
BLIND EQUALIZATION OF CONSTANT MODULUS SIGNALS VIA RESTRICTED
CONVEX OPTIMIZATION
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ABSTRACT

In this paper, we formulate the blind equalization ofConstant Mod-
ulus(CM) signals as a convex optimization problem. This is done
by performing an algebraic transformation on the direct formu-
lation of the equalization problem and then restricting the set of
design variables to a subset of the original feasible set. In particu-
lar, we express the blind equalization problem as a linear objective
function subject to some linear and semidefiniteness constraints.
SuchSemidefinite Programs(SDPs) can be efficiently solved us-
ing interior point methods. Simulations indicate that our method
performs better than the standard methods, whilst requiring signif-
icantly fewer data samples.

1. INTRODUCTION

Conventional equalization and carrier recovery algorithms gener-
ally require an initial training period during which a known data se-
quence is transmitted and synchronized at the receiver. In the case
of highly non-stationary communications environments (e.g., dig-
ital mobile communications), it may be preferable to equalize the
communication channel in an unsupervised manner. The resulting
operation is referred to asblind equalization. Many digital com-
munications schemes involve the transmission ofConstant Mod-
ulus (CM) signals, hence several schemes for blind equalization
of CM signals have been developed. Typically, they are based on
gradient descent minimization of a specially designed cost func-
tion [1–3]. However, these algorithms can experience undesirable
local convergence problems which may result in insufficient re-
moval of channel distortion [4,5]. Here we formulate the problem
of blind equalization of CM signals as a convex optimization prob-
lem which has a unique global minimum. We compare our method
with the standard blind adaptive equalization methods in [1–3].
(These standard methods are not globally convergent for arbitrary
initialization [4, 5]). Simulation results indicate that our method
performs better than the standard methods even when we use some
a priori knowledge of the channel impulse response to aid initial-
ization of the standard methods. In addition, our method requires
significantly fewer samples, which might be useful in applications
where convergence times requiring thousands of input samples are
undesirable.

2. PROBLEM STATEMENT

The receiver structure we study is shown in Fig.1, wherea(k) rep-
resents the CM signal andv(k) is additive white Gaussian noise.
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Figure 1: The block diagram of the system

The output of the equalizery(k) can be expressed as

y(k) = wHxk, (1)

where
xk = [x(k),x(k−1), . . . ,x(k−n+1)]T , (2)

w ∈Cn is a weight vector andn is the length of the equalizer. If
perfect equalization is achieved, the sequencey(k) is also of the
CM type. With that in mind, a natural optimization problem for
the receiver to solve is [1]

minimize ∑k(|y(k)|2−1)2 k = 1, . . . ,N, (3)

whereN is the length of the sequencey(k), and we have assumed
that the magnitude of the CM signal is equal to one. Using (1) and
(3), the objective function can be written as:

minimize ∑k(|wHxk|2−1)2 k = 1, . . . ,N, (4)

where the weight vectorw is the design variable. Since

|wHxk|2 = wHxk(wHxk)H = wHxkxH
k w, (5)

we have the following optimization problem:

minimize ∑k(wHXkw−1)2 k = 1, . . . ,N, (6)

whereXk = xkxH
k . In this paper we show that if we restrict the

design variablew to a subset of the original feasible set, the blind
equalization of CM signals can be expressed as a convex optimiza-
tion problem. In particular, the problem can be formulated as a lin-
ear objective function, subject to linear and semidefiniteness con-
straints; that is, as a semidefinite program (SDP). Such SDPs can
be efficiently solved using interior point methods [6].

3. SDP FORMULATION

In this section we outline the framework of our SDP method for
blind equalization of CM signals for the special case of a BPSK
signal transmitted through a real-valued channel. (The framework



extends directly to complex-valued CM constellations and chan-
nels.) From (6) we see that our optimization problem can be writ-
ten as,

minimize f (w), (7)

where f (w) = ∑k(wTXkw−1)2 is a 4-th order polynomial inw.
This optimization problem can be re-cast as:

maximize τ

subject to f (w)− τ ≥ 0 for all w.
(8)

We can think ofτ as a horizontal hyperplane that lies beneathf (w)
for every value ofw. Instead of minimizingf (w), we lift-up (max-
imize) the hyperplane while requiring it to always lie belowf (w).
At the optimal solution,τmax equals to the optimal (minimum)
value of f (w). In order to express (6) as a convex problem we
define two sets,C andD :

C = { f | f (w) is a 4-th order polynomial ofw and f (w) ≥ 0 ∀w};

D = { f | f (w) = ∑
i

gi(w)2, gi(w) is a quadratic polyn ofw}.

Obviously,D ⊆ C . In terms ofC andD we can express our opti-
mization problem as follows:

maximize τ

subject to f (w)− τ ∈ C .
(9)

However, we consider the following optimization problem:

maximize τ

subject to f (w)− τ ∈D .
(10)

It is important to note that the optimization problem (10) is not
equivalent to the one in (9), since we restrict the design variable
w to a subset of the original feasible set. Eq. (10) is said to be
a convex restriction of (9), and it provides a lower bound on the
optimal value ofτ in (9). However, in the noise free case, the op-
timal equalizer in (9) does lie inD . This motivates us to consider
(10). Moreover, the formulation in (10) is a convex optimization
problem. To see this, we first show that:

f ∈D ⇔ f = w̄TGw̄, for some G � 0, (11)

where
w̄ = [w2

1, . . . ,w
2
n,w

T
2 ,w1, . . . ,wn,1]T (12)

andw2 contains all productswiwj , 1 ≤ i < j ≤ n in a specified
order. The setD contains all 4-th order polynomial functions that
can be written as:

f (w) = ∑
i

g2
i (w). (13)

Sincegi(w) is a quadratic polynomial function inw, it can be writ-
ten as

gi(w) = qi,1w2
1 + . . .+qi,nw2

n

+ qi,n+1w1w2 + . . .+qi,zwn−1wn

+ qi,z+1w1 + . . .+qi,z+nwn +qi,z+n+1, (14)

where z = n +
(n

2

)
. If we define a vector of coefficientsqi =

[qi,1, . . . ,qi,z+n+1]T then it follows that

gi(w) = w̄Tqi , and g2
i (w) = w̄TqiqT

i w̄,

and hence
f (w) = w̄T ∑

i
(qiqT

i )w̄ = w̄TGw̄. (15)

Moreover, the reverse argument from (15) to (13) is trivial. Hence,
we have proved (11). Using this fact and substitutingf

′
(w) =

f (w)− τ we can rewrite (10) as:

maximize τ

subject to f
′
(w) = w̄TGw̄ for someG � 0.

(16)

Sincef
′
(w) = ∑k(wTXkw−1)2−τ it can be written in the general

form of an arbitrary 4-th order polynomial:

f
′
(w) = ∑

i
p(4)

i w4
i +∑

i
∑
j 6=i

r(4)
i, j w3

i wj +∑
i

∑
j>i

s(4)
i, j w2

i w2
j

+∑
i

∑
j 6=i

∑
i 6=k> j

t(4)
i, j w2

i wjwk

+∑
i

∑
j>i

∑
k> j

∑
l>k

u(4)
i, j wiwjwkwl

+∑
i

p(3)
i w3

i +∑
i

∑
j 6=i

r(3)
i, j w2

i wj

+∑
i

∑
j>i

∑
k> j

s(3)
i, j wiwjwk

+∑
i

p(2)
i w2

i +∑
i

∑
j>i

r(2)
i, j wiwj

+∑
i

p(1)
i wi + p(0). (17)

Hence, the constraintf
′
(w) = w̄TGw̄ in (16) is equivalent to the

set of linear constraints onG implicitly specified in (17). For ex-
ample, we have that:

p(4)
i = Gi,i i = 1, . . . ,n,

p(2)
i = Gm,i +Gi,m+Gz+i,z+i i = 1, . . . ,n,

wherem is equal to the number of elements in (12) andz= n+
(n

2

)
.

The semidefinite constraintG � 0 ensures thatf
′
(w) is within

the setD . Finally, the SDP formulation of the problem of blind
equalization of CM signals can be written as:

maximize τ

subject to Avec(G) = c
G � 0,

(18)

wherec contains all the coefficients from (17),A is a selection
matrix andvec(G) is the column-stacking operator. The SDP can
be efficiently solved for the optimalG using interior point meth-
ods [6]. (We have used the SeDuMi implementation [8].) We next
show how to find an equalizerw corresponding to the optimalG.

3.1. Post-processing

The solution of (18) provides the optimal value ofG, denoted
Gopt. However, we want to implement an equalizerw. How do
we findwopt once we haveGopt? First note thatw = (w1, . . . ,wn)



is contained inw̄ (12), so once we havēw it is quite straightfor-
ward to obtainw. Second, if perfect equalization is achieved, there
is an optimalw̄, such that

f
′
opt(wopt) = w̄T

optGoptw̄opt = 0. (19)

From (19) we can see that̄wopt lies in the null-space ofGopt and
from (12) we can see that it has a specific structure. With this in
mind, we devised the following alternating projections algorithm
to determinew̄opt: Given an initial vector, alternatingly project it
onto Null(Gopt) and then back onto the subspaceS which con-
tains all the vectors with structure given in (12). These projections
are described as 1 and 2 below:

1. To project a vector ontoNull(Gopt) we premultiply it by the
projection matrixP = VtVT

t , whereVt contains the eigen-
vectors corresponding to the (almost) zero-valued eigenval-
ues ofGopt. Then we re-scale the resulting vector, such that
the last component becomes equal to one. We need to do
this in order to perform the next step.

2. In order to project a vector onto subspaceS we use the
fact that there is a one-to-one correspondence between the
vector w̄ given by (12) and the matrix̄W = aaT , where
a = [w1,w2, . . . ,wn,1]; that is

W̄ =




w2
1 w1w2 · · · w1wn w1

w2w1 w2
2 · · · w2wn w2

...
...

. . .
...

...
w1 w2 · · · wn 1


 . (20)

Each element inW̄ is equal to a corresponding element in
w̄. We see that a vectory ∈S if the corresponding matrix
Y is a rank-one matrix. So, given arbitrary vectory we
create the corresponding matrixY and then perform a rank-
one approximation of it. The resulting rank-one matrixŶ
corresponds to a vectorŷ ∈S which is the projection ofy
ontoS .

4. IMPLEMENTATION AND SIMULATION

We demonstrate the effectiveness of our algorithm through several
simulation examples. In all our examples, the SDPs were solved
using SeDuMi [8].

4.1. Good telephone channel

In the first example, we consider the following channelh=[0.04;-
0.05;0.07;-0.21;-0.5;0.72;0.36;0.21;0.03;0.07], which is a typical
response of a good quality telephone channel [7]. We compare
our method with the algorithms given in [1, 2], which are blind
adaptive algorithms. From [2] we used an adaptive algorithm that
minimizes the cost function:J = E

{∣∣|y(k)|−1
∣∣}. In our test sce-

narios, the length of equalizers was 11 and the step size parameter
for the adaptive algorithms was chosen to be 5×10−3, which has
proven to give the best results. We allowed 2,000 samples for the
adaptation of weight coefficients for the methods in [1,2], but used
only 500 samples for our method. We define the intersymbol in-

terference as follows: ISI=
∥∥ t

maxi |[t]i | − e
∥∥2

2, wheret = h ∗w is
a combined response of the channel and the equalizer,∗ denotes
convolution ande is a vector with 1 in the position argmaxi

∣∣[t]i
∣∣
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Figure 2: Intersymbol interference for Section 4.1
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Figure 3: Probability of error for Section 4.1

and zeros elsewhere. We can see from Figs. 2 and 3 that the perfor-
mance of blind adaptive methods in [1,2] depends on the initializa-
tion of the equalizer parameters. The curve denoted as CMA cor-
responds to the case when we use partial knowledge of the chan-
nel impulse response for initialization; i.e., we initialize the equal-
izer with a single ‘spike’ time-aligned with the channel response’s
center of mass. However, if such a knowledge is not available
and the spike doesn’t coincide with the channel response’s center
of mass, the adaptive algorithms may degrade in performance, as
is shown with the curve CMA1. In both cases, simulation results
indicate that our method achieves better average intersymbol in-
terference suppression and a lower bit-error rate. This improved
performance is achieved whilst requiring fewer samples than the
algorithms in [1,2].
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Figure 4: Probability of error for Section 4.2
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Figure 5: Intersymbol interference for Section 4.3
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Figure 6: Probability of error for Section 4.3

4.2. Channel with severe interference

Here we consider the channelh = [0.407 0.815 0.407] given in [7].
This channel corresponds to a channel with severe ISI. This time
we have used 12-tap equalizer for all methods and 1,000 samples
for our method. Results shown in Fig.4 correspond to the case
where the adaptive equalizers in [1] and [2] are initialized with a
single ‘spike’ time-aligned with the channel response’s center of
mass. Again, we see that our method achieves a lower bit-error
rate.

4.3. Nonminimum phase channel

In this example we compare our method with the method proposed
in [3]. We consider the case where a communication source trans-
mits a sequence of symbols through an unknown nonminimum
phase channelh in which the unit sample response is given by:

[h]i =




0, i < 0
−0.4, i = 0
0.84×0.4i−1, i > 0.

(21)

We have used a 9-tap equalizer for both methods. From Fig. 5 we
can see that our method achieves better interference suppression
which results in the improved bit-error rate performance shown
in Fig.6. The curve Shalvi1 corresponds to the case where the
adaptive equalizer in [3] is initialized with a single ‘spike’ in the
middle of the equalizer, and Shalvi2 corresponds to the case where
the spike is set at the beginning of the equalizer.

5. CONCLUSION

In this paper we have shown that blind equalization of constant
modulus signals can be expressed as a convex optimization prob-
lem. A semidefinite programming formulation was made possible
by performing an algebraic transformation on the direct formula-
tion of the equalization problem and then restricting the design
variables to a subset of the original feasible set. Simulation re-
sults indicate that our method has a better average performance
than the methods proposed in [1–3], even in the case when we
useda priori knowledge of the channel impulse response enve-
lope to aid initialization for those standard methods. Furthermore,
our method requires fewer samples, which might be useful for ap-
plications where convergence times requiring thousands of input
samples are undesirable.

Our method incurs a higher computational cost than those in [1–
3], but its improved performance in the preliminary simulations
presented here motivates our current work on the development
of specialized solvers which exploit the structure of the SDP in
(18), analysis and refinements of the post-processing technique
in Section 3.1, and the extension of the principles of this work
to the complex-valued case. It also motivates generalizations to
fractionally-spaced and multiple-sensor receivers, and comparisons
with CM algorithms for those receivers, such as that in [9].
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