Formulae for Arithmetic Series

Here are some formulae which will help you compute the sum of a finite arithmetic series. First of all,

$$
\begin{equation*}
\sum_{n=1}^{N}(a+n d)=N a+\frac{N(N+1) d}{2} \tag{1}
\end{equation*}
$$

This formula can be used to find related sums. For example,

$$
\begin{aligned}
\sum_{n=0}^{N}(a+n d) & =a+\sum_{n=1}^{N}(a+n d) \\
& =(N+1) a+\frac{N(N+1) d}{2}
\end{aligned}
$$

Equation (1) can also help us build a more general formula:

$$
\begin{aligned}
\sum_{n=N_{1}}^{N_{2}}(a+n d) & =\sum_{n=0}^{N_{2}=N_{1}}\left(\left(a+N_{1} d\right)+n d\right) \\
& =\left(N_{2}-N_{1}+1\right)\left(a+N_{1} d\right)+\frac{\left(N_{2}-N_{1}\right)\left(N_{2}-N_{1}+1\right) d}{2} \\
& =\left(N_{2}-N_{1}+1\right) a+\frac{\left(N_{2}-N_{1}+1\right)\left(N_{2}+N_{1}\right) d}{2}
\end{aligned}
$$

