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Abstract—This paper presents two polynomial-complexity
techniques for assigning Gray-like binary labels to arbitrary
Grassmannian constellations. In the first technique, the constella-
tion of interest, 𝒞, is matched directly to an auxiliary constellation
that can be readily Gray labelled. The optimal matching in this
technique can be obtained efficiently, but its application is limited
to cases in which an auxiliary constellation with a geometric
structure that resembles that of 𝒞 can be identified. In the second
technique no auxiliary constellation is required and the labels
are generated by matching the distance spectrum of 𝒞 with that
of a hypothetical constellation that is assumed to be perfectly
Gray labelled. Optimal matching in this case is computationally
prohibitive. Instead, an efficient suboptimal matching algorithm
is proposed. When compared with several existing schemes, the
proposed labellings provide better performance in both uncoded
and BICM-based non-coherent MIMO systems with iterative
demapping and decoding (IDD). Furthermore, with the proposed
labels, the Grassmannian-based BICM-IDD scheme performs
better than a training-based counterpart that employs the Golden
code and optimal demapping.

Index Terms—Non-coherent MIMO communication, Grass-
mannian constellations, Gray labelling, combinatorial assignment
problem, quadratic assignment problem.

I. INTRODUCTION

THE compact complex Grassmann manifold, 𝔾𝑀 (ℂ𝑇 ),
is the set of equivalence classes of tall 𝑇 ×𝑀 unitary

matrices, where 𝑇 ≥ 2𝑀 , in which two unitary matrices are
said to be equivalent if they are related by right multiplication
with a square 𝑀 ×𝑀 unitary matrix [1]. A Grassmannian
constellation, 𝒞, is a set of discrete points on the complex
Grassmann manifold, and if the distribution of these points
is invariant under rotation, the constellation is said to be
isotropically distributed. Isotropically distributed Grassman-
nian constellations play a key role in signalling schemes for
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non-coherent multiple-input multiple-output (MIMO) commu-
nication systems [2], and in limited feedback schemes for co-
herent MIMO systems [3]–[5]. Using geometrical techniques,
Grassmannian constellations with an approximately isotropic
distribution can be efficiently generated; see for example [6],
[7].

The application considered in this paper will be that of non-
coherent MIMO communication. For a richly-scattered MIMO
channel, isotropically distributed Grassmannian constellations
can achieve the non-coherent capacity at high SNRs [2]. Two
important aspects of the design of practical communication
systems that provide good performance at rates close to this
limit are the design of the constellation and the labelling of
the points of that constellation with binary vectors. Although
there are constellations that can be readily labelled [8], [9],
those constellations are not necessarily close to being isotrop-
ically distributed. There are several techniques for the direct
design of Grassmannian constellations that are close to being
isotropically distributed [6], [7], but these constellations are
not necessarily easy to label. In most communication systems,
it appears that an exhaustive search will be required in order
to find an optimal labelling, but of the structured labelling
schemes, Gray labelling is known to have some desirable
properties in both scalar [10]–[13] and MIMO systems [9],
[14]. The goal of this paper is to develop Gray-like labelling
techniques for arbitrary Grassmannian constellations.

The basic principle that underlies Gray labelling is that
points that are close in a Euclidean sense are assigned labels
that are close in a Hamming distance sense; true Gray labelling
schemes assign neighbouring constellation points labels that
differ by only one bit. While it is possible to assign Gray
labels to elementary two and three-dimensional constellations,
assigning such labels to constellations of high dimensions is
typically difficult [15]. This is especially true for non-uniform
constellations and for constellations in which the number of
neighbouring points is not known and possibly not identical
for every point in the constellation. In such cases, even finding
a quasi-Gray labelling scheme becomes a formidable task
involving an exhaustive search over ∣𝒞∣! candidate labellings,
where ∣𝒞∣ denotes the cardinality of 𝒞.

In this paper two techniques are provided for generating
quasi-Gray labels for arbitrary Grassmannian constellations
that have favourable geometric properties, but that otherwise
do not possess a particular structure that facilitates their
labelling. The labels assigned by the proposed techniques
follow the general Gray labelling principle of mapping labels
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that are close in a Hamming distance sense to points that are
close in the signalling space.

In the first technique, which will be referred to as the match-
and-label algorithm, the Grassmannian constellation of interest
is matched directly to an auxiliary constellation, which can be
readily Gray labelled, but may not have the same favourable
geometric properties. The matching of the original and the
auxiliary constellations is identified with the combinatorial
assignment problem [16], wherein the cost of assigning 𝑁
tasks to 𝑁 workers is to be minimized. Identifying tasks with
points in the original constellation and workers with points
in the auxiliary constellation, the assignment cost becomes
the sum of the distances between points in the original
constellation and the corresponding points in the auxiliary
constellation. The optimal solution of this problem can be
obtained with polynomial complexity using the Hungarian
technique [17]. With the constellations matched, the labels of
the points of the auxiliary constellations are assigned to the
corresponding points of the original constellation.

Labels generated by the match-and-label algorithm will
follow a Gray-like pattern if the auxiliary and the constellation
of interest, 𝒞, have a similar geometric structure. However,
when the auxiliary constellation and 𝒞 possess fundamen-
tally different geometric structures, e.g., number of nearest
neighbours, the labels obtained by their matching can deviate
significantly from the Gray principle. Another drawback is
that the auxiliary constellations used in this technique are
only available for certain cardinalities and dimensions of the
underlying manifold.

To resolve these issues, we propose a second technique,
which will be referred to as the successive matching algorithm.
This algorithm employs a hypothetical constellation that is
assumed to be perfectly Gray labelled and can be generated
for any dimension and cardinality. A labelling for the actual
constellation can be obtained by matching its distance spec-
trum with the Hamming distance spectrum of the hypothetical
constellation. To do this, the matching of the distance spectra
is identified with the quadratic assignment problem (QAP),
wherein two weighted graphs are to be matched such that the
difference between corresponding edge weights is minimized.
In a similar observation, but in the context of coherent MIMO
systems, optimal labelling of QAM and PSK symbols has been
identified with the QAP in [18]. Cast as the minimization of
a quadratic expression in a permutation matrix, the QAP can
be shown to be NP-hard [19], and to become intractable for
graphs with more than 30 nodes [20]. To find good solutions
to this problem for constellations with cardinalities of practical
importance, we propose an efficient greedy algorithm in which
the permutation matrix is constructed on a block-by-block
basis. This matching technique falls under the category of
constructive methods described in [21] and allows us to match
large constellations efficiently. For example, herein we match
constellations of size 4096, a computationally prohibitive
task for most of the techniques described in [21], including
those that use semidefinite relaxation [22]. Similar to the first
technique, once the constellations are matched, the points in
the constellation of interest are assigned the labels of the
corresponding points in the hypothetical constellation.

We assess the performance of the proposed labelling

schemes in both an uncoded non-coherent MIMO system and
a BICM-IDD system. It is shown that the labels assigned
with the proposed techniques yield Grassmannian-based non-
coherent communication systems that perform better than
some existing systems, with the successive technique pro-
viding the better performance of the two. Furthermore, the
proposed labelling schemes enable the Grassmannian-based
BICM-IDD system to perform better than its training-based
counterpart with Gray-labelled Golden-encoded symbols and
optimal demapping [23], even at moderate SNRs.

Standard notation is adopted throughout the paper: ∥ ⋅ ∥𝐹
denotes the Frobenius norm, (⋅)𝑇 and (⋅)† denote the transpose
and the Hermitian transpose, respectively, Tr(⋅) denotes the
trace operator, ⊙ denotes the Hadamard product and diag(⋅)
denotes the operator that turns a vector into a diagonal matrix
with the corresponding dimension.

II. GRASSMANNIAN CONSTELLATIONS

As discussed in the Introduction, isotropically distributed
Grassmannian constellations play an important role in
moderate-to-high SNR non-coherent MIMO communications
systems [2] and in coherent MIMO communication systems
with limited feedback [3]–[5]. A key component in the design
of such constellations is the choice of the design metric. In
the case of the projection Frobenius norm, several optimal
constructions for small constellations on the real Grassmann
manifold were provided in [24]. However, in general the
optimality of these constructions does not extend to the
complex Grassmann manifold, to large constellations, nor to
other metrics that may be more appropriate for the applications
of interest. In this section we review methods for obtaining
two families of Grassmannian constellations that will be used
to test the labelling techniques presented later. Although the
constellations generated with these methods perform well
in practice, they do not necessarily correspond to optimal
packings.

A. Systematic Constellations

A sequential technique for designing a Grassmannian con-
stellation, 𝒞, with cardinality 𝑁 is proposed in [6]. In this
method, the first subspace, Q𝑋1

, is obtained by taking 𝑀
columns of the 𝑇 × 𝑇 discrete Fourier transform matrix. The
other subspaces in the constellation, Q𝑋𝑖

, 𝑖 = 2, . . . , 𝑁 , are
then generated using:

Q𝑋𝑖
= Φ𝑖Q𝑋1

(1)

where Φ = diag(𝑒𝚥2𝜋𝑢1/𝑁 , 𝑒𝚥2𝜋𝑢2/𝑁 , ⋅ ⋅ ⋅ , 𝑒𝚥2𝜋𝑢𝑇 /𝑁 ), and 𝑢𝑖,
𝑖 = 1, . . . , 𝑇 , are integers that maximize the minimum chordal
distance between subspaces [24]:

min
𝑖,𝑗

𝑑𝐹 (Q𝑋𝑖
,Q𝑋𝑗

) = min
𝑖,𝑗

1√
2
∥Q𝑋𝑖

Q†
𝑋𝑖
−Q𝑋𝑗

Q†
𝑋𝑗
∥𝐹 .

(2)
The generation of Grassmannian constellations with this

technique is computationally efficient because the constella-
tion is generated by rotating an initial subspace and the rota-
tion matrix is optimized over a relatively small set of integers.
However, the stringent constellation structure imposed by this
technique can result in a significant performance degradation.
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Such a degradation can be avoided by designing the Grassman-
nian constellations directly using geometric techniques that
enable all the design degrees of freedom to be exploited. One
of these techniques will be described in the next section.

B. Geometrically designed constellations

Operating a non-coherent MIMO communication system
close to the high SNR ergodic capacity is equivalent to sphere
packing on the Grassmann manifold [2]. Using this obser-
vation, the problem of designing rate-efficient Grassmannian
constellations can be cast as an optimization problem in which
the minimum distance between any pair of constellation points
is maximized:

max
{Q𝑋𝑖

}𝑁
𝑖=1

min
𝑖∕=𝑗

𝑑(Q𝑋𝑖 ,Q𝑋𝑗 ),

subject to Q𝑋𝑖 ∈ 𝔾𝑀 (ℂ𝑇 ), ∀𝑖 ∈ {1, . . . , 𝑁},
where 𝑑(Q𝑋𝑖 ,Q𝑋𝑗 ) is the distance between the points Q𝑋𝑖

and Q𝑋𝑗 . In [7] it was argued that the chordal Frobenius norm
given by [25]

𝑑(Q𝑋𝑖 ,Q𝑋𝑗 ) =
√
𝑀 − Tr(Σ𝑖𝑗) (3)

is an appropriate metric for the design of these constella-
tions, where Σ𝑖𝑗 is the diagonal matrix of singular values
of Q†

𝑋𝑖
Q𝑋𝑗 . Using this metric, several approaches for de-

signing Grassmannian constellations were developed in [7].
These approaches rely on using derivative-based optimization
techniques that exploit the smooth geometry of the Grassmann
manifold. Geometric techniques have also been used to design
Grassmannian constellations that meet alternate objectives; for
example, see [26], [27].

In spite of their favourable geometric properties, the con-
stellations generated by the aforementioned techniques do not
have a known structure that facilitates their Gray labelling in
a systematic manner. Addressing this drawback is the focus
of the paper.

III. TWO TECHNIQUES FOR QUASI-GRAY LABELLING

In this section we present two methods for assigning quasi-
Gray labels to arbitrary Grassmannian constellations. In the
first technique, labelling is identified with the combinatorial
assignment problem [16] which can be optimally solved with
polynomial complexity, and in the second technique, labelling
is identified with the quadratic assignment problem (QAP).
The latter problem is significantly harder, and approximate
solutions are available only for relatively small problems.

A. The match-and-label algorithm with the Hungarian method

The match-and-label idea was first presented in [28] as a
method for providing quasi-Gray labels to a Grassmannian
constellation of interest, 𝒞. The principle that underlies this
algorithm is to match 𝒞 to an auxiliary constellation, 𝒞𝐴, that
has the same cardinality and can be readily Gray labelled,
but may have a distance spectrum that is less favourable than
that of 𝒞. Such auxiliary constellations can be generated using
the method in [8] and labelled using the method in [9]. In
particular, in the design technique in [8] tall unitary matrices,

{Q𝑍𝑖}, representing the points of the auxiliary constellation
are constructed in the following way:

Q𝑍𝑖 =
[
G𝑇 D𝑇

𝑖

]𝑇
, (4)

where the constant matrix G is common for all constellation
points and the matrix D𝑖 is distinct for each constellation
point. The sizes of G and D𝑖 are chosen to satisfy the
orthogonality condition. For example, for 𝑀 = 2 and 𝑇 = 4,
the matrix D𝑖 can be chosen to have the structure of a 𝑄-ary
phase-shift keying (PSK) Alamouti scheme [8], [9]

G =
1

2

[
1 1
−1 1

]
and D𝑖 =

1

2

[
𝑒𝚥

2𝜋
𝑄 𝑘(𝑖) 𝑒𝚥

2𝜋
𝑄 ℓ(𝑖)

𝑒−𝚥 2𝜋
𝑄 ℓ(𝑖) −𝑒−𝚥 2𝜋

𝑄 𝑘(𝑖)

]
,

where the pair of integers (𝑘(𝑖), ℓ(𝑖)) is distinct for each point
𝑖 ∈ {1, . . . , ∣𝒞𝐴∣}, where 𝒞𝐴 is the auxiliary constellation
generated by (4), 𝑘(𝑖), ℓ(𝑖) ∈ {0, . . . , 𝑄−1} and 𝑄 =

√∣𝒞𝐴∣.
Let (𝑘, ℓ) and (𝑘′, ℓ′) be two pairs of integers corresponding

to the distinct points 𝑖 and 𝑖′ in 𝒞𝐴, respectively. In this case,
the two singular values of 𝑄†

𝑍𝑖
𝑄𝑍𝑖′ are equal and are given

by
1

2

√
2 + cos

(
2𝜋
𝑄 (𝑘 − 𝑘′)

)
+ cos

(
2𝜋
𝑄 (ℓ − ℓ′)

)
. (5)

From (5) and (3) it can be shown that for each constellation
point with indices (𝑘, ℓ) there exist exactly four nearest
neighbours with indices (𝑘, (ℓ ± 1) mod 𝑄) and ((𝑘 ± 1)
mod 𝑄, ℓ) [9]. Each of the integers 𝑘, ℓ, 𝑘′, ℓ′ corresponds
to a point in a PSK constellation. It was concluded in [9,
Theorem 1] that if the PSK constellations indexed by the
integers 𝑘, ℓ, 𝑘′, ℓ′ are identically Gray labelled, 𝒞𝐴 will also
be Gray labelled.

Having generated and labelled the auxiliary constellation,
𝒞𝐴, each point in 𝒞 is matched to a point in 𝒞𝐴 and is
assigned the label associated with that point. To match the
two constellations, the cost of matching point 𝑖 in 𝒞 with
point 𝑖′ in 𝒞𝐴 is set to be the chordal Frobenius norm,
𝑑𝑖𝑖′ , cf. (3). The overall cost of matching the two constel-
lations is then the total sum of the distances between the
corresponding points. A suboptimal method for minimizing
this cost was proposed in [28]. However, by representing the
pairwise distance between the points of each constellation in
the form of a matrix, the matching problem can be shown to
be equivalent to the combinatorial assignment problem [16]
wherein 𝑁 tasks are to be assigned to 𝑁 workers such that
the overall cost is minimized. This problem can be solved
optimally using the so-called Hungarian method [17] with
complexity 𝒪(𝑁3). In particular, given an 𝑁×𝑁 cost matrix,
A, with non-negative entries representing the costs associated
with assigning task 𝑖 to worker 𝑖′, the Hungarian method
seeks a permutation matrix, P, that minimizes Tr(PA). The
method proceeds by eliminating the points in 𝒞𝐴 (workers)
that can be readily matched to corresponding points in 𝒞
(tasks): these are the points for which the minimum value
of each row in A is unique and happens to be in a column
other than that in which the minima of other rows lie. The
method then considers the unmatched points to determine
the best match by iterating between the best match from the
perspective of the auxiliary constellation and the perspective of
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the constellation of interest. Using this algorithm, our match-
and-label technique for the constellation of interest, 𝒞, can be
formally stated as follows:

Algorithm 1 (The match-and-label algorithm):

∙ Construct and Gray label an auxiliary constellation, 𝒞𝐴,
with the same cardinality as 𝒞. (Herein, 𝒞𝐴 is generated
as in [8] and is Gray labelled as in [9].)

∙ Match 𝒞 and 𝒞𝐴 using the Hungarian method described
above [17].

∙ To every point in 𝒞 assign the label of the corresponding
point in 𝒞𝐴.

As will be shown in Sec. V-C, this algorithm efficiently
generates labels that result in significantly better performance
than quasi-set-partitioning labellings when used in a BICM-
based non-coherent MIMO system. However, even though
the Hungarian method yields optimal matching, this labelling
technique has two drawbacks. First, it requires the genera-
tion of an auxiliary constellation that can be readily Gray
labelled and has the same dimensions and cardinality as the
constellation of interest. Such constellations are only available
for specific dimensions. Second, when 𝒞 and 𝒞𝐴 possess
fundamentally different geometric structures, e.g., number of
nearest neighbours, the labels generated by the matching do
not necessarily follow the Gray principle. That is, for the
match-and-label algorithm to yield Gray-like labels, the two
constellations to be matched must have a similar geometric
structure. In the next section we will present another labelling
technique that circumvents these difficulties.

B. The successive matching algorithm

In this section we provide a method for assigning quasi-
Gray labels to an arbitrary Grassmannian constellation, 𝒞,
of cardinality 𝑁 = 2𝑁𝐵 , where 𝑁𝐵 is the number of bits
of the binary labels. In this method the distance spectrum
of 𝒞 is matched to the distance spectrum of a hypothetical
constellation that is assumed to be perfectly Gray labelled.
We first note that the labels of the points of 𝒞 are the binary
form of the integers between 0 and 𝑁 − 1. Assuming a
perfectly Gray-labelled constellation were available, its dis-
tance spectrum would be the same as that of the Hamming
distances among the labels. That is, the ideal distance spectrum
is embedded in the inherent Hamming distance relationship
among the labels. Therefore, one way to obtain quasi-Gray
labels is to seek a permutation of the constellation points so
that the distance spectrum of the permuted points resembles
the distance spectrum of the labels. After matching, each point
in the constellation is assigned the corresponding label.

To begin this procedure, we construct an 𝑁 × 𝑁 matrix,
H, that represents the Hamming distance spectrum of the
perfectly labelled hypothetical constellation. We then construct
the ranking matrix, R, that represents the chordal Frobenius
norm spectrum of 𝒞.

1) The Hamming distance spectrum matrix H: Let ℓ𝑟 be
the binary vector of length 𝑁𝐵 = log2(𝑁) containing the
binary expansion of the integer 𝑟 ∈ {0, . . . , 𝑁 − 1}. For ease
of exposition, these labels are ordered numerically here; in
practice, it may be useful to consider other label orders. We
define the (𝑟, 𝑠)-th entry of H to be the Hamming distance

between the vectors ℓ𝑟 and ℓ𝑠, i.e., the sum of ℓ𝑟⊕ ℓ𝑠, where
⊕ denotes the modulo-2 addition. For example, for 𝑁 = 4 the
matrix H is given by

H =

⎡
⎢⎢⎣
0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0

⎤
⎥⎥⎦ . (6)

2) The ranking matrix R: The distance spectrum of the
constellation 𝒞 can be characterized by a matrix, E, in which
the (𝑖, 𝑗)-th entry is the chordal Frobenius norm between the 𝑖-
th and 𝑗-th constellation points. However, since many constel-
lations of interest are generated using numerical techniques,
such as the one presented in Sec. II-B, the constellation has an
irregular structure, resulting in pairs of points having similar,
but not identical distances in the signalling space. When
sufficiently small, these perturbations have a negligible effect
on the performance of the resulting constellation. They can,
however, complicate the matching of the Euclidean distance
spectrum with the Hamming one.

To overcome this difficulty, we introduce a ranking ma-
trix, R, that captures the relative proximity of points in the
constellation and has a similar distribution of entries to the
Hamming matrix. To construct this matrix, we note that,
for a constellation of size 𝑁 = 2𝑁𝐵 , each label has

(
𝑁𝐵

𝑘

)
neighbours with Hamming distance 𝑘. Now, for each row
of E the corresponding row of R is formed as follows: the
minimum

(
𝑁𝐵

1

)
distances are represented by the ranking 1, the

next nearest
(
𝑁𝐵

2

)
distances are represented by the ranking 2,

and so on.
This method of tailoring E can be modified to stress differ-

ent aspects of the labelling problem, such as incorporating
information known about the structure of the constellation
to be labelled or its eventual application. In particular, by
manipulating R, it is possible to obtain labelling patterns that
may suit other applications, such as set-partitioning. However,
an in-depth treatment of tailoring schemes for E is beyond the
scope of this paper.

C. Successive matching

With the Hamming distance matrix and the ranking matrix
constructed as above, our goal is to find a permutation matrix
P that minimizes

∥H− PRP𝑇 ∥2𝐹 = Tr(HH𝑇 + RR𝑇 )− 2Tr(H𝑇PRP𝑇 ). (7)

In contrast to the minimization required to match the con-
stellations directly in Sec. III-A, in which the objective is a
linear function of P, the minimization required to match the
distance spectra is a quadratic function of P. The minimization
is an instance of the QAP problem, which is known to be NP-
hard [19]. Although many algorithms have been developed
to provide suboptimal solutions for this problem, these algo-
rithms are only effective for relatively small problems [19],
[22], in which the dimension of P is typically less than 100.
However, to operate a non-coherent MIMO system close to
the high SNR ergodic capacity, the size of the underlying
matching problem can be well above 1000. To mitigate this
difficulty, in this section we develop an efficient suboptimal
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method for determining a ‘good’ permutation matrix, P. In
the following sections we present single branch and multiple
branch versions of this algorithm, and in Sec. V-C we will
show that this algorithm can yield labels that result in sig-
nificantly better performance than those obtained using the
match-and-label algorithm.

1) Single branch successive matching: In the proposed
algorithm, the first row of the permutation matrix is arbitrarily
selected to be the first row of the identity matrix I𝑁 , denoted
i1. The permutation matrix is then successively augmented by
𝐷 rows from I𝑁 , where 𝐷 is a parameter of the algorithm
which will be referred to as the search depth. At each
iteration of the algorithm, the 𝐷 rows are chosen to minimize
the Frobenius norm of the difference between the permuted
ranking matrix and the corresponding portion of H. When
𝐷 = 𝑁 − 1, the matching algorithm amounts to finding the
global minimizer of (7). We now describe this algorithm in
more detail.

Let i𝑗 denote the 𝑗-th row of I𝑁 , H𝑘𝑘 denote the upper left
square (𝑘𝐷 + 1) submatrix of H, and P𝑘 denote the portion
of the permutation matrix that is available after 𝑘 iterations,
where 𝑘 = 1, . . . , 𝑁−1

𝐷 , and, for simplicity, we assume that
𝑁−1
𝐷 is an integer. The matrix P𝑘 is generated by appending

a 𝐷 × 𝑁 block to the matrix P𝑘−1. The algorithm can be
formally described as follows.

Algorithm 2 (The successive matching algorithm):

∙ Initialize: ℒ = {2, . . . , 𝑁}, P0 = i1.
∙ For every 𝑘 = 1, . . . , 𝑁−1

𝐷 ,

– Find distinct 𝑟1, . . . , 𝑟𝐷 ∈ ℒ such that A𝑟1,⋅⋅⋅ ,𝑟𝐷 =[
i𝑇𝑟1 ⋅ ⋅ ⋅ i𝑇𝑟𝐷

]𝑇
satisfies

A𝑟1,⋅⋅⋅ ,𝑟𝐷 = arg min
𝑞1,...,𝑞𝐷∈ℒ

∥∥∥H𝑘𝑘 −
[
P𝑇
𝑘−1 A𝑇

𝑞1,⋅⋅⋅ ,𝑞𝐷
]𝑇

R
[
P𝑇
𝑘−1 A𝑇

𝑞1,⋅⋅⋅ ,𝑞𝐷
]∥∥∥2

𝐹
. (8)

– Set P𝑘 ←
[
P𝑇
𝑘−1 A𝑇

𝑟1,⋅⋅⋅ ,𝑟𝐷
]𝑇

.
– ℒ ← ℒ ∖ {𝑟1, 𝑟2, . . . , 𝑟𝐷}.

∙ Set P← P𝑁−1
𝐷

.

If 𝑁−1
𝐷 is non-integer, the minimization in the final iteration

will be over fewer than 𝐷 rows.
2) Multiple branch successive matching: At the 𝑘-th step of

the single branch sequential technique above, P𝑘 is constructed
by appending a block of 𝐷 rows to P𝑘−1, the minimizer of
the objective at the (𝑘 − 1)-th step. This technique can be
identified with a tree search in which only the branch of the
minimizer of the objective at the (𝑘− 1)-th step is considered
in subsequent steps and branches in the tree corresponding
to other candidate truncated permutations are eliminated. The
greedy nature of this elimination can result in a significant
degradation in the quality of the approximation provided by
the final permutation matrix.

To reduce the potential of premature elimination of ‘good’
branches, we modify the algorithm presented in the previous
section so that, at the 𝑘-th step, not only the minimizer of the
(𝑘− 1)-th objective is considered, but also all those truncated
permutations that yield the next smallest 𝐿− 1 values of the
objective. This algorithm can be identified with a tree search
in which 𝐿 branches are considered at each step.

As in the single branch algorithm, in the 𝐿-branch algorithm
the initial truncated permutation matrix P0,1 is chosen to
be i1. (In the multiple branch algorithm we use a double
index for the successively generated matrices to distinguish
the different branches in each iteration.) Again, each iteration
of the algorithm augments the candidate truncated permutation
matrices by 𝐷 rows and retains the candidates that yield
the smallest 𝐿 < 𝑁 values of the objective. At iteration
𝑘 = 1, we construct all (𝑁−1)!

(𝑁−𝐷−1)! candidate matrices of

size (𝐷 + 1) × 𝑁 of the form P =
[
P𝑇
0,1 A𝑇

𝑞1,⋅⋅⋅ ,𝑞𝐷
]𝑇

,
where 𝑞1, . . . , 𝑞𝐷 ∈ {2, . . . , 𝑁}. The corresponding metric
∥H11−PRP𝑇 ∥𝐹 is then calculated for all candidates and those
yielding the smallest 𝐿 metrics are retained. These candidates
are denoted P1,1 to P1,𝐿, where P1,1 is the candidate yielding
the smallest metric. Similarly, at the 𝑘-th iteration, all possible

(𝑁−𝑘𝐷−1)!
(𝑁−(𝑘+1)𝐷−1)! candidate matrices of size (𝑘𝐷 + 1) × 𝑁 of
the given structure are formed, and the corresponding metric
is calculated for each. Again, 𝐿 candidates are retained and
are denoted P𝑘,1 to P𝑘,𝐿. At the last iteration, 𝑘 = 𝑁−1

𝐷 and
the final permutation matrix P is chosen to be P𝑁−1

𝐷 ,1.
As an illustrative example, in Fig. 1 we consider using the

𝐿-branch method with 𝐿 = 2 and 𝐷 = 1 for matching an 8-
point constellation generated using the systematic technique
of Sec. II-A. The grid is set up with the indices of the
constellation points down the left side and the iteration number
along the top. In the figure, the notation in parentheses at the
grid points corresponds to the candidate matrices retained at
the end of an iteration, e.g., (1278) corresponds to P3,1 =[
i𝑇1 i𝑇2 i𝑇7 i𝑇8

]𝑇
. For 𝑘 = 0, the first constellation point is

assigned the first label. This is represented by the upper left
grid point. For the 𝑘 = 1 iteration, the 7 possible two-row
candidate matrices are formed and the corresponding metrics
are calculated. It is found that the two best candidates are
P1,1 =

[
i𝑇1 i𝑇2

]𝑇
and P1,2 =

[
i𝑇1 i𝑇6

]𝑇
. These two branches

remain in the tree diagram and are labelled (12) and (16).
The other 5 candidates are discarded and their corresponding
branches are pruned. At the 𝑘 = 2 iteration, the metrics
corresponding to all possible three-row candidates with either
P1,1 or P1,2 as the first two rows are calculated and the two
candidates that yield the smallest metrics are retained. The
retained branches can originate from a single node as in the
𝑘 = 2 iteration or can come from a combination of the nodes
in the previous iteration, as for 𝑘 = 3. The process of forming,
testing and retaining candidate matrices continues until the last
iteration. The resulting permutation matrix is used to permute
the constellation points. This complete branch is shown in bold
in the figure.

3) Obtaining the labels corresponding to P: Both the
single and 𝐿-branch successive matching techniques yield
a permutation matrix P. Obtaining the labels corresponding
to this permutation is straightforward: the label assigned
to the 𝑖-th constellation point is simply the 𝑁𝐵-bit binary
expansion of the 𝑖-th entry of the vector Pe, where e =
[0 1 ⋅ ⋅ ⋅ 𝑁 − 1]𝑇 .

4) Computational complexity reduction methods: Although
the successive matching algorithm is efficient (see Sec. IV),
further computational gains can be obtained as outlined below.

Some of the constellations that are geometrically designed
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Fig. 1. Example: 𝐿-branch successive matching of an 8-point constellation
with 𝐿 = 2 and 𝐷 = 1. The surviving branch is shown in bold. Surviving
branches correspond to candidate truncated permutation matrices, e.g., the
branch denoted (1278).

using the technique presented in Sec. II-B possess an antipodal
symmetry whereby every point in the constellation has an
opposing point with maximal chordal distance [7]. For these
constellations, the number of iterations in the successive
matching algorithm can be halved by considering these op-
posing points together and assigning them to complementary
labels. This technique can be also used to generate labels that
mimic the special structure of binary reflected Gray labels,
cf. [12].

Another computational saving can be obtained by noting
that the cost of calculating the Frobenius norm at the 𝑘-th
step can be reduced to computing the norm components cor-
responding to the bottom 𝐷-rows of the updated permutation
matrix. This is because the norm components corresponding
to the first (𝑘− 1)𝐷+1 rows have already been calculated in
the previous iteration. The computational complexity of this
technique will be discussed in the following section.

IV. COMPLEXITY OF THE SUCCESSIVE MATCHING

ALGORITHM

In this section we analyze the number of multiplications
invoked by the different versions of the successive matching
algorithm. We notice that in (8), the multiplication by trun-
cated permutation matrices of the form [P𝑇

𝑘−1 A𝑇
𝑞1,⋅⋅⋅ ,𝑞𝐷 ]

𝑇

amounts to selecting certain (𝑘𝐷+1)× (𝑘𝐷+1) blocks from
the matrix R, a process that incurs negligible computational
complexity. The objective in (8) can be then expressed as

Tr(H𝑘𝑘H
𝑇
𝑘𝑘)− 2Tr(H𝑇

𝑘𝑘R𝑘−1,𝑞1,⋅⋅⋅ ,𝑞𝐷 )
+Tr(R𝑘−1,𝑞1,⋅⋅⋅ ,𝑞𝐷R𝑇

𝑘−1,𝑞1,⋅⋅⋅ ,𝑞𝐷 ), (9)

where R𝑘−1,𝑞1 ,⋅⋅⋅ ,𝑞𝐷 = [P𝑇
𝑘−1 A𝑇

𝑞1,⋅⋅⋅ ,𝑞𝐷 ]𝑇 R[P𝑇
𝑘−1 A𝑇

𝑞1,⋅⋅⋅ ,𝑞𝐷 ].
The first term in (9) is not necessary to compute because it is
independent of the permutations to be optimized. To compute
the last term efficiently, we evaluate the matrix R⊙ R at the
beginning of the algorithm and at each iteration compute the
last term by adding the entries of R⊙ R that are selected by

[P𝑇
𝑘−1 A𝑇

𝑞1,⋅⋅⋅ ,𝑞𝐷 ]
𝑇 . Evaluating R ⊙ R involves (𝑁2 − 𝑁)

multiplications. The remaining complexity of the algorithm
can be computed by calculating the number of multiplications
required for successive evaluations of the middle term in (9).

A. Complexity of the single branch successive matching algo-
rithm with 𝐷 = 1

In this case, because 𝐷 = 1, the matrix A𝑞1,...,𝑞𝐷 contains
one row of I𝑁 , i.e., A𝑞1,...,𝑞𝐷 = i𝑠. At the 𝑘-th step of the
single branch approach, the middle term in (9) is computed
(𝑁−𝑘+1) times for 𝑘×𝑘 matrices. Since each evaluation of
this term requires 𝑘2 multiplications, the total computational
complexity of this search is given by

𝑁2−𝑁+

𝑁−1∑
𝑘=2

(𝑁−𝑘+1)𝑘2 =
1

3
𝑁4+

1

6
𝑁3+

5

12
𝑁2− 11

6
𝑁.

(10)
Therefore, it is seen that the computational complexity of
the direct implementation of the single branch approach is
𝒪(𝑁4), which is one order higher than the complexity of
the Hungarian technique used in the technique outlined in
Sec. III-A and can be computationally prohibitive for large
QAPs.

In Sec. III-C4 it was observed that at each step the
computational complexity of computing the objective can be
reduced by exploiting the computation at the preceding step.
To quantify this reduction, we write

H(𝑘+1)(𝑘+1) =

[
H𝑘𝑘 t
t𝑇 𝑐

]
, (11)

where t is the 𝑘×1 vector containing the first 𝑘 entries of the
(𝑘+1)-th column of H and 𝑐 is its (𝑘+1)-th diagonal entry.
Using this notation, the objective in (8) can be expressed as
(12) on the next page. Notice that, even though the Euclidean
distance matrix E described in Sec. III-B2 is symmetric, the
ranking matrix R derived from it is generally not symmetric
and hence the second and third terms in this expansion are
generally not identical. From (12) it is seen that the first term
is computed at the 𝑘-th iteration and is independent of i𝑠,
which is the optimization variable at the (𝑘 + 1)-th iteration.
Now the computational complexity for evaluating the norms
in the second and third terms on the right hand side is 2𝑘+1.
Using ideas similar to the ones above, it can be shown that
the number of multiplications in the efficient implementation
of the single branch version of Algorithm 2 is

𝑁2−𝑁+

𝑁−1∑
𝑘=2

(2𝑘+1)(𝑁−𝑘+1) =
1

3
𝑁3+

5

2
𝑁2− 29

6
𝑁−1.

(13)

B. Complexity of the multiple branch successive matching
algorithm with 𝐷 = 1

The difference in complexity in the multiple branch ap-
proach is that at every iteration the links emerging from 𝐿
branches, instead of one branch, are examined. Hence, the
computational complexity associated with this modification is
bounded by 𝐿 times the expression in (13); that is, the num-
ber of multiplications required in this approach is 𝒪(𝐿𝑁3).
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∥∥∥∥H𝑘𝑘 − P𝑘RP𝑇
𝑘 t− P𝑘Ri𝑇𝑠

t𝑇 − i𝑠RP𝑇
𝑘 𝑐− i𝑠Ri𝑇𝑠

∥∥∥∥
2

= ∥H𝑘𝑘 − P𝑘RP𝑇
𝑘 ∥2 + ∥t− P𝑘Ri𝑇𝑠 ∥2 + ∥t𝑇 − i𝑠RP𝑇

𝑘 ∥2 + ∣𝑐− i𝑠Ri𝑇𝑠 ∣2. (12)

Therefore, as the size of the constellation grows, successive
matching becomes as efficient as the Hungarian technique used
to solve the assignment problem in the method in Sec. III-A.
We will show in Sec. V-C that it yields significantly better
labels for the constellations considered.

C. Complexity of successive matching algorithm with 𝐷 > 1

In the first step of this approach, when 𝐷 > 1, there are
(𝑁−1)!

(𝑁−𝐷−1)! 𝐷×𝑁 permutation blocks over which the objective
in (8) is minimized. Hence, this minimization involves (2𝐷+

𝐷2) (𝑁−1)!
(𝑁−𝐷−1)! multiplications. The total number of branches

after this step is
∏𝐷

𝑘=1(𝑁 − 𝑘), from which we choose 𝐿
branches to initiate the next step in the minimization. For each
of the 𝐿 branches, the number of 𝐷×𝑁 permutation blocks
over which the objective in (8) is minimized in the next step is
(𝑁−𝐷−1)!
(𝑁−2𝐷−1)! . Hence, the number of multiplications involved in

this step is 𝐿(6𝐷+𝐷2) (𝑁−𝐷−1)!
(𝑁−2𝐷−1)! . Assuming that 𝑁−1

𝐷 is an
integer, it can be seen that the total number of multiplications
involved in using the permutation search with 𝐿 branches and
depth 𝐷 is

𝑁2 −𝑁 + (2𝐷 +𝐷2)
(𝑁 − 1)!

(𝑁 −𝐷 − 1)!

+𝐿

(𝑁−1)/𝐷∑
𝑘=3

(
2𝑘𝐷+𝐷2

)(𝑁 − (𝑘 − 2)𝐷 − 1
)
!(

𝑁 − (𝑘 − 1)𝐷 − 1
)
!
. (14)

Observe that when 𝐿 = 1 and 𝐷 = 1, this expression
yields (13). For 𝐷 = 𝑁 − 1, the expression in (14) yields
(𝑁2 − 4𝑁 − 1)

(
(𝑁 − 1)!

)
, which is the number of multipli-

cations required to perform an exhaustive search to find the
optimal labelling.

V. APPLICATION OF QUASI-GRAY LABELLED

CONSTELLATIONS

In this section we assess the performance of the labelling
techniques presented in Sec. III in two applications: uncoded
non-coherent MIMO transmission using a 256-point Grass-
mannian constellation and a BICM-based non-coherent MIMO
system using a 4096-point constellation.

A. A non-coherent MIMO communication system

In a non-coherent MIMO communication system neither the
transmitter nor the receiver has access to channel state infor-
mation (CSI). We consider the case in which the transmitter
has 𝑀 antennas, the receiver has 𝐾 antennas, and the system
is operated over a frequency-flat richly-scattered block-fading
channel of coherence time 𝑇 1. We will denote the signal vector
transmitted at each channel use by the rows of a 𝑇×𝑀 matrix
Q𝑋 . Hence, the 𝑇 ×𝐾 received signal matrix Y is

Y = Q𝑋H𝑐 +V,

1In this model, the channel remains constant for a block of 𝑇 channel
uses, and in each block the channel coefficients are statistically independent
of those in other blocks, e.g., [2].

where H𝑐 is the 𝑀 × 𝐾 channel matrix whose entries are
drawn independently from the standard complex Gaussian dis-
tribution 𝒞𝒩 (0, 1), and V is the 𝑇 ×𝐾 additive noise matrix
whose entries are drawn independently from 𝒞𝒩 (0,𝑀/𝜌𝑇 ),
where 𝜌 is the SNR. The conditional likelihood of the received
signal is [29]

𝑝(Y∣Q𝑋) ∝ exp
(
− 𝜌𝑇

𝑀 Tr
(
Y†

(
I𝑇 − 𝜌𝑇

𝜌𝑇+𝑀Q𝑋Q†
𝑋

)
Y
))

.

(15)
When 𝐾 = 𝑀 , 𝑇 ≥ 2𝑀 and the SNR is high, the capacity-
achieving input signals, {Q𝑋𝑖

}, are 𝑇 ×𝑀 unitary matrices
that are isotropically distributed on 𝔾𝑀 (ℂ𝑇 ) [2].

B. A BICM-IDD scheme

Even in scalar coherent BICM systems, the labelling of
the channel symbols is a key component of the design [10],
[11], [13]. It has been suggested that the optimal labelling
is dependent on the SNR [11], [13], [30], with the binary
reflected Gray labelling [12] providing superior performance
at moderate-to-high SNRs [30]. When BICM is combined with
iterative demapping and decoding (IDD), labelling selection
is further complicated by the influence of the labelling on the
convergence properties of the receiver. In that context, it is
known that there are labellings that have better extrinsic infor-
mation transfer (EXIT) characteristics than the Gray labelling,
e.g., [31], and that there are labelling schemes that have the
potential to out-perform Gray labelling at high SNR [32]. The
BICM-IDD framework extends naturally to coherent MIMO
systems, and although Gray labelling is not necessarily optimal
in that setting either, e.g., [15], it does have some desirable
attributes [9], [14]. In fact, when used in a BICM-IDD system,
Gray labelling can provide effective communication at rates
close to the ergodic capacity [33].

In [34], a BICM-IDD system was developed for
Grassmannian-based non-coherent MIMO systems, cf. Fig. 2.
That system used a labelling scheme that mimicked the princi-
ples of set-partitioning labelling. Since it is not known whether
insights into effective labelling schemes made for coherent
BICM-IDD systems can be applied effectively to non-coherent
systems, in Sec. V-C we will compare the performance of the
BICM-IDD system in Fig. 2 with the proposed quasi-Gray
labelling schemes against that of the system with the original
quasi-set-partitioning labelling.

In Fig. 2, x denotes a vector of length 𝑛 of encoded
interleaved bits. Let 𝑥𝑘 be the entry of this vector corre-
sponding to the 𝑘-th bit of the label of the transmitted signal
matrix, Q𝑋𝑖 , and let Y be the corresponding received signal
matrix. The conditioned log likelihood ratio of 𝑥𝑘 is given by
𝐿𝐷1(𝑥𝑘∣Y) [33], where

𝐿𝐷1(𝑥𝑘∣Y) = log
𝑃 (𝑥𝑘 = +1∣Y)

𝑃 (𝑥𝑘 = −1∣Y)

= log

∑
Q𝑋𝑖

∈𝒳𝑘,+1
𝑝(Y∣Q𝑋𝑖 )𝑃 (Q𝑋𝑖)∑

Q𝑋𝑖
∈𝒳𝑘,−1

𝑝(Y∣Q𝑋𝑖 )𝑃 (Q𝑋𝑖)
, (16)
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Fig. 2. A BICM-IDD scheme for non-coherent MIMO communication [34].

where 𝑝(Y∣Q𝑋𝑖) is given in (15), and an approximation
to 𝑃 (Q𝑋𝑖) can be obtained from the decoder outputs at
the previous iteration using the standard assumption of lo-
cal independence of the interleaved encoded bits, i.e., [33],
𝑃 (Q𝑋𝑖) ≈

∏𝑛
𝑘=1 𝑃 (𝑥𝑘 = [𝒢(𝑖)]𝑘), where [𝒢(𝑖)]𝑘 denotes

the 𝑘-th element of the label 𝒢(𝑖). The set 𝒳𝑘,+1 contains all
the matrices {Q𝑋𝑖} in the constellation whose indices have
𝑥𝑘 = +1; i.e., 𝒳𝑘,±1 = {Q𝑋𝑖 ∈ 𝒞∣𝑥𝑘 = [𝒢(𝑖)]𝑘 = ±1}.

C. Numerical examples

In both examples presented in this section Grassmannian
constellations are employed for signalling in a non-coherent
MIMO communication system with 𝑀 = 𝐾 = 2 transmit
and receive antennas and coherence time 𝑇 = 4. Since the
constellations used in these examples are relatively large, the
successive matching algorithm was implemented with a depth
𝐷 = 1, in order to limit the computational complexity; a
search depth 𝐷 > 1 can yield better permutations, but is com-
putationally prohibitive for constellations with the considered
cardinalities.

1) Uncoded 256-point constellation: In this example we
show the Hamming properties when various labelling tech-
niques are applied to a representative constellation with
𝑁 = 256 points generated using the method described in
Sec. II-A [6]. In particular, in Fig. 3 we show the average over
all constellation points of the mean and maximum Hamming
distances of the 𝑁𝑒 nearest neighbours for a range of values
of 𝑁𝑒. These measures have a direct impact on the bit error
rate (BER) performance of uncoded and coded communication
systems, respectively. As a comparison of the effectiveness of
the labelling methods, these measures have also been shown
for the 256-point constellation presented in [8] which can
be readily Gray labelled [9] and is used as the auxiliary
constellation for the match-and-label algorithm of Sec. III-A.
From this figure it is seen that for the randomly chosen
labelling the average mean Hamming distance is, as expected,
approximately equal to 𝑁𝐵

2 = 4, regardless of the number of
nearest neighbours. Using the match-and-label algorithm of
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Fig. 3. Average mean and average maximum Hamming distance obtained for
a 256-point constellation designed with the systematic technique in Sec. II-A
and labelled with various labelling techniques.
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Fig. 4. A comparison between the performance of 256-point constellations
labelled with various techniques. The performance of a Gray-labelled auxiliary
constellation is also shown.

Sec. III-A results in an improvement of the average mean
Hamming distance of slightly less than one bit. A further
reduction of 1.2 bits in this distance was obtained by using
the successive matching algorithm of Sec. III-C with 𝐿 = 128
branches. The resulting mean Hamming distances of the
nearest neighbours are about half of those obtained with the
randomly chosen labelling.

The impact of the proposed labellings on the performance
of an uncoded Grassmannian-based non-coherent MIMO sys-
tem is demonstrated in Fig. 4 for 256-point constellations
generated using the techniques in Sec. II-A and II-B and
the technique in [27]. When the constellation in [8] is used
as an auxiliary constellation, the labels generated by the
match-and-label algorithm provide a performance gain over
the randomly generated labels of approximately 0.2 dB and
0.1 dB for the constellations generated using the techniques
outlined in Sec. II-A and II-B, respectively, and 2 dB for
constellations generated using the technique in [27]. This
gain could be increased if an auxiliary constellation with a
geometric structure that resembles that of the constellation
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Fig. 5. Average mean and average maximum Hamming distance obtained
for a 4096-point constellation designed with the geometry-based technique in
Sec. II-B and labelled with various labelling techniques.

of interest were available. At a bit error rate of 10−3, the
multiple branch successive matching algorithm results in an
approximate gain over the random labelling of 1 dB and
0.2 dB for the constellations generated using the techniques
outlined in Sec. II-A and II-B, respectively, and 2.2 dB for the
constellations generated using the technique in [27]. With the
multiple branch successive matching algorithm, constellations
designed systematically as in Sec. II-A provide an approximate
performance gain of 2 dB over the Gray-labelled constellation
from [8]. Even though the constellation in [8] is perfectly Gray
labelled, its distance properties result in a relatively poor BER
performance [28]. Below, we will show that the application
of quasi-Gray labelled constellations to turbo-coded systems
can have an even greater impact on error performance, since,
in addition to decreasing the average Hamming distance, the
maximum Hamming distance of the nearest neighbours has
been substantially reduced, cf. Fig. 3.

2) A BICM-encoded 4096-point constellation: For this ex-
ample we use a Grassmannian constellation with 𝑁 = 4096
points that was designed using a rotation-based version of
the technique in Sec. II-B [7] and labelled using different
techniques. In Fig. 5 we show the average mean and maximum
Hamming distances generated by different labelling strategies.
For the match-and-label algorithm, the auxiliary constellation
is generated using the method in [8] and for the successive
matching technique the numbers of branches are 𝐿 = 1 and
𝐿 = 64. Similar to the case of the 256-point constellation,
Fig. 5 shows that the multiple branch successive matching
technique with 𝐿 = 64 yields labels that are slightly better
than those generated with its single branch counterpart, i.e.,
with 𝐿 = 1. However, both techniques yield labels that
perform significantly better than those generated randomly or
via the match-and-label technique.

The impact of labelling on a practical communication
system is investigated using the 4096-point Grassmannian
constellation with different labels in the BICM-IDD system
depicted in Fig. 2. The outer encoder in Fig. 2 is chosen
to be a systematic parallel concatenated turbo code with
identical recursive convolutional constituent codes. Using the
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Fig. 6. Bit error rate performance of the proposed Grassmannian BICM-IDD
scheme with a randomly chosen labelling, quasi-set-partitioning labelling, and
the proposed quasi-Gray labellings. The approximate SNR threshold for a rate
of 2.4 bpcu is 11.7 dB.

notation in [35], the partition of each constituent convolu-
tional code was (2, 1, 1, 1), and its octal generators were
𝑧{𝑖1} = (6, 0, 2, 3), ℎ{1𝑖} = (0, 6, 0, 5), ℎ{2𝑖} = (0, 3, 0, 1),
ℎ{3𝑖} = (1, 2, 0, 3), and ℎ{4𝑖} = (2, 3, 3, 2). The conditioned
log-likelihood ratios of the encoded bits at the output of the
demapper are computed using (16) and the BICM and turbo
interleavers were selected from a set of pseudo-randomly gen-
erated candidates. At the receiver, four demapping-decoding
iterations were performed for each block, with eight BCJR-
based turbo iterations being performed within the outer de-
coder for each demapping-decoding iteration. The input block
length is 32016 bits and the outer code is a rate-4/5 punctured
turbo code which yields an overall data rate of 2.4 bits per
channel use (bpcu).

In Fig. 6 we provide a comparison between the performance
of the quasi-Gray labelling schemes proposed herein with
a randomly chosen labelling and the quasi-set-partitioning
scheme proposed in [34]. At a BER of 10−3, quasi-set-
partitioning provides an SNR gain of 0.15 dB over the ran-
dom labelling. The basic match-and-label algorithm presented
in [28] yields a further gain of 0.35 dB, which improves
slightly when the optimal Hungarian matching presented in
Sec. III-A is used. A significant SNR gain over these labelling
techniques is obtained when the successive matching tech-
nique of Sec. III-C is employed. For this technique we used
the search depth 𝐷 = 1 and the number of branches 𝐿 = 1
and 𝐿 = 64. For comparison, the SNR threshold for the high-
SNR approximation of the non-coherent ergodic capacity [2]
corresponding to the 2.4 bpcu rate considered in this example
is 11.7 dB. Hence, the successive matching technique with
𝐿 = 64 branches enables the proposed Grassmannian-based
BICM-IDD scheme to perform within 2.8 dB of the approxi-
mate non-coherent ergodic capacity. We are not aware of any
scheme that has been shown to approach the non-coherent
capacity this closely.

Training-based techniques offer an alternative signalling
method that achieves the communication degrees of freedom
of the non-coherent MIMO channel [2], [36]. In Fig. 7,
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Fig. 7. Bit error rate performance of the proposed Grassmannian BICM-
IDD scheme with quasi-Gray labelling. Performance is compared with that
of a training-based system operating at the same data rate with an underlying
Golden code with Gray-labelled 8-QAM symbols and optimal or mismatched
demapping.

we consider using this technique in the same BICM-IDD
framework. The training-based system operates at the same
data rate as the 4096-point Grassmannian constellation us-
ing an underlying Golden code with Gray-labelled 8-QAM
symbols. For this system the optimal training interval, 𝑇𝑝 =
𝑀 = 2, yields a coherent communication interval of length
𝑇𝑑 = 𝑇 − 𝑇𝑝 = 2 [36]. The optimal training symbol in this
case is proportional to I𝑀 , with power equally split between
the training and data symbols [36]. For this system, both
the mismatched and optimal detectors developed in [23] are
considered. From Fig. 7 it is seen that the successive matching
labelling technique enables Grassmannian-based non-coherent
MIMO communication systems to outperform Gray-labelled
Golden-encoded training-based systems with optimal demap-
ping.

VI. CONCLUSION

This paper presented two techniques for assigning quasi-
Gray labels to arbitrary Grassmannian constellations. In the
first technique, the constellation of interest is directly matched
to an auxiliary constellation that can be readily Gray labelled.
The performance of this technique depends primarily on the
similarity between the geometric structures of the matched
constellations. For cases in which an auxiliary constellation
with a similar structure is not available, a second technique
is proposed wherein the matching is based on the distance
spectra of the constellation of interest and a perfectly Gray-
labelled hypothetical constellation. This technique is versatile
as it does not require an auxiliary constellation and can be
applied for generic constellations, including Grassmannian
ones, with any dimension and cardinality. The efficacy of
the labels generated by the proposed techniques have been
illustrated for both coded and uncoded non-coherent MIMO
communication systems. It was shown that, with these labels,
non-coherent Grassmannian-based signalling can have a sig-
nificant performance advantage over Golden-encoded Gray-
labelled training-based systems with optimal demapping.
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