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ABSTRACT

This paper develops a power control strategy for multiple
spectrum-sharing networks of single antenna nodes in a spectrum
underlay scenario. A distinguishing feature of the proposed strat-
egy is that it requires only knowledge of the spatial distribution of
the nodes, rather than instantaneous channel state information. The
strategy seeks to maximize a weighted sum of the throughput of each
network while guaranteeing specified successful transmission prob-
abilities. In its native form, this joint power allocation problem is
difficult to solve. However, we show that the problem can be trans-
formed into a convex optimization formulation that can be efficiently
solved using general purpose tools. Furthermore, we analyze the
optimality conditions and obtain a quasi-closed form solution remi-
niscent of waterfilling. Numerical results demonstrate that spectrum
sharing employing the proposed optimal power yields a substantial
throughput gain over allocating the spectrum to a single network.

Index Terms— Spectrum sharing, power control, convex opti-
mization, stochastic geometry, wireless networks.

1. INTRODUCTION

A compelling approach to the enhancement of spectral utilization is
to permit two or more networks that occupy a given geographical re-
gion to operate in the same frequency band; e.g. [1,2]. This spectrum
sharing mode is often referred to as spectrum underlay. In many such
scenarios there is a licensed primary network whose access to the
spectrum is to be guaranteed, and a secondary network whose nodes
can access the band so long as the interference that they impose on
the primary network lies below a tolerable limit. Recent works (e.g.,
[3–13]) have demonstrated that judicious power control schemes can
indeed yield a substantial increase in the overall spectral utilization
while maintaining specified levels of quality-of-service (QoS) in the
individual networks. However, most of the existing schemes have
been developed for deterministic network topologies in which either
channel state information (CSI) or user location is required. In prac-
tice, obtaining sufficiently accurate channel or position information
may be difficult, or may consume an unreasonably large fraction of
the spectrum resources provided by the channel that would otherwise
be assigned to communication. Even if robustness to inaccuracies in
the available information is explicitly incorporated into the designs
(e.g., [10–13]), substantial resources are still required to exchange
the necessary information.

In this work, we take a different approach and devise a power
control strategy based on a stochastic model for the geometry of the
networks. In particular, we employ independent two-dimensional
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Poisson point process models [14] for the stochastic geometry of
each network. This model has been adopted in some analyses
of spectrum-sharing networks [15–22], and has been employed in
the development of power control schemes for a pair of spectrum-
sharing networks [21, 22]. In this paper we address the problem
of power control for multiple spectrum-sharing networks. This is
an important problem because the spectrum utilization efficiency is
conditioned on the number of secondary networks [19, 23]. Fur-
thermore, our work not only provides an algorithm for dynamic
spectrum access in cognitive radio networks [2] with low signaling
overhead, but also provides guidance in the design of conventional
networks with concurrent transmission, including Wi-Fi, Bluetooth,
sensors and other cordless devices operating in the ISM band of 2.4
GHz [24, 25], and even for the emerging co-existence problem of
macro-cells and micro-cells [26].

In formulating the power control problem for multiple spectrum-
sharing networks using only stochastic models for the network ge-
ometries, we consider the increase in utility that can be achieved
and the need to control the total interference imposed on each net-
work. We formulate the power control problem so as to maximize a
weighted sum of the throughput of each network while guaranteeing
that the increase in the outage probability in each network incurred
by spectrum sharing is bounded by a pre-specified level (Actually,
that constraint is specified in terms of the decrease in the probability
of successful transmission.). While that problem initially appears to
be difficult to solve, we show that it can be transformed into a convex
optimization problem that can be efficiently solved. This transfor-
mation decouples the variables in the objective and all but one of the
constraints, and that decoupling is exploited to obtain a quasi-closed
form solution to the problem.

2. SPECTRUM-SHARING NETWORK MODEL

We consider a scenario in which one primary network (PN), referred
to as network 0, and multiple secondary networks (SNs), referred
to as networks 1, 2, . . . ,M , coexist in the same region and share the
same spectrum. Fig. 1 illustrates an example of this type of spectrum
sharing between three networks.

The proposed power control strategy is based on a model for
the spatial distribution of the nodes in the networks. The primary
transmitters (PTs) are modeled as being distributed according to a
homogeneous two-dimensional Poisson point process (PPP) of den-
sity λ0, denoted by Φ0 =

{
X(j)

0

}
, where X(j)

0 ∈ R2 is the coor-
dinate of the PT j. A reference primary receiver (PR) is assumed to
be located at O0, which is a distance R0 away from its associated
PT located at X(0)

0 . Based on the Palm distribution and Slivnyak’s
theory of PPP in stochastic geometry [14, 27], all the receivers in
a PPP network have the same statistics for signal reception and an
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interference

Fig. 1: An example of spectrum sharing between one PN (circles)
and two SNs (triangles and squares). The solid nodes denote trans-
mitters, the hollow nodes denote receivers, solid arrows represent
transmission links, and dashed arrows represent the interference at
the reference receiver O0 of the PN.

additional node does not change the distribution of the others. There-
fore, the performance of the PN can be evaluated through a reference
transmitter-receiver location pair

(
X(0)

0 , O0

)
.

The distribution of the transmitters in the SN m is modeled
by an independent homogeneous PPP of density λm, denoted by
Φm =

{
X(j)

m

}
. The reference transmitter-receiver location pair

for SN m is denoted by
(
X(0)

m , Om

)
, and the associated reference

transmission distance is denoted by Rm.
Each node in each network is equipped with a single antenna

and performs omnidirectional single-hop transmission. Considering
both path-loss and the Rayleigh fading effects, the received power
Pa,b at receiver b from transmitter a can be modeled as

Pa,b = Pa ·Ha,b ·D−α
a,b ,

where Pa is the transmitting power at node a and Ha,b is the
Rayleigh fading factor from node a to node b, which is exponen-
tially distributed with unit mean. All the Rayleigh fading compo-
nents are modeled as being independent and identically distributed
(i.i.d.). The term Da,b is the distance between nodes a and b, and
α is the path-loss exponent which is assumed to be constant over
the region of interest. All the transmitters in network m employ
the same transmission power Pm. The sum interference In,m from
network n to the reference receiver Om in network m is In,m =
Pn ·

∑
X

(j)
n ∈Φn

H
X

(j)
n ,Om

·D−α

X
(j)
n ,Om

.
We consider interference-limited spectrum sharing, in the sense

that the impact of the thermal noise is negligible in comparison to
the interference. One of the network performance criteria that we
will consider is a QoS requirement; that is, a specified signal-to-
interference ratio (SIR) should be achieved at the reference receiver
with high probability. Given an SIR target for network m, denoted
by βm, the probability that the SIR is satisfied is

pm = P
[
SIRm > βm

]
= exp

[
− bm

M∑

n=0

λn(Pn/Pm)2/α
]
, (1)

where bm = 2π2α−1 csc(2πα−1)β2/α
m R2

m > 0 and csc(·) repre-
sents the cosecant function. The expression in (1) can be obtained
by extending the results in [17, 22] in a straightforward way. As ex-
pected, pm is an increasing function of Pm, due to stronger signal
reception, and a decreasing function of the transmission power of

the other networks. Typically, the target SIR βm is selected so that
if this SIR is achieved then the chosen coding scheme for network
m is able to communicate successfully with high probability. For
that reason, we will refer to pm as the successful transmission prob-
ability. To form a baseline for our evaluation of the performance
of spectrum sharing, we define exclusive access as the policy that
only network m uses the spectrum, without the appearance of any
other network. Since successful transmission probability is defined
in terms of an SIR target, in the exclusive access case, it is inde-
pendent of transmission power. If network m is granted exclusive
access, the expression in (1) reduces to

p̃m = exp(−bmλm). (2)

The performance of the spectrum-sharing networks will be assessed
using a utility function that is defined as a weighted sum of the
throughout of each network, i.e.,

U =
M∑

m=0

ωm ·B · log2(1 + βm) · pm, (3)

where B represents the bandwidth, B ·log2(1+βm) is the maximum
achievable rate at a target SIR of βm, and pm in (1) is the probabil-
ity that idealized transmission at that rate is successful. The positive
weight ωm may be selected to signify the relative access priorities
of the networks [13], fairness consideration [19], and the proba-
bility that the network is allowed to transmit [28]. This spectrum-
sharing throughput utility function is also consistent with transmis-
sion capacity [29]. The baseline value for the utility is the value
obtained when the PN is granted exclusive access to the frequency
band: U0 = ω0 ·B · log2(1 + β0) · exp(−b0λ0).

3. OPTIMAL POWER CONTROL STRATEGY

The power control problem of interest is the maximization of the
utility of the multiple spectrum-sharing networks, while guarantee-
ing that the decrement in the successful transmission probability of
each network m caused by spectrum sharing from what would have
been achieved under exclusive access is less than a prescribed limit,
denoted by δm. If we let p = [P1, P2 . . . , PM ]T denote the vector
of secondary transmission powers, then the problem can be formu-
lated as

(P0) max
p

U

s.t. p̃m − pm ≤ δm, for m = 0, . . . ,M

Pm ≥ 0, for m = 1, . . . ,M.

where pm was defined in (1), p̃m in (2) and U in (3). In order to
obtain a simplified formulation, let qm = P 2/α

m be the scaled trans-
mission power of network m, and q = [q1, . . . , qM ] be the scaled
secondary transmission power vector. Then the above power control
problem can be expressed explicitly as

(P1) max
q

M∑

m=0

am exp
[
− bm

M∑

n=0

λn(qn/qm)
]

(4a)

s.t.
M∑

n=0

λnqn/qm ≤ ηm, for m = 0, . . . ,M (4b)

qm ≥ 0, for m = 1, . . . ,M. (4c)

where am = ωmλmB log2(1 + βm) > 0 is the positive weighted
data rate, and ηm = − ln[exp(−bmλm) − δm]/bm > 0 is propor-
tional to λm. Note λm/ηm = −bmλm/ ln[exp(−bmλm)− δm] <
−bmλm/ ln[exp(−bmλm)] = 1.
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We begin our analysis of (P1) with the following theorem.

Theorem 1. Problem (P1) is feasible iff
∑M

n=0(λn/ηn) ≤ 1.

Proof : Necessary condition: Let t =
∑M

n=0 λnqn > λ0q0 =

t(0). From (4b) and (4c), we have that qn ≥ t(0)/ηn = q(0)n .
Then we can substitute q(0)n to (4b) and derive a tighter lower bound
t ≥ t(1) = t(0)

[
1 +

∑M
n=1(λn/ηn)

]
. After k iterations, t ≥

t(k) = λ0q0+ t(k−1) ∑M
n=1(λn/ηn) = t(0)

{
1+

∑M
n=1(λn/ηn)+

. . . +
[∑M

n=1(λn/ηn)
]k}. Given that t(k) is bounded, we have∑M

n=1(λn/ηn) < 1 for all the SNs, and hence the lower bound of t
converges to tmin = t(0)

[
1 −

∑M
n=1(λn/ηn)

]−1. Also, by substi-
tuting m = 0 into (4b), we infer that t ≤ tmax = η0q0. Given
tmin ≤ tmax, we further have

∑M
n=0(λn/ηn) ≤ 1 where this sum

includes the PN. Consequently, a necessary condition for the feasi-
bility of (P1) is

∑M
n=0(λn/ηn) ≤ 1.

Sufficient condition: Given
∑M

n=0(λn/ηn) ≤ 1, we have∑M
n=1(λn/ηn) < 1, and tmin = λ0q0[1−

∑M
n=1(λn/ηn)]

−1 ≤ t ≤
tmax, then there exists a feasible point [t/η1, . . . , t/ηm, . . . , t/ηM ]T .
Thus, (P1) is feasible if

∑M
n=0(λn/ηn) ≤ 1. !

The feasibility condition in Theorem 1 guides the selection of
the network density λm, SIR threshold βm, and the limit on the
decrement of the successful transmission probability, δm. For an in-
dividual network we always have λm/ηm < 1. Theorem 1 indicates
how these network properties must be related in order for multiple
networks to coexist.

Corollary 1. If problem (P1) is feasible, then the optimal solution
exists, and the optimal power allocated for each SN is bounded be-
tween two network-dependent multiples of the transmission power

of the PN, i.e.,
{
λ0

[
1 −

∑M
n=1(λn/ηn)

]−1
η−1
m

}α/2
P0 ≤ Pm ≤

[
(η0 − λ0)λ

−1
m

]α/2
P0, ∀m = 1, 2 . . . ,M .

Proof : From (4b) and (4c), tminη
−1
m ≤ qm ≤ (η0 − λ0)λ

−1
m q0.

Thus, the feasible region of (P1) is closed and bounded. Since the
objective function of (P1) in (4a) is continuous and differentiable,
the solution exists according to the Theorem of Weierstrass [30]. The
bounds arise from (4b), (4c) and the definition of qm. !

Corollary 1 indicates the relation between the primary and sec-
ondary transmission powers, also implies that under the feasibility
condition, every SN obtains access to the spectrum and contributes to
the total spectrum-sharing throughput. None of the spectrum-sharing
networks will monopolize or vanish, though the contribution of net-
work m can be controlled through the weight ωm.

Problem (P1) can be solved by using an exhaustive M dimen-
sional search in the feasible region. However, that search rapidly
becomes costly as M increases. Hence, we are encouraged to de-
velop more efficient algorithms. Let rm = qmb−1

m t−1 be the scaled
power allocation ratio of network m. With that notation, we can for-
mulate an equivalent optimization problem (P2) with respect to the
M + 1 dimensional parameter vector r = [r0, r1, . . . , rM ]T :

(P2) max
r

M∑

m=0

am exp(−r−1
m ) (5a)

s.t. (ηmbm)−1 − rm ≤ 0, for m = 0, . . . ,M (5b)
M∑

m=0

λmbmrm − 1 = 0. (5c)

As formalized in the following theorem, under the assumption that
the successful transmission probability of each SN in exclusive ac-
cess mode is not unreasonably small, problem (P2) is convex.

Theorem 2. If p̃m > exp(−2) + δm, ∀m = 0, 1 . . . ,M , problem
(P2) is strictly convex.

Proof : Let fm(rm) = exp(−r−1
m ), then f ′′

m(rm) =
r−3
m exp(−r−1

m )(r−1
m − 2). From (5b), r−1

m ≤ ηmbm =
− ln[exp(−bmλm) − δm]. If p̃m = exp(−bmλm) > exp(−2) +
δm ≈ 0.1353 + δm, then r−1

m < 2, and hence f ′′
m(rm) < 0. Since

the objective function in (P2) is
∑M

m=0 amfm(rm) with am > 0,
it is sufficient to show that the objective function is strictly concave.
The proof follows by observing that the constraints are linear. !

The key to the convexity of (P2) is that by defining rm =
qmb−1

m t−1, the M variables that were coupled in (P1), qm, are re-
placed by M +1 decoupled variables in (P2), rm. Furthermore, by
strict convexity, Theorem 2 guarantees the uniqueness of the global
optimum. Problem (P2) can be efficiently solved using general pur-
pose tools, such as interior-point methods [31]. The global optimal
transmission power of SN m can then be extracted via the optimal
solution r∗ = [r∗0 , r

∗
1 , . . . , r

∗
M ]T of (P2) and the PN power P0,

based on the expressions for rm and qm. The proposed approach
can be summarized by Algorithm 1.

Algorithm 1 Using general purpose tools

1: Solve (P2) using a general purpose tool like an interior-point
method, and obtain the maximum spectrum-sharing throughput
utility U∗ and the associated globally optimal r∗.

2: The optimal secondary transmission power is P ∗
m =

[r∗mbm(r∗0b0)
−1]α/2P0, for m = 1, . . . ,M .

Algorithm 1 efficiently solves the QoS-constrained weighted
sum rate problem (P2). However, employing a general purpose
solver is not necessarily the most efficient approach. By carefully
inspecting (5b), we observe that some components of the optimal
solution lie on the boundary of r∗m = (ηmbm)−1, whereas the oth-
ers satisfy r∗m > (ηmbm)−1. This suggests that it may be possible
to derive a specialized algorithm, or even obtain a quasi-closed form
solution. We now take steps in that direction with some formal re-
sults on the structure of the optimal solution.

Theorem 3. The optimal secondary transmission power is r∗m =
(ηmbm)−1, ∀m = 0, 1, . . . ,M , iff

∑M
n=0(λn/ηn) = 1.

Proof : The necessary condition is established by substituting
r∗m = (ηmbm)−1 into (5c). Sufficiency is shown as follows: Sup-
pose ∃ m̆ ∈ {0, 1, . . . ,M}, such that rm̆ > (ηm̆bm̆)−1. Then
1 ≥

∑
n %=m̆ λn/ηn + λm̆bm̆rm̆ >

∑M
n=0(λn/ηn), which contra-

dicts the assumption. !
To analyze the case when

∑M
n=0(λn/ηn) < 1, let us define

F (x) = x−2 exp(−x−1), cm = ambmη2
mλ−1

m exp(−ηmbm), and
re-index the networks using {mk} rather than {m}, so that cmk ≥
cmk+1 , for k = 0, 1, . . . ,M − 1.

Lemma 1. If there are i optimal components satisfying r∗m >
(ηmbm)−1 and M − i optimal components satisfying r∗m =
(ηmbm)−1, then r∗mk

> (ηmkbmk )
−1, for k = 0, . . . , i − 1, and

r∗mk
= (ηmkbmk )

−1, for k = i, . . . ,M .

The proof is based on the analysis of the Karush-Kuhn-Tucker
(KKT) optimality conditions [31] and the monotonicity of the func-
tion F (rm). The detailed proof is omitted due to space limitations.
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Table 1: Spectrum sharing between two networks

Weights Nature of P ∗
1 Value of P ∗

1 (W) U (bits/s/Hz) U0 (bits/s/Hz) Utility improvement (%)
ω0 = ω1 = 0.5 interior point 0.21 2.87 1.71 68%
ω0 = 0.1, ω1 = 0.9 at the upper bound 0.79 2.52 0.34 640%
ω0 = 0.95, ω1 = 0.05 at the lower bound 0.03 3.33 3.24 3%

Lemma 1 indicates that if we know the number of optimal com-
ponents that are on the boundary, then we can determine which com-
ponents are on the boundary simply by re-indexing the networks.
The remaining question is whether i is the largest number of com-
ponents that satisfy rm > (ηmbm)−1. The following lemma, whose
proof is also omitted for brevity, will help us determine the value of i.
Let U (j)∗ denote the maximal value of objective function of (P2)
when rmk = (ηmkbmk )

−1, for k = j + 1, . . . ,M , in addition to
(5b) and (5c) holding for rmk , for k = 0, . . . , j.

Lemma 2. U (j+1)∗ ≥ U (j)∗, for j = 0, 1, . . . ,M − 1.

Lemma 2 indicates that we should seek the largest value for i
for which the KKT conditions admit a solution. If we re-index the
networks, based on Lemma 1, that largest value for i can be found in
a straightforward manner. In particular, if we define

dm = a−1
m bmλm,

Gi(x) =
i∑

k=0

λmkbmkF
−1(xdmk )− 1 +

M∑

k=i+1

(λmk/ηmk ),

then we have the following theorem.

Theorem 4. If
∑M

n=0(λn/ηn) < 1, a quasi-closed form solution to
(P2) and hence to (P0) can be obtained efficiently by Algorithm 2.

Algorithm 2 A quasi-closed form solution

1: Re-index the networks using {mk} rather than {m}, so that
cmk ≥ cmk+1 , for k = 0, 1, . . . ,M .

2: Initialize i = 0. Set µ(0) = 0.
3: while µ(i) < cmi do
4: i := i+ 1;
5: compute µ(i), the root of Gi(µ) = 0;
6: end while.

7: r∗mk
=

{
F−1(µ(i−1)dmk ), for k = 0, . . . , i− 1
(ηmkbmk )

−1, for k = i, . . . ,M.

8: P ∗
mk

= [r∗mk
bmk (r

∗
0b0)

−1]α/2P0, for k = 0, 1, . . . ,M .
9: U∗ =

∑M
k=0 amk exp[−(r∗mk

)−1].

Proof : Using the KKT conditions, if rmk > (ηmkbmk )
−1, then

rmk = F−1(µdmk ), where µ is the Lagrange multiplier of (5c). If
rmk > (ηmkbmk )

−1 for k = 0, . . . , i−1 and r∗mk
= (ηmkbmk )

−1

for k = i, . . . ,M , then Gi−1(µ) = 0. The existence of the solution
µ(i−1) to that equation is a consequence of the feasibility of (P2).
The monotonicity of Gi(x) leads to the uniqueness of µ(i−1). Due
to the monotonic decreasing nature of F (x), µ(i−1) < cmi−1 . !

After sorting the network index, Algorithm 2 only requires no
more than M + 1 iterations to find the critical number i. Moreover,
at each iteration, we only need to find the root of a one-dimensional
function, and it can be expressed in a quasi-closed form reminiscent
of waterfilling. In contrast, the original formulation (P2) has M +1
variables.

4. CASE STUDIES AND NUMERICAL RESULTS

In this section, we demonstrate the potential of the proposed power
control strategy using three simple case studies involving a PN and a
single SN (M = 1). In these cases, the quasi-closed form solutions
in Algorithm 2 take explicit closed forms.

The following parameters are used: network densities are λ0 =
10−6m−2, λ1 = 2 × 10−5m−2; path-loss exponent is α = 3; ref-
erence transmission distances are R0 = 20m, R1 = 10m; primary
transmission power is P0 = 10 dB; target SIR thresholds are β0 =
10,β1 = 5; successful transmission probability decrement bounds
are δ0 = 0.05, δ1 = 0.1; and the spectrum bandwidth is normalized
to be unity. These parameter settings satisfy

∑M
n=0(λn/ηn) < 1,

so the feasibility of the power control problem is ensured (cf. The-
orem 1), and Theorem 4 is applicable. Also, Corollary 1 indicates
that P1 is bounded between P1,min =

[
λ0(η1 − λ1)

−1
]α/2

P0 and
P1,max =

[
(η0 − λ0)λ

−1
1

]α/2
P0.

We first consider the case of equal weights, i.e., ω0 =
ω1 = 0.5. These weights can be interpreted as two ac-
cess fairness factors that avoid domination in the spectrum us-
age. For this setting, it can be shown that the optimal P ∗

1 is
an interior point lying strictly between P1,min and P1,max, P ∗

1 =[
F−1(µ(1)d1) b1b

−1
0 /F−1(µ(1)d0)

]α/2
P0, where µ(1) is the solu-

tion of λ0b0F
−1(µd0)+λ1b1F

−1(µd1) = 1. As shown in Table 1,
allowing the SN to access the spectrum results in a 68% improve-
ment in the throughput utility.

Secondly, we consider the case of ω0 = 0.1 and ω1 = 0.9,
representing a scenario where the PN accesses the spectrum with low
frequency, whereas the SN is quite active. It can be shown that U is
an increasing function over the feasible region of P1. As a result,
P ∗
1 is at the upper bound, i.e., P ∗

1 = P1,max. Table 1 demonstrates
that the proposed power strategy provides a dramatic increase in the
throughput utility when compared with exclusive use assigned to the
PN.

Thirdly, we consider the case of ω0 = 0.95 and ω1 = 0.05,
representing a scenario where PN accesses the spectrum with high
frequency or allows little performance degradation. Consequently,
there is little chance for SN to coexist. For this setting, U is a de-
creasing function in the feasible region of P1, and hence P ∗

1 is at
the lower bound, i.e., P ∗

1 = P1,min. Table 1 illustrates that in this
case the improvement in throughput utility is 3%, which is consis-
tent with the intuition.

5. CONCLUSION

In this paper, we developed a power control strategy for multiple
spectrum-sharing networks that depends only on a model for the
spatial distribution of the nodes. We developed a quasi-closed form
expression for the power allocation that maximizes a weighted sum
of the throughput of the networks, subject to QoS constraints in each
network. Case studies demonstrated that in a variety of settings sub-
stantial gains in the throughput can be obtained using proposed strat-
egy, with dramatic gains being obtained when the PN accesses the
spectrum infrequently.
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