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Abstract: An asymptotically minimum bit error rate (BER) linear block precoder is determined for
block-by-block communication systems employing linear minimum mean square error (MMSE)
equalisation and disjoint detection. The problem is solved by a two-stage optimisation procedure in
which a lower bound on the BER is first minimised, and then it is shown how this minimised lower
bound can be achieved. Simulation results show that the BER performance of the proposed scheme
is superior to the standard MMSE precoder and several other conventional systems such as
orthogonal frequency division multiplexing. At reasonable BERs, the signal-to-noise ratio (SNR)

gain can be of the order of several decibels.

1 Introduction

In conventional digital communication systems, the pre-
sence of intersymbol interference (ISI) at the receiver can be
a significant impediment to achieving reliable transmission
with a simple detector. In particular, the complexity of the
maximum-likelihood sequence detector grows exponentially
with the number of interfering symbols, and the perfor-
mance of simpler detectors consisting of a linear equaliser
and a symbol-by-symbol detector may degrade significantly.
For channels which suffer from severe ISI, block-by-block
transmission [1, 2] offers an attractive trade-off between
performance and implementation complexity. Such schemes
transmit blocks of data in a manner that avoids interference
between the received blocks, and hence the detector need
only operate on a block-by-block basis. Popular examples
of such schemes include orthogonal frequency division
multiplexing (OFDM) and discrete multitone modulation
(DMT) [3].

For a general block transmission scheme, optimal
detection requires a joint decision on the whole block. This
task requires a number of operations that is exponential in
the block size. However, for the OFDM and DMT
schemes, these decisions can be linearly decoupled, resulting
in a much less complex receiver. That result has generated
considerable interest in linear block-by-block transmission
schemes with receivers, which consist of a linear preprocessor
(equaliser) and disjoint scalar (symbol-by-symbol) detectors,
e.g. [4, 5]. In this paper, we will provide a candidate design
for the transmitter (precoder) of such a scheme when
minimum mean square error (MMSE) equalisation is
employed. The performance of our scheme will demonstrate
that substantial gains can be obtained by tailoring the
transmitter to account for the suboptimality of the receiver.
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Previous performance-orientated designs for the precoder
of a linear block transmission scheme have tended to focus
on minimising the mean square error (MSE) at the output
of the equaliser [5, 6], under the assumption that perfect
channel state information (CSI) is available at the
transmitter. Although these designs result in MMSE, they
do not necessarily result in minimum bit error rate (BER).
Previous work on the design of minimum BER (MBER)
linear block-by-block precoders for zero-forcing equalisa-
tion [7] has shown that, at moderate-to-high signal-to-noise
ratios (SNRs), the SNR gain of the MBER precoders can
be of the order of several decibels (dB) over the standard
MMSE precoders and the OFDM scheme. As MMSE
equalisation is often preferred over ZF equalisation, in
this paper we provide a closed form expression for an
asymptotically MBER linear precoder for block-by-block
transmission systems that employ MMSE equalisation, and
show that similar SNR gains are obtained. After the work
reported here was begun [8], we became aware of some
independent concurrent work on (multiple input, multiple
output) multicarrier systems [9, 10]. For multicarrier
systems, our result is a special case of one of the results in
[9, 10], but the mathematical techniques we use are signi-
ficantly different.

2 Block-by-block transmission

The linear block-by-block communication system consid-
ered in this paper is shown in Fig. 1: see, e.g. [4, 5]. In this
system, the nth block of M data symbols, s(n), is linearly
precoded with a P x M matrix F, to construct a block of
P> M symbols, u(n) = Fys(n), which is transmitted (serially)
through the channel. The channel is assumed to be quasi-
static (i.e. to be constant over the transmission of one
block), and to have a finite impulse response of length (at
most) L+1; i.e. h(k)=0 for k<0 and k> L. The receiver
linearly processes a block of P received samples, y(r), with
an M x P ‘equalising’ matrix Gy to form the estimate §(n) =
Goy(n) of s(n). The elements of §(n) are then passed to
disjoint scalar symbol-by-symbol detectors to obtain the
detected block §,(n).

The effectiveness of a block-by-block detection scheme is
dependent on the elimination (or at least the mitigation) of
interference between blocks. Therefore, the design of the
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(k)

Fig. 1 Discrete-time baseband equivalent model of a block-by-block transceiver
S/P and P/S denote serial-to-parallel and parallel-to-serial conversion, respectively

matrices Fy and Gy should be constrained so that §(n) is
(essentially) independent of s(k), k#n. There are two
standard constraints which eliminate interblock interference
(IBI) in a channel independent manner, namely, ‘zero-
padded’ (ZP) and ‘cyclic-prefixed” (CP) transmission. In
both schemes, the ‘tall’ matrix F, introduces redundant
symbols into u(n), and any element of y(n) that is dependent
on s(k), k#n, is removed by the ‘fat’ matrix Gy. (See [11] for
alternative channel dependent schemes.) The ZP and CP
transmission schemes implicitly impose particular structures
on Fy and Gy, as we now explain.

In order for the ZP and CP schemes to be able to
eliminate IBI we require that the transmitted block length
P> M+ L. For the CP scheme, we also require that P>2L
in order to ensure that the cyclic prefix can be constructed
(see the expression for Fy cp below). In the ZP case, the last
L elements of u(n) are constrained to be zero. If we let I,
denote the m x m identity matrix, and 0,,, denote the
m x n matrix of zeros, the ZP constraint results in F and G
having the forms

. B Ip_;
Fo=Fozr = |:0L><(P—L) } F

and
G)y=Gozp =G

where F and G are unstructured (P—L) x M and M x P
matrices, respectively. In the CP case, the first L elements of
u(n) are constrained to be the same as the last L elements.
The received versions of these first L elements are corrupted
by the previous block and are removed by the receiver. That
is, in the CP case,

01 pary I
P p = [0t e

and
Gy = Gocp = G[0p_p) Ip o]

where F and G are unstructured (P—L)x M and
M x (P—L) matrices, respectively. In both the ZP and CP
cases, the unstructured matrices F and G capture the
remaining degrees of design freedom, and they will become
our design variables. Using these notations and dropping
the block index n, we obtain the following unified
expression of the equalised symbol vector for both the ZP
and CP schemes (see [4, 5, 7, 12] for further details)

§ = GHFs + Gv (1)

where v is a vector containing the appropriate elements of
the additive noise sequence #(n) in Fig. 1. In the ZP case, H
is a P x (P—L) ‘tall’ Toeplitz matrix whose first column is
[7(0),--, h(L), 0,---, 0]" with P—L—1 zeros, and v is of
length P. In the CP case, H is a (P—L) x (P—L) circulant
matrix whose first row is [(0), O,--, 0, A(L),---, h(1)] with
P—2L—1 zeros, and v is of length P—L.

In this paper, we consider applications in which perfect
channel information is available at both the transmitter and
receiver. For ease of exposition, we first consider schemes in
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which the elements of s are 4-QAM symbols (that are
independent, equi-probable, and are of unit energy), but we
will extend this result to higher-order (square) QAM
symbols in Section 5. The receiver noise #(n) in Fig. 1 is
assumed to be stationary, zero-mean, circularly symmetric
and Gaussian, with covariance E{#(n+ no)i (1)} = rss(no).
Therefore, the (i, j)th element of R,, = E{vv™} is ry:(i—j). We
will focus on systems in which MMSE equalisation is
employed such that (e.g. [5])

G = F'H"(R,, + HFF' H")™! (2)

This equaliser results in the matrix product GHF in (1)
having some special properties which aid our derivation of
the asymptotically MBER precoder. In particular,

Pl. GHF= F"H"(R,,+ HFF""H")"'HF, which is Her-
mitian symmetric;

P2. (GHF)(GHF)" + GR,,G" = GHF, [13];

P3. 0<[GHF),,,<1 for all me[1, M], where [-]; denotes
the (i, j)th element of a matrix. (This property is derived in
the Appendix (Section 9.1).

3  Asymptotic average bit error rate

Since our detector is based on disjoint detection of the
elements of s (see Fig. 1), and since the elements of s are
chosen independently and with equal probability from the
same (unit-energy 4-QAM) constellation, the average
probability of error is

Pe :jiwzpe,m

where P,,, is the probability of error in the mth element of
5. The choice of the (scalar) detector for the mth element of
the block, and the resulting expression for P.,,, depend on
the signal gain for the mth element of s and the distribution
of the ISI and noise terms for that element of §. To expose
those terms, we can re-write the mth element of (1) as:

=1
I#m

Since both the ISI and additive noise components of (3)
have distributions that are symmetric with respect to the
real and imaginary axes of the complex plane (and hence
they have zero mean), the optimal disjoint (scalar) detector
for the mth element of the block is the standard threshold
detector for 4-QAM signalling, e.g. [14]. To determine the
probability of error for that detector, we observe that [Gv],,
has a Gaussian distribution (because v is jointly Gaussian)
and that the ISI component in (3) can take on up to 4"~
discrete values. These values, which we will denote by z;, can
be calculated by substituting the jth permutation of the
interfering symbols into the ISI component of (3). In fact,
by applying the standard procedures for the calculation
of the probability of error for symbol-by-symbol detection
of a (scalar, unit energy) 4-QAM symbol in the presence of
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ISI [14] to the model in (3), we have

gM-1

em :4M lzpem|z,

M—1

Z erfec (GHF),,, — V2Re(z))
4M

2[GR,,G"),,,

[GHF]mm — \/EII’I’I(Z])
2GR, G"),,,

+erfc

where

erfc(x / exp(—
TV

and Re(-) and Im(-) denote the real and imaginary parts,
respectively, of a complex number. Unfortunately, the
number of terms in the summation in (4) is exponential in
M, and hence exact computation of P, quickly becomes
computationally infeasible as the data block size grows.

A standard approach to reduce the complexity of
evaluating the exact analytic expression for the BER of a
system with ISI is to determine a simple approximate
statistical model for the ISI. By adapting the results in
[15-17] to the block-by-block system considered in this
paper, it can be shown that for a randomly chosen
(P—L)x M precoder matrix, and a randomly chosen
channel /(k), the distribution of the ISI in each element of
§ converges almost surely to a proper (circular) complex
Gaussian distribution as M increases [18]. Therefore,
equation (3) can be approximated by

51, ~ [GHF],,,[s],, +wn (5)

where w,, is a zero mean, proper (circular) complex
Gaussian random variable with independent real and
imaginary parts of variance [Cl,,,, and the covariance
matrix C satisfies:

2C = (Re(GHF) — Diag(GHF))(Re(GHF)
— Diag(GHF))" + (Im(GHF))(Im(GHF))"
+ Re(GR,,G")

where Diag (A) is the diagonal matrix formed by setting the
off-diagonal elements of 4 to zero. Under the approximate
model in (5), (threshold) detection of [§],, is equivalent to
detection of a single 4-QAM symbol in additive Gaussian
noise. By following the standard procedures for calculating
the probability of error in that scenario (e.g. [14, 19]), the
BER of the mth element of s in (4) can be approximated by

1 [GHF],,,
Py & Eerfc (4[C]mm> (6)

where the approximation converges (almost surely) as
the block size grows. By using property P2, and (6), it
can be shown that the asymptotic average BER can be
approximated by:

]LM;Pe,m

1 Y 1
N5 Z erfc (7
= \/2(Diag(GHF)) " ~1,,,
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4 Design of asymptotically MBER precoder

4.1 Problem statement

With the asymptotic BER expression given by (7), our goal
is to find a linear precoder which provides minimum BER,
subject to a bound on the average transmitted power, po.
Mathematically, this design problem can be written as:

mm Fe (8a)

subject to  tr(FF") < p, (8b)

We will show below that the BER expression in (7) is
convex with respect to [GHF],,, and hence a globally
optimal solution to (8) can be obtained by first minimising a
(tight) lower bound on the BER, followed by showing how
this minimised lower bound can be achieved.

4.2 Convexity and a lower bound on the
asymptotic BER
To establish the convexity of (7), let

) =erfe(2a! = 1))
The second derivative of f(x) with respect x is:

2
G0 =—ew(- 36 - 1))

2
4y 1 ~1)2 1
x (x4t = 1) )(\/ﬂ \@) (9)
From (9), it is observed that if 0<x<1, then the second
derivative of f(x) with respect to x is non-negative.
Applying this result to the asymptotic BER expression in
(7) and using property P3, it is concluded that P.,, is a
convex function of [GHF],,,. Using this observation, a
lower bound on the BER can be obtained by applying
Jensen’s Inequality [Note 1] to (7) such that [18]:

erfc 2P (10)

with equality holding if and only if [GHF],,,, are all equal
for me(l, M.

4.3 Solution for the optimal precoder

Since the asymptotic BER expression is convex in [GHF],,,,,,,
any locally optimal solution to (8) is globally optimal.
Furthermore, the lower bound on P, in (10) can be achieved
if and only if the diagonal elements of GHF are equal.
Therefore, to solve (8), we first minimise P.yp in (10)
subject to the average transmitted power constraint in (8b),
and then show how this minimised lower bound can be
achieved.

4.3.1 Minimisation of the BER lower bound: By
applying the matrlx inversion lemma [Note 2] to the term
(R,,+ HFF'H™)™" in erperty P1, it can be shown that
GHF can be written as F7X. FHXF(I+ FXF)~'FAXF,

where X = H?R,' H. Now, let
HYR'H =waw" (11)

Note 1: The appropriate form of Jensen’s inequality ([20] p- 25) states that if
f(x) is convex, then (l/M)E” 1f(x,,,) > f((1/M)EY_\x,,), with equality
holding if and only if x;=x,=--- =xu.

Note 2: The matrix inversion lemma ([21], p. 50) states that for matrices 4, B, C
and D with compatible dimensions and 4 and C being invertible,
(A+BCD) '=A"'—A7'B(C"'+ DA 'B)'DA~".
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be the eigenvalue decomposition of H R;ul H, where the
columns of W are arranged such that the diagonal
elements of A are in descending order. Let N denote the
number of positive eigenvalues of H' RLTUIH . In the ZP
case, H has full column rank, and hence N=P—L,
except for the degenerate case where i(k)=0. However,
in the CP case, H may drop rank and hence, N<P—L.
We parameterise the precoder matrix F in terms of its
singular value decomposition

F:U[ ® }V (12)

Op—1rryxm

where @ is an M x M diagonal matrix with non-negative
diagonal elements, and U and V are square unitary
matrices with dimensions (P—L) and M, respectively.
Here, we choose M <N because transmission over a
zero-gain sub-channel would lead to the failure of
symbol recovery [22], and thus a high probability of
error. By using (11), (12) and the matrix inversion
lemma, it can be shown [18] that GHF = VI'V" where

I=®Zy,® - 0Zyd(I + ®Zy®) '®Zyd (13)

with Z,, being the upper-left M x M sub-matrix of
UW AWM U. Using the fact that erfe(-) is monotoni-
cally decreasing, it follows that minimising the lower
bound on the BER is equivalent to minimising —tr(I").
Hence, the optimisation problem of minimising (10)
subject to (8b) can be reformulated as follows

min —tr(T) (14a)

subject to  tr(®?) < py (14b)

where (14b) follows from the fact that tr(FF") = tr(®)*.
Note that Problem (14) is independent of V. Therefore,
the lower bound on the BER can be minimised by
choosing @ and U to minimise (14) for any arbitrary
M x M unitary matrix V.

We observe that by using properties P1 and P2, problem
(14) is equivalent to the problem of minimising the MSE of
the equalised symbols, E{S¥_ ([s] —[s],)?} (see the
Appendix, Section 9.2). Therefore, the solution to problem
(14) is given by [5, 6, 13, 22]

Uwvse = W = [Wu W] (15)
Mo +
pO + Z ;u;
2 i=1 —1/2 41
[@mmvisE];, = 7 Iy 5= Ao (16)
2"

where W, consists of the first M columns of W, W3,
consists of the remaining P—L— M columns of W, 4; is the
ith diagonal element of A, (x)" £ max(x, 0), and M <M is
such that [QMMSE]i >0 for all me[l, M] and [QDMMSE]fn =
0 for all me[M +1, M]. By substituting (15) and (16) into
(12), it is found that the set of precoders that minimise the
lower bound on the probability of error is

DrivsE

P M] V=WydmseV (17)

Frin18 = Unmmse [0

where V is an arbitrary M x M unitary matrix. (As the
derivation suggests, this is also the set of precoders which
minimise the MSE of the equalised block, §.)
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4.3.2 Achieving the BER lower bound: As
stated after (10), Jensen’s Inequality implies that P, =
P g if and only if all the diagonal elements of GHF are
equal. Therefore, to find a precoder which achieves the
minimised lower bound, we seek a unitary matrix ¥ such
that the diagonal elements of GHF = VIV are rendered
equal. Substituting (17) into (13), we find that the optimal I
is diagonal, and hence

M
[GHF]mm = Z ‘Um,i|2yi7
i=1

where y; is the ith diagonal element of I', and v,,; is the
(m, i)th element of matrix V. We note that if ¥ is chosen
to be a normalised discrete Fourier transform (DFT)
matrix, then |vm),~|2 = 1/M. Hence, the diagonal elements of
GHF will all be equal to tr(I')/M, and this will achieve the
minimised BER lower bound. That is, a precoder which
minimises the asymptotic BER is

Fyer = Wy Pvivise D (18)

where Dj, is the M x M normalised DFT matrix. In fact,
any unitary matrix which has the property |v_,~,»|2 =1/M for
all ije[l, M] is an optimal solution for V, e.g. the
normalised inverse DFT matrix, D4, or the normalised
Hadamard matrix if M is an integer power of 2 are such
unitary matrices. With these choices of precoder, the
resulting minimised asymptotic BER in (10) is:

Pe,min =
1erfc M(po+3XM 01— (Ef}’il;&;l/z)z
2 2((M — M)(po + S0 + (59,42

(19)

5 Remarks

We would like to make the following remarks regarding the
asymptotically MBER precoder:

(i) The MBER precoder is a special MMSE precoder
in which the free unitary matrix V is chosen to satisfy
|vm,,-|2: 1/M, for all m, ie[l, M]. However, an arbitrary
MMSE precoder is not necessarily a MBER precoder.

(i) The optimal choice of V linearly combines the sub-
channels in such a way that the signal-to-interference-
and-noise ratios (SINRs) in each sub-channel are equal,
and hence the (minimised) lower bound on the BER is
achieved. This linear combination increases the apparent
gain of the ‘low-gain’ sub-channels at the expense of
reducing the apparent gain of the ‘high-gain’ sub-channels.
By doing so, the optimal ¥ also introduces inter-subchannel
interference. However, the net outcome of this balancing
effect is that the minimised lower bound on the BER for
linear MMSE equalisation and disjoint scalar detection is
achieved.

(i) To compare the performance of the MBER precoder
for MMSE equalisation (18) with the performance of the
MBER precoder for ZF equalisation [7], we observe that if
we define the block SNR to be p£ py/tr(R,,), then under the
condition that

3 w ~1/2
>— A 20
p Mtr(Rw);l (20)

the resulting BER of the MBER precoder for ZF
equalisation is [7]
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1 Mp()

If we assume that the transmission block sizes for both
equalisation schemes are the same, and that M = M in the
MMSE case, then the difference between the optimised sub-
channel SINRs for the MMSE and ZF equalisation is [18]:
MY (s )

SINRMMmse — SINRzg =
2z A2

Using the Cauchy inequality [21, p. 53], it can be shown that
SINR pvivse—SINRzE>0, [18]. Since erfe( - ) is monotoni-
cally decreasing with respect to the SINR, this implies that
the MBER precoder for MMSE equalisation yields a lower
BER than the MBER precoder for ZF equalisation.

(iv) The asymptotically MBER precoder given in (18) is
valid for both the ZP and CP transmission schemes. That
said, the actual average transmitted power of the CP scheme
is (proportional to) po(1+ L/(P—L)) due to the need to
transmit the cyclic prefix. A feature of the CP-MBER
precoder is that, if the noise on each subcarrier is assumed
to be independent (as is often done in practice, e.g. [10]), the
expression for the MBER precoder can be simplified
because the corresponding W matrix is a permuted
inverse DFT matrix and 4; = |H(w;)|?/ o2, where H(w;) is
the (P—L)-point DFT of A(k) and o7 is the variance of the
noise on the ith subcarrier, (see [18] for the details and [7] for
analogous expression for the case of ZF equalisation).
Comparing the MBER precoders for CP transmission with
those for ZP transmission, we find that ZP precoders are
more complicated to implement, as they require the
calculation of eigenvectors for each different channel. In
contrast, the eigenvectors for CP transmission are simply
the columns in the normalised IDFT matrix, irrespective of
the channel coefficients. However, ZP schemes have the
advantages that symbol recovery is guaranteed (due to the
full-rank nature of the channel matrix H), and that no
power is consumed in the transmission of the redundant
symbols.

(v) The derivation of the MBER precoder in Section 4 was
based on 4-QAM signalling. However, that work can be
extended to systems which transmit square QAM constella-
tion signals. Here, we briefly outline that extension. An
extension to rectangular QAM is also possible, but for
simplicity we will restrict attention to the square case. Using
the results in [19] for scalar transmission over additive white
Gaussian noise channels and our Gaussian approximation
of the residual ISI in (5), the BER of our block-by-block
transmission system with K-ary square QAM signalling can
be closely approximated by

Fe “%Z (evrerfe((B, [(Diag(GHF)) ™" — I}mm)fl/z)

m=1

+ wperfe((f,[(Diag(GHF)) ™" — I]mm)_l/2)
(22)

where o) = (VK —1)/(VKlog, VK), = (VK —2)/
(VK log, V), i = 2(K — 1)/3, and f,= /9. By analys-
ing the second derivative of (22) with respect to [GHF],,,,,,, it
can be shown that (22) is convex if all the diagonal elements
of GHF satisfy one of the following conditions:

58, — 2 — /98> — 20 4
(GHF| b b= 208 + Lo (23)

mm — 8B1
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— 27
(GHF] A S (24)

mm — 8ﬁ1

Systems satisfying (24) are of greater interest because
they result in moderate-to-high decision-point SINRs and
hence to reasonable BERs. To apply the procedures of
Section 4 to (22), we must add the constraint in (24) to (14)
to ensure that the lower bound on the BER that is to be
minimised remains a valid lower bound. Although this
additional constraint may appear to make the problem
more difficult to solve, an analytical solution can be
obtained by modifying techniques from [7]. In fact, it can
be shown (see the Appendix, Section 9.3) that for SNRs
satisfying

the MBER precoder for 4-QAM signalling in (18) remains
the MBER precoder for K-ary square QAM signalling.

6 Performance analysis

We now compare the theoretical and simulated BERs of the
proposed MBER precoder to those of some existing ZP and
CP transmission schemes. We consider schemes which
employ 4-QAM signalling, and hence the proposed MBER
precoder is valid for all SNRs. The BERs are averaged over
500 realisations of a frequency-selective slow Rayleigh
fading channel of length L + 1, with additive white Gaussian
noise of variance ¢>. (For each realisation of the channel,
both the transmitter and receiver have exact knowledge of
the impulse response.) The channel tap coefficients are
independent, zero-mean, circularly-symmetric complex
Gaussian random variables. We consider two delay profiles:
in the ‘flat’ profile the variance of each channel tap is 1/
(L+1); in the ‘decaying’ profile, the variance of the /th tap,
0<I<Lis p27', where f=2%/(2"'—1) is chosen so that
the sum of the tap variances of both profiles is one,
independent of the channel length. The BERs will be
plotted against the block SNR, p = py/tr(R,,). Since the
noise is white, for the ZP scheme we have pzp = po/(Pa?),
and for the CP scheme we have pcp=po/(P—L)o%) =
po(1+ L)(P—L))/(Po®).Therefore, the block SNR explicitly
captures the extra power required to transmit the prefix in
the CP scheme. That said, the actual average transmitted
power of the CP scheme is (proportional to) po(1+L/
(P—L)) due to the need to transmit the cyclic prefix.

For both the ZP and the CP transmission schemes, we
compare the performance of the proposed MBER precoder
with that of the standard MMSE precoder [5], for which the
free unitary matrix V in (17) is chosen to be the identity
matrix. We also consider two standard, channel-indepen-
dent precoding schemes, namely, the ZP and CP identity
matrix precoding schemes [23, 24], and the OFDM schemes
(both standard CP-OFDM [3] and ZP-OFDM [5, 25]). The
identity precoder takes the form

ot
0p_—r)xm

with o = \/ py/M, and for the OFDM schemes

I
F = oD¥
*p-1 |:0(P—L—M)><M:|
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When M < P—L, our simple CP-OFDM scheme transmits
on the M subcarriers with the lowest frequencies. A
straightforward channel-dependent alternative would be to
transmit on the M subcarriers with the largest gains. We
will denote this selective CP-OFDM scheme by CP-
OFDM-S. The corresponding precoder is Fcp_orpm-s =
ocDII;I_ Sy, where S, contains the columns of Ip_,
corresponding to the subchannels with the M largest gains.

In Fig. 2 we provide the BER curves of these schemes
for a fading channel with the flat delay profile and
(L, M, P)=(4, 16, 20). As shown in Table 1, at a BER of
10~* the SNR gains of the ZP and CP MBER precoders
over the corresponding MMSE schemes are about 2.5dB
and 7.8 dB, respectively. The SNR gains over the OFDM
schemes are about 5.8dB and 17dB, respectively, and the
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Fig. 2 Theoretical and simulated BERs of ZP and CP precoders
for a system with (L, M, P) = (4, 16, 20) and the ‘flat’ delay profile

SNR gains over the identity precoders are about 1.3 dB and
1.7dB, respectively. The general shapes of the BER curves
in Fig. 2, and the resulting SNR gains, are fairly typical for
the case where M= P—L [18]. To illustrate that fact,
the (block) SNRs required to achieve a BER of 10~* for
other scenarios in which M= P—L have been provided in
the odd-indexed rows of Table 1. The comparatively poor
performance of the CP-OFDM scheme is due to its
sensitivity to channels with zeros on the DFT grid (in
which case channel matrix H drops rank, e.g. [12]), and to
the propensity for the fading channel model to generate
channels that have zeros close to the unit circle [26].

In Fig. 3, we provide BER curves for a fading channel
with the flat delay profile and (L, M, P)=(4, 14, 20). The
data rate is lower in this case, because M < P—L, and hence
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Fig. 3 Theoretical and simulated BERs of ZP and CP precoders
for a system with (L, M, P) = (4, 14, 20) and the flat’ delay profile

Table 1: SNRSs required to achieve a BER of 10~* under the flat delay profile

Parameters Required SNR, dB
Zero-padded Cyclic-prefixed
L M P MBER MMSE | OFDM MBER MMSE | OFDM OFDM-S
4 16 20 16.9 19.4 18.2 22.7 19.5 27.3 21.2 36.7 —
4 14 20 14.7 16.0 17.5 21.7 16.1 17.9 18.8 35.8 21.2
4 32 36 18.0 21.4 19.5 26.1 19.3 26.7 20.9 36.9 —
4 30 36 16.4 18.4 19.2 256 17.3 19.8 19.8 36.9 24.0
8 32 40 15.9 19.3 17.4 23.8 18.2 26.6 19.7 36.8 —
8 30 40 14.5 16.5 17.0 235 16.0 18.7 18.5 36.2 23.1
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Table 2: SNRs required to achieve a BER of 10~ under the decaying delay profile

Parameters Required SNR, dB
Zero-padded Cyclic-prefixed
L M P MBER MMSE | OFDM MBER MMSE I OFDM OFDM-S
4 16 20 213 241 225 27.8 235 30.3 249 38.3 —
4 14 20 19.1 201 21.8 27.2 20.3 21.8 228 37.8 24.8
4 32 36 223 26.5 23.6 31.4 235 29.9 248 38.2 —
4 30 36 20.7 22,6 233 311 215 239 24.0 37.7 27.8
8 32 40 219 25.0 23.0 29.8 233 29.4 245 38,5 —
8 30 40 205 22.0 227 29.6 21.7 23.6 237 37.9 21.7
the performance of each scheme is better than that of the 3 Bingham, J.A.C.: ‘Multicarrier modulation for data transmission:

corresponding scheme with (L, M, P)= (4, 16, 20) in Fig. 2.
In particular, the subchannel selecting properties implicit in
the MBER and MMSE schemes, and explicit in the CP-
OFDM-S scheme, result in substantially improved perfor-
mance. Moreover, Fig. 3 and Table 1 demonstrate that the
proposed MBER scheme continues to provide significant
SNR gains over the competing schemes when M < P—L.
In Table 2 we provide results for fading channels with the
decaying delay profile that correspond to those in Table 1
for the flat delay profile. Once again, it is evident that the
MBER precoder provides SNR gains over the competing
designs that are consistently of the order of several decibels.

7 Conclusions

In this paper, we considered the design of block-by-block
transmission systems with linear minimum mean square
error (MMSE) equalisation and disjoint detection. With the
removal of interblock interference (IBI) using either zero-
padding (ZP) or cyclic-prefix (CP) transmission, asympto-
tically minimum bit error rate (MBER) precoders were
derived, under the assumptions that both the transmitter
and receiver have perfect knowledge of the channel, and that
the average transmitted power is bounded. Simulation results
show that, as predicted by the theory, the proposed MBER
precoders for both ZP and CP transmission are superior not
only to the conventional orthogonal frequency division
multiplexing scheme, but also to the standard MMSE
precoders and the identity matrix precoder. These results
demonstrate that if suboptimal detection is used, substantial
performance gains can be obtained by tailoring the
transmitter to account for the suboptimality of the receiver.

The MBER precoder designed in this paper is for a
system that employs uniform bit-loading with a QAM
constellation at the transmitter, and linear equalisation and
disjoint detection at the receiver. However, the principles
behind the design can be extended to systems with non-
uniform bit loading [27, 28], and other receiver techniques
(e.g. decision-feedback equalisation strategies [29]). More-
over, since the input-output relation of linear multiple-input
multiple-output (MIMO) systems [22] is algebraically
equivalent to that of the block-by-block communication
system considered in this paper, the proposed MBER
design is immediately applicable to MIMO channels (see
also [9, 10]).
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9 Appendix
9.1 Proof of property 3

Since GHF is square and Hermitian symmetric (see property
P1), it can be decomposed as GHF = ABA" where B is a
diagonal matrix containing the eigenvalues of GHF, and A
is an M x M unitary matrix whose columns are the
corresponding eigenvectors of GHF. Therefore, (GHF],,, =
M |ami|*b:. Since A is unitary, M |ami)* = 1 and hence,
min(b;) <[GHF),,,,<max(h;, where min(h,) and max(b,)
denote the minimum and maximum diagonal element in
B, respectively (i.e. the minimum and maximum eigenvalues
of GHF, respectively). Consequently, 0<[GHF],,,,,<1 if and
only if 0<b;< 1, which is equivalent to having 0 < GHF=<1
where, for Hermitian symmetric matrices X and Y, X<XY
denotes the fact that Y—X is positive semi-definite.

To prove that GHF=1I, we note that from property P1,
we have that GHF = F"H"(R,,+ HFF'H")~"HF. Since

1 FIH?
HF R, + HFF'H"
I 0 0
A # >0
[HFM' o ]%0 R]

then, b}fl the Schur comp ement theorem ([30], p. 472),
I-F'H" (R,,+ HFF"H")"'HF>0. Hence, GHF<1I. On
the other hand, from property P2, since the sum of two
positive semi-definite matrices is positive semi-definite ([30],
p- 398), we have:

GHF= (GHF)(GHF)" +5>GR,,G" =0

As a result, we can conclude that 0<[GHF],,,,<1 for all

me[l, M).
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9.2 The MSE expression for MMISE
equalisation

With the assumptions that E{ss”’} = I and E{vv"} = R,,,, the
MSE of the equalised symbols can be written as:

MSE =tr((GHF — I)(GHF — I)"") + tr(GR,,G")
—tr((GHF)(GHF)" + GR,,G™)
— tr(GHF+(GHF)" +1).

By using properties P1 and P2, this expression for the MSE
can he simplified as follows

MSE =tr(GHF) — tr(GHF) — tr((GHF)") + tr(I)
=M — tr(T)

where GHF = VIV and V and I' were given in (12) and
(13), respectively.

9.3 MBER precoders for square QAM

Using the notation of Section 4, in order to minimise the
lower bound on the BER in the case of higher-order square
QAM signalling, we must solve the following optimisation
problem:

Join, —tr(I) (25a)
subject to  tr(®?) < po (25b)
vrvt =—>c, (25¢)

where ¢, was defined in (24). Lemma 1 of [7] states that
there exists a unitary matrix V that satisfies (25¢) if and only
if tr(I") > Mc,, and that the choice ¥V'=D,, will suffice.
Therefore, a solution to (25) can be obtained by first solving
(14). If the resulting tr(I') > Mc,, then the choice of
V= D,, will satisfy (25¢). Since this choice of V also results
in the minimised lower bound on the BER being achieved,
the MBER precoder for 4-QAM signalling in (18) remains
an MBER precoder for K-ary square QAM signalling when
tr(I') > Mc, If tr(I') <Mc; (and if tr(I') > Mec,) then the
BER expression in (22) is not convex, and a minimum BER
precoder cannot be obtained using the methods of this
paper. Using (13), (15) and (16), the test for tr(I') > Mc;
can be converted into a lower bound on the block SNR that
can be computed without having to solve (14). This lower
bound is provided in Section 5.
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