity: T (θ) = MgL sin(θ)
• Apply Taylor’s series around θ = 0:

T (θ) = MgL
(
θ − θ3/3! + θ5/5!− θ7/7! + . . .

)
• For small θ around θ = 0 we can build an approximate

model that is linear

T (θ) ≈ MgLθ
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Laplace transform
• Once we have a linearized differential equation (with

constant coefficients) we can take Laplace Transforms
to obtain the transfer function

• We will consider the “one-sided” Laplace transform, for
signals that are zero to the left of the origin.

F (s) =
∫ ∞

0−
f (t)e−st dt

• What does
∫∞ mean? limT→∞

∫ T .

• Does this limit exist?

• If |f (t)| < Meαt , then exists for all Re(s) > α.
Includes all physically realizable signals

• Note: When multiplying transfer function by Laplace of input, output
is only valid for values of s in intersection of regions of convergence
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Poles and zeros
• In this course, most Laplace transforms will be rational

functions, that is, a ratio of two polynomials in s; i.e.,

F (s) =
nF (s)
dF (s)

where nF (s) and dF (s) are polynomials

• Definitions:
• Poles of F (s) are the roots of dF (s)
• Zeros of F (s) are the roots of nF (s)

• Hence,

F (s) =
KF
∏M

i=1(s + zi)∏n
j=1(s + pj)

=
(KF

∏M
i=1 zi∏n

j=1 pj

) ∏M
i=1(s/zi + 1)∏n
j=1(s/pj + 1)

where −zi are the zeros and −pj are the poles
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Visualizing poles and zeros

• Consider the simple Laplace transform F (s) = s(s+3)
s2+2s+5 .

• zeros: 0, −3; poles: −1 + j2, −1− j2
• Pole-zero plot (left) and magnitude of F (s) (right)
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Visualizing poles and zeros

• F (s) = s(s+3)
s2+2s+5 ; zeros: 0, −3; poles: −1 + j2, −1− j2

• |F (s)| from above (left) and prev. view of |F (s)| (right)
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Laplace transform pairs

• Simple ones can be computed analytically;
often available in tables; see Tab. 2.3 in 12th ed. of text

• For more complicated ones, one can typically obtain
the inverse Laplace transform by
• identifying poles
• constructing partial fraction expansion
• using of properties and some simple pairs to invert

each component of partial fraction expansion
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Some Laplace transform pairs

Recall that complex poles come in conjugate pairs.
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Key properties

Linearity

df (t)
dt

←→ sF (s)− f (0−)

∫ t

−∞
f (x)dx ←→ F (s)

s
+

1
s

∫ 0−

−∞
f (x)dx
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Final value theorem

Can we avoid having to do an inverse Laplace transform?
Sometimes.

Consider the case when we only want to find the final value
of f (t), namely limt→∞ f (t).

• If F (s) has all its poles in the left half plane, except,
perhaps, for a single pole at the origin, then

lim
t→∞

f (t) = lim
s→0

sF (s)

Common application: Steady state value of step response

What if there are poles in RHP, or on the jω-axis and not at
the origin?
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Mass-spring-damper system

• Horizontal (no gravity)
• Set origin of y where spring is “relaxed”
• F = M dv(t)

dt

• v(t) = dy(t)
dt

• F (t) = r(t)− b dy(t)
dt − ky(t)

M
d2y(t)

dt
+ b

dy(t)
dt

+ ky(t) = r(t)
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MSD system

M
d2y(t)

dt
+ b

dy(t)
dt

+ ky(t) = r(t)

Consider t ≥ 0 and take Laplace transform

M
(

s2Y (s)−sy(0−)− dy(t)
dt

∣∣∣∣
t=0−

)
+b
(
sY (s)−y(0−)

)
+kY (s) = R(s)

Hence

Y (s) =
1/M

s2 + (b/M)s + k/M
R(s)

+
(s + b/M)

s2 + (b/M)s + k/M
y(0−)

+
1

s2 + (b/M)s + k/M
dy(t)

dt

∣∣∣∣
t=0−

Note that linearity yields superposition
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Response to static init. cond.

Spring stretched to a point y0, held, then let go at time t = 0

Hence, r(t) = 0 and dy(t)
dt

∣∣∣
t=0−

= 0

Hence,

Y (s) =
(s + b/M)

s2 + (b/M)s + k/M
y0

What can we learn about this response without having to
invert Y (s)
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Standard form

Y (s) =
(s + b/M)

s2 + (b/M)s + k/M
y0

=
(s + 2ζωn)

s2 + 2ζωns + ω2
n

y0

where ωn =
√

k/M and ζ = b
2
√

kM

Poles: s1, s2 = −ζωn ± ωn
√
ζ2 − 1

• ζ > 1 (equiv. b > 2
√

kM): distinct real roots, overdamped
• ζ = 1 (equiv. b = 2

√
kM): equal real roots, critically damped

• ζ < 1 (equiv. b < 2
√

kM): complex conj. roots, underdamped
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Overdamped case

• s1, s2 = −ζωn ± ωn
√
ζ2 − 1

• Overdamped response: ζ > 1 (equiv. b > 2
√

kM)
• y(t) = c1es1t + c2es2t

• y(0) = y0 =⇒ c1 + c2 = y0

• dy(t)
dt

∣∣∣
t=0

= 0 =⇒ s1c1 + s2c2 = 0

• What does this look like when strongly overdamped
• s2 is large and negative, s1 is small and negative
• Hence es2t decays much faster than es1t

• Also, c2 = −c1s1/s2. Hence, small
• Hence y(t) ≈ c1es1t

• Looks like a first order system!
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Critically damped case

• s1 = s2 = −ωn

• y(t) = c1e−ωnt + c2te−ωnt

• y(0) = y0 =⇒ c1 = y0

• dy(t)
dt

∣∣∣
t=0

= 0 =⇒ −c1ωn + c2 = 0
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Underdamped case

• s1, s2 = −ζωn ± jωn
√

1− ζ2

• Therefore, |si | = ωn: poles lies on a circle
• Angle to negative real axis is cos−1(ζ).
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Underdamped case

• Define σ = ζωn, ωd = ωn
√

1− ζ2. Response is:

y(t) = c1e−σt cos(ωd t) + c2e−σt sin(ωd t)

= Ae−σt cos(ωd t + φ)

• Homework: Relate A and φ to c1 and c2.

• Homework: Write the initial conditions y(0) = y0 and
dy(t)

dt

∣∣∣
t=0

= 0 in terms of c1 and c2, and in terms of A and φ
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Numerical examples

• Y (s) = (s+2ζωn)

s2+2ζωns+ω2
n

y0, where ωn =
√

k/M, ζ = b
2
√

kM

• Poles: s1, s2 = −ζωn ± ωn
√
ζ2 − 1

• ζ > 1: overdamped; ζ < 1: underdamped

• Consider the case of M = 1, k = 1. Hence, ωn = 1,

• b = 3→ 0. Hence, ζ = 1.5→ 0

• Initial conds: y0 = 1, dy(t)
dt

∣∣∣
t=0

= 0
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Poles and transient response,
b = 3
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Poles and transient response,
b = 2.75
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Poles and transient response,
b = 2.5
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Poles and transient response,
b = 2.25
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Poles and transient response,
b = 2
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Poles and transient response,
b = 1.95
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Poles and transient response,
b = 1.75
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Poles and transient response,
b = 1.5
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Poles and transient response,
b = 1.25
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Poles and transient response,
b = 1
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Poles and transient response,
b = 0.75
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Poles and transient response,
b = 0.5
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Transfer function
Definition: Laplace transform of output over Laplace
transform of input when initial conditions are zero

• Most of the transfer functions in this course will be
ratios of polynomials in s.

• Hence, poles and zeros of transfer functions have
natural definitions

Example: Recall the mass-spring-damper system,
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Transfer function, MSD system

For the mass-spring-damper system,

Y (s) =
1/M

s2 + (b/M)s + k/M
R(s)

+
(s + b/M)

s2 + (b/M)s + k/M
y(0−)

+
1

s2 + (b/M)s + k/M
dy(t)

dt

∣∣∣∣
t=0−

Therefore, transfer function is:

1/M
s2 + (b/M)s + k/M

=
1

Ms2 + bs + k
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Step response

• Recall that u(t)←→ 1
s

• Therefore, for transfer function G(s), the step response
is:

L −1
{G(s)

s

}
• For the mass-spring-damper system, step response is

L −1
{ 1

s(Ms2 + bs + k)

}

• What is the final position for a step input?
Recall final value theorem. Final position is 1/k .
• What about the complete step response?
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Step response
• Step response: L −1

{
G(s)1

s

}
• Hence poles of Laplace transform of step response are

poles of G(s), plus an additional pole at s = 0.

• For the mass-spring-damper system, using partial
fractions, step response is:

L −1
{ 1

s(Ms2 + bs + k)

}
= L −1

{1/k
s

}
− 1

k
L −1

{ Ms + b
Ms2 + bs + k

}
=

1
k

u(t)− 1
k

L −1
{ Ms + b

Ms2 + bs + k

}

• Consider again the case of M = k = 1, b = 3→ 0.
ωn = 1, ζ = 1.5→ 0.
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Poles and step response, b = 3
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A DC motor

• We will consider linearized model for each component
• Flux in the air gap: φ(t) = Kf if (t) (Magnetic cct, 2CJ4)
• Torque: Tm(t) = K1φ(t)ia(t) = K1Kf if (t)ia(t).
• Is that linear?
• Only if one of if (t) or ia(t) is constant
• We will consider “armature control”: if (t) constant
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Armature controlled DC motor

• if (t) will be constant (to set up magnetic field), if (t) = If
• Torque: Tm(t) = K1Kf If ia(t) = Kmia(t)
• Will control motor using armature voltage Va(t)
• What is the transfer function from Va(s) to angular

position θ(s)?
• Origin?
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Towards transfer function

• Tm(t) = Kmia(t) ←→ Tm(s) = KmIa(s)
• KVL: Va(s) = (Ra + sLa)Ia(s) + Vb(s)
• Vb(s) is back-emf voltage, due to Faraday’s Law
• Vb(s) = Kbω(s), where ω(s) = sθ(s) is rot. velocity
• Remember: transfer function implies zero init. conds
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Towards transfer function

• Torque on load: TL(s) = Tm(s)− Td(s)
• Td(s): disturbance. Often small, unknown
• Load torque and load angle (Newton plus friction):

TL(s) = Js2θ(s) + bsθ(s)

• Now put it all together
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Towards transfer function

• Tm(s) = KmIa(s) = Km

(
Va(s)−Vb(s)

Ra+sLa

)
• Vb(s) = Kbω(s)
• TL(s) = Tm(s)− Td(s)
• TL(s) = Js2θ(s) + bsθ(s) = Jsω(s) + bω(s)
• Hence ω(s) = TL(s)

Js+b
• θ(s) = ω(s)/s
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Block diagram

• Tm(s) = KmIa(s) = Km

(
Va(s)−Vb(s)

Ra+sLa

)
• Vb(s) = Kbω(s)
• TL(s) = Tm(s)− Td(s)
• TL(s) = Js2θ(s) + bsθ(s) = Jsω(s) + bω(s)
• Hence ω(s) = TL(s)

Js+b
• θ(s) = ω(s)/s
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Transfer function

• Set Td(s) = 0 and solve (you MUST do this yourself)

G(s) =
θ(s)

Va(s)
=

Km

s
[
(Ra + sLa)(Js + b) + KbKm

]
=

Km

s(s2 + 2ζωns + ω2
n)

• Third order :(
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Second-order approximation

G(s) =
θ(s)

Va(s)
=

Km

s
[
(Ra + sLa)(Js + b) + KbKm

]
• Sometimes armature time constant, τa = La/Ra, is

negligible
• Hence (you MUST derive this yourself)

G(s) ≈ Km

s
[
Ra(Js + b) + KbKm

] = Km/(Rab + KbKm)

s(τ1s + 1)

where τ1 = RaJ/(Rab + KbKm)
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Model for a disk drive read
system

• Uses a permanent magnet DC motor
• Can be modelled using arm. contr. model with Kb = 0
• Hence, motor transfer function:

G(s) =
θ(s)

Va(s)
=

Km

s(Ra + sLa)(Js + b)

• Assume for now that the arm is stiff
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Typical values

G(s) =
θ(s)

Va(s)
=

Km

s(Ra + sLa)(Js + b)

G(s) =
5000

s(s + 20)(s + 1000)
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Time constants

• Initial model

G(s) =
5000

s(s + 20)(s + 1000)

• Motor time constant = 1/20 = 50ms
• Armature time constant = 1/1000 = 1ms
• Hence

G(s) ≈ Ĝ(s) =
5

s(s + 20)
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A simple feedback controller
Now that we have a model, how to control?

Simple idea: Apply voltage to motor that is proportional to
error between where we are and where we want to be.

Here, V (s) = Va(s) and Y (s) = θ(s).
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Simplified block diagram

• What is the transfer function from command to
position? Derive this yourself

Y (s)
R(s)

=
KaG(s)

1 + KaG(s)

• Using second-order approx. G(s) ≈ Ĝ(s) = 5
s(s+20) ,

Y (s) ≈ 5Ka

s2 + 20s + 5Ka
R(s)

• For 0 < Ka < 20: overdamped;
for Ka > 20: underdamped
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Response to r(t) = 0.1u(t);
Ka = 10

Poles in s-plane Response

Slow. Slower than IBMs first drive from late 1950’s.
Disks in the 1970’s had 25ms seek times; now < 10ms
Perhaps increase Ka?
That would result in a “bigger” input to the motor for a given
error
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Response to r(t) = 0.1u(t);
Ka = 10,15

Poles in s-plane Response

Changing Ka changes the position of the closed-loop poles
Hence, step response changes
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Response to r(t) = 0.1u(t);
Ka = 10,15,20

Poles in s-plane Response

Changing Ka changes the position of the closed-loop poles
Hence, step response changes (now critically damped)
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Response to r(t) = 0.1u(t);
Ka = 10,15,20,40

Poles in s-plane Response

Changing Ka changes the position of the closed-loop poles
Hence, step response changes (now underdamped)
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Response to r(t) = 0.1u(t);
Ka = 10,15,20,40,60

Poles in s-plane Response

Changing Ka changes the position of the closed-loop poles
Hence, step response changes (now more underdamped)
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Response to r(t) = 0.1u(t);
Ka = 10,15,20,40,60,80

Poles in s-plane Response

What is happening to the settling time of the underdamped
cases?
Only just beats IBM’s first drive
What else could we do with the controller? Prediction?
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Bock diagram models

• As we have just seen, a convenient way to represent a
transfer function is via a block diagram

• In this case, U(s) = Gc(s)R(s) and Y (s) = G(s)U(s)
• Hence, Y (s) = G(s)Gc(s)R(s)
• Consistent with the engineering procedure of breaking

things up into little bits, studying the little bits, and then
put them together
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Simple example

• Y1(s) = G11(s)R1(s) + G12(s)R2(s)
• Y2(s) = G21(s)R1(s) + G22(s)R2(s)
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Example: Loop transfer function

• Ea(s) = R(s)− B(s) = R(s)− H(s)Y (s)
• Y (s) = G(s)U(s) = G(s)Ga(s)Z (s)
• Y (s) = G(s)Ga(s)Gc(s)Ea(s)

• Y (s) = G(s)Ga(s)Gc(s)
(

R(s)− H(s)Y (s)
)

Y (s)
R(s)

=
G(s)Ga(s)Gc(s)

1 + G(s)Ga(s)Gc(s)H(s)

• Each transfer function is a ratio of polynomials in s
• What is Ea(s)/R(s)?
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Block diagram transformations
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Using block diagram
transformations
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Using block diagram
transformations
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