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Efficient Design of Waveforms for Robust Pulse
Amplitude Modulation

Timothy N. DavidsonMember, IEEE

Abstract—in this paper, a large and flexible set of computa- incorporate robustness to broad classes of uncertai(ifywo
tionally efficient algorithms is developed for the design of wave- candidate techniques [12], [13] are discussed at the end of this
forms for pulse amplitude modulation that provide robust perfor-  ¢g0tion ) Furthermore, it can be rather difficult to determine
mance in the presence of uncertainties in the channel and noise . .
models. Performance is measured either by a sensitivity function € €xtent to which the performance under the nominal channel
for threshold detection or by the mean square error of the data model must be compromised in order to obtain sufficient
estimate. For uncertainties that are modeled as being determinis- robustness to uncertainties in that model.

T s e o e The puriose of e present pager i 1o Show hat e design o
Eoel::ustness ié measured in terms of the average performance. 'Iyﬁea waveform that_pmv'des maximal rObusme_SS to_ an uncertgm
algorithms allow efficient evaluation of the inherent tradeoffs be- frequency-selective channel and an uncertain noise correlation
tween robustness, nominal performance, and spectral occupation can be formulated as a convex optimization problem from which
in waveform design and are used to design “chip” waveforms with an optimal filter can be efficiently obtained. An important im-
superior performance to those specified in recent standards for dig- pjication of this result is that the inherent design tradeoffs be-
ital mobile telephony. L

tween robustness to model uncertainties, performance under the
~ Index Terms—Chip waveform, code division multiaccess, mul- nominal model, and spectral occupation can be efficiently eval-
tirate FIR digital filters, optimization methods, pulse amplitude 5104, These tradeoffs are particularly important in applications
modulation, robustness, signal design. ) . - - . . .

in which spectral efficiency is required, but (adaptive) equaliza-

tion of the (slowly-varying) channel is deemed to be too expen-

I. INTRODUCTION sive. In the design examples, we will use these trade-off curves

N DIGITAL communications, waveform coding is oftento select chip waveforms with substantially improved perfor-

performed by linear pulse amplitude modulation (PAMInance over those specified in the IS95 standard [14] and UMTS
of translated versions of a given waveform [1]. The choice groposal [15] for code division multiple access (CDMA) digital
waveform critically impacts many system performance criteriobile telephony.
and usually involves a compromise between spectral efficiencyIn this paper, we consider digital signal processor (DSP)-
robustness to expected channel imperfections (including nolgsed PAM schemes in which PAM is performed by a finite
and interference), system delay, and receiver complexity. impulse response (FIR) filter [4]-[9], [16]. In such schemes,
applications in which accurate channel and noise models #¢ nominal performance, robustness, and spectral occupation
available (and satisfy certain assumptions), there are seveéalhe scheme can be measured by functions of the filter coef-
established techniques by which a waveform can be desigrigéents. Two measures of the performance of a PAM scheme
[1]-[3]. For the special case of the additive white Gaussia@fe employed in this paper: a sensitivity function that leads di-
noise (AWGN) channel, a root-Nyquist waveform [1], [3]-[9]rectly to a bound on the probability of error for threshold de-
(and references therein) is usually chosen. However, in sotgeétion and the mean square error of the data estimate (prior
applications, particularly in the wireless area, the transmissitshdetection). For uncertainties that are modeled as being de-
environment may undergo substantial variations, and it migierministically bounded, robustness is measured in terms of the
not be possible to obtain accurate channel and noise modwlerst-case performance, and for uncertainties that are modeled
In that case, one ought to design a waveform that provideitistically, robustness is measured in terms of the average per-
robust performance in the presence of this model uncertairfgtmance. Spectral occupation is constrained by enforcing a rel-
Unfortunately, there are few design techniques that explicit@five spectral mask on the power spectrum of the filter output.

In some cases, we will also constrain the relative power trans-

mitted in given spectral bands. Although the derivations herein

generate nominal performance and robustness objectives that
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Fig. 1. Standard model for baseband PAM.
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Fig. 2. Equivalent discrete-time model of baseband PAM [for real-vajiedandg(t) = p(—t)].

efficient design algorithms is that the nominal performance, rand noise models and can easily incorporate constraints on the
bustness, and spectral occupation can all be expressed as lineatrinal performance and spectral occupation.

or convex quadratic functions of the autocorrelation coefficients

of the filter. By reformulating the design criteria in terms of the II. BASEBAND PULSE AMPLITUDE MODULATION

autocorrelation coefficients of the filter, we obtain convex sym- ~ . <iqar the standard model for baseband pulse amplitude

me.tric-con.e programs [17]-19] that can be efﬁcieptly SOI\,’er%oduIation in Fig. 1. In that figure, the transmitted signal can
using interior point methods [19]-[21]. (The resulting de3|gBe written ass.(t) = 5" d[n]p(t — nT), where

problems contain some of the previously obtained convex for-d[n] nth d;ta symb%l' '

mulations of root-Nyquist filter design problems [8] as special p(t) waveform: '

cases. They are also related to some previous convex formul symbol interval.

tions of the design of general FIR filters [22], [23] and certaif} i channel and the noise correlation are known at both the
‘signal-adapted” orthonormal multirate filterbanks [241-[26]}yansmitter and receiver (and satisfy certain assumptions), then
Once an optimal autocorrelation function has been obtained, 29y and the receiver filteg(t) can be designed to jointly op-
optimal filter can be extracted (nonuniquely) by spectral fagmize certain performance criteria [1], [2]. (Block-based gen-
torization [23], [27]. A feature of the method presented in thigrajizations of PAM schemes [28], such as multicarrier mod-
paper is that the semi-infinite factorizability constraint is preyation [29], are also of interest in that case.) However, if the
cisely transformed into a finite number of linear equality corkhannel and the noise correlation are not known and are deemed
straints on a (finite) positive semidefinite matrix. too costly to obtain, a standard approach [1, p. 41] is to choose
As mentioned earlier, there are few PAM waveform desig,Ht) = p*(—t) and to desigrp(t) for a nominally AWGN
techniques that explicitly incorporate robustness to brogfannel. In this paper, we will improve that approach by pro-
classes of model Uncertainty. Verdd and Poor [13] ConSiderﬂGing efficient design a|gorithms fq,’(t) that exp||c|t|y incor-
a signal selection problem for uncertain channels and noiggrate robustness to deviations from the AWGN assumption.
covariances that are deterministically bounded. Although thagr simplicity, we will consider only real-valued waveforms,
signal selection problem reduces to an eigenvalue problem, th&it the methods can be extended to the complex-valued case
technique does not lend itself to the inclusion of constraints @na straightforward manner.
spectral occupation. In addition, they simply seek the optimal f the scheme in Fig. 1 [with(t) being real-valued ang(t) =
worst-case performance, without regard for performance unggr-+)] is implemented in baseband DSPs at the transmitter and
the nominal model. A design technique that, like the techniqueceiver, them(t) = 3, g[kl¢:(t — kT/N), whereg[k] is the
in the present paper, leads to a convex optimization problé#IR filter which synthesizes(t), ¢.(¢) is the impulse response
(in that case a semi-infinite linear program) was introduced Iy the smoothing filter in the digital-to-analog converter, aid
Coleman [12]. However, his robust performance criteria aiethe oversampling rate. In that case, we can form the equiva-
based on “eye-flattening” arguments (i.e., the derivative of thent discrete-time model for baseband PAM shown in Fig. 2. In
autocorrelation function of the waveform should be “smallFig. 2, the equivalent channel includes conversion to and from
in the neighborhood of the “zero-crossings”), and hence, asontinuous-time signal, carrier modulation and demodulation,
method is best suited to “small” structured uncertainties in tland the physical frequency-selective (fading) channel (as in [8],
channel model. In this paper, we develop methods that proviiie example). We will focus on scenarios in which the equivalent
robustness to more general perturbations in both the chandeannel does not vary significantly (in time) over the duration
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of the waveform. In that case, the received data estinipfe where erf¢z) = (2//7) [ exp(—#*) dz is the complement
can be written as of the error functiong = >, r,[¢]r,[£] denotes the noise am-
) plification of the receiver filterL; = | (2L, + L. —3)/N] +1
dln] = fOld[n] + uln] + > glk — Nn]n[k] (1) isthe length off[d], andL; — 1 is equal to the number of inter-
k fering bits. Here
L, length ofg[k];

whereu[n] = 37, 4 f[ild[n — 1] is the intersymbol interference L. length of k] (which may be unbounded in some

(IS), flé] = =, clk]rg[k — Né] is the equivalent channel from

the data perspective,[m| = >, g[klg[k + m] is the (deter- casets);t integer
ministic) autocorrelation sequence fgk], andzn[k] models the ThLexgern?rea estinteger..

additive noise. (Here, we have allowed finitely anticausal fil-

tering for notational convenience.) ) _ . .
The spectral occupation of a PAM scheme is usually mea- A= Z Flild™ [n ] ®)

sured in terms of the (time-averaged) power spectrum of the i#0

transmitted signal. For stationary white data with zero mean

and variancey,, the power spectrum of.(¢) in Fig. 1 is 'S'the IS| generated by")[n — 1], i # 0, whered“)[n — i
d c . o ; i
5.(9) = (0 T)| @+ (Q) 2| (PN 2, where d, () and represents theth combination ott1s as the. ; — 1 interfering

G(ei~) are the (continuous-time) Fourier transform d@f(#) bits. [Note that the symmetry of the data guarantees that for each

i ! W) — _AW
and the (discrete-time) Fourier transformgdk], respectively. U there_emstsaz such thatA_ . A .']
. By using (2) as an objective, it is possible to formulate a de-
(Here, we have used andw to represent [angular] frequency in_. ) o -
. . . ; ) . ign problem for a filter that minimizes the probability of error

the continuous-time and discrete-time settings, respectively.) )

o . —7for a given channel or class of channels. However, the mere
many communications standards, (£2) must satisfy a relative

Spectl sk ofh o (1) = . (1) < A1 (1), o of 1t ciecthe et sone s spmioaton 1 o
where M, () and M, .(Q2) are specified, and. > 0 ’ P P

is a reference value. In some applications, the relati\llrtlaLf'The purpose of the following two sections of the paper

) . . . IS'to derive efficient design algorithms for pulse shaping filters
power transmitted in a given spectral band is also €fhat yield “small” probability of error with threshold detection
strained, i.e.,fgf S, ()dQ < p [i7S,. ()dQ, for y P y '

: ; . In Section V, ill derive efficient desi Igorithms for fil-
given frequencies2,, 2, € [0, o) and a given factor n Section V, we will derive efficient design algorithms for fi

p. Using the expression forS,, (1), we can transform ters that yield minimal mean square error.

these constraints into corresponding constraints ¢k

(see, e.g., [B)M(c) < |G(e#)[2/¢ < M,(¢/*), and Ill. WORSTCASE SENSITIVITY

Py(f1, f2) = jﬁrf’? Wp(w)|G(e'*)|? dw < pP,(0,1/2). The A natural approach to the design of a robust pulse shaping
derivation of M,(¢#“), M,(e/*), and Wp(w) is particularly filter for threshold detection is to ensure that the intersymbol

straightforward in scenarios in which,(t) can be assumed interference (ISI) term[r] in (1) is always “small” with respect

to have ideal spectral characteristics: Fer < w < =, to the gain of the desired symbg[0] and to ensure that the
M, (e9*) = M, (wN/T), m = £, u, andWp(w) = 1. noise amplification¢ remains “close” to one. In this section,
For simplicity, we will make that assumption here. Howevewe will derive a bound on the worst-caggn]| over a class of
compensation for nonideal characteristicggft) can easily be unknown but (deterministically) bounded channels, a bound on
incorporated into the design methods presented herein. (Seelf@worst-cas¢[0], and a bound on the worst-casever a class

for some examples of compensation in closely related desighunknown but bounded noise correlations. It will be shown
problems.) An observation that is a key element in our desigfiat a filter that optimizes these bounds can be efficiently found

method is thatR,(¢™*) = |G(e/*)%. Hence, the spectral from the solution of a convex optimization problem. It will also
occupation constraints involve linear functions-gfm], butin ~be shown that the designed filter directly minimizes an upper
general, quadratic functions fk]. bound on the probability of error for threshold detection in (2).

The fundamental performance criterion of a PAM scheme is
the probability of error, which we now evaluate for the simplé. Formulation

receiver in Fig. 2. We assume that the nojfle is a zero-mean  The first step in the derivation is to determine the worst-case
Gaussian random process, with (stochastic) autocorrelatigy),e ofuln] = 3,4, f[ild[n— i] over all combinations of data

Nory[m], wherer,[0] = 1. 1f g[k] is normalized so that it sympolsdfn — i]. Using an instance of the Holder inequality
has unit energyrq[0] = 1), then for antipodal equally likely [30] we have that

signaling with a transmitted signal energy per bit Bfand
threshold (sign) detection @fn], the probability of error i5 luln]| < max |dfn — j| Z I[i]] = Cu Z IFlill @)
J
L1 i#0 i#0
277

1 1 N\ | E
Fe=or, > 3 erfc<(f[()] + Al >) —No£> (@) whereC, = max; |d[n — j]|, and the bound is achieved by at
1

U= least one combination of data symbols. The &, | f[z]| is

2This expression is a straightforward generalization of [1, (4.64)] to the case
of possibly correlated noise. #,[m] = 6[m], then{ = 1, and [1, (4.64)] is 3Certain other instances of the Hoélder inequality can also be used. For ex-
recovered. ample, the Cauchy—Schwarz inequality is used in Section IV.
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the “peak ISI,” which was a key figure of merit in early equala filter for which the sensitivity coefficients to the worst-case
ization algorithms [1, p. 79]. channel and the worst-case noise correlation are both “small,”
The second step is to determine the worst-dage]| over and the worst-case gain of the desired symbol is “large,”
a deterministically bounded set of channels. If the channeldabject to a bound on the ISI in the nominal (ideal) channel,
genuinely unknown, then a neutral assertion is that the nomiahormalization constraint on the gain of the desired symbol
channel is the ideal chann&]k], whered[k] is the Kronecker over the nominal channel, and a spectral mask constraint.

delta. (The case of a general nominal channel is discussed atliimeler the normalization constraint,(0] = 1), minimizing
end of this section.) It [k] = ¢[k] — 6[k] denotes the distorting B, will minimize the sensitivity to both the worst-case channel
component of the channel, then distortion and the worst-case noise correlation and will also
maximize the worst-case gain of the desired symbol. There-
FIEl = rg[N + ) e[+ Nilrgle]. (5) fore, the design problem can be formulated as follofi:
¢ a relative spectral mask specified By,(c’*) and M, (e/*),

The first term on the right-hand side of (5) is the ISI generatéhd for somec > 0, N and L, find a filter of length L,
by the filter itself (the “self-ISI”), and the other term is the addiachievingmin, ;) BZ subject 0> 7 glk? = 1,8, < e
tional ISI generated by the distorting channel. By applying trend (M (c/*) < |G(e?*)]? < (M, (e’*) for all w € [0, 7]
triangle and Cauchy—Schwarz inequalities [30] to (4) and (8nd some, > 0, or show that none existinfortunately, 32

we have that is a quartic function ofg[%], and the constraint o, and
1/2 the lower bound constraint on the power spectrum generate
g i 2 nonconvex quadratic constraints gfk]. Therefore, any direct
; Flll = ; IralNE]l + <§[: ral’] ) design algorithm for the optimgj[k] is complicated by the
12 intricacies of dealing with potential local minima. Furthermore,
Lg—1 the constraint ogi, is not smooth, and hence, algorithms based
Z Z ce[l + Ni? on analytic gradients cannot be directly applied. As a result,
i7#0 \{=—L,+1 algorithms for the direct solution of this optimization problem
=8, + Bng (6) can be rather computationally intensive.

_ In contrast,B? is a convex quadratic function ef[m], and
where3, = 3 . lrg[Nill = 2325, Irg[Ni]| is the “peak the spectral mask generates linear constraints fm]. Fur-
self-ISI” (i.e., the peak ISl in an ideal channel). The telip=  thermore, the boun@, < ¢ for somee > 0 can be rewritten
(r4[0)% + Bg)l/ 2, where as a set of linear constraints with additional variahles> 0,

. 1 <4 < |(L, — 1)/N] in the following standard manner:
/2 . .
—p; < 1g[Ni] < p with 3., i < ¢/2 (where we have
B,=|2 Z r4f)? exploited the symmetry of,[m]). To complete the reformula-
£x1 tion of the design in terms of,[m] instead ofg[k], we must

ea}dd the additional constrai,(¢’~) > 0 for all w € [0, 7],
which is a necessary and sufficient condition fgfm] to be
factorizable in the formr,[m] = 3°, g[k]glk + m] (by the

is a sensitivity coefficient for an unknown but bounded chann
The coefficientsC; = (Eg‘:g:igﬂ ce[f + Ni]?)Y/? determine

the “size” of the error channel, and it is assumed Mgl = Féjer—Riesz theorem). By performing this reformulation, we ob-

> .. C; is bounded. (Note that this assumption does not res L . . -

70 . ) S L ain an optimization problem with a convex quadratic objective
quire thate[k] is FIR.) Using similar analysis, it can be ShoWnand linear constraints (often called a quadratic program). How-
that the gain of the desired symbol is bounded below by 9 brog :

ever, the constraink,(e’~) > 0 generates an infinite number
F10] = 7,[0] — B,Co. @) of linear constraints on,[m)] becau_se it must be satisfied_for a_II
- w € [0, w]. Although that constraint can be handled using dis-
If the noise correlation is genuinely unknown, then a negretization techniques [24], such an approach may lead to overly
tral assertion is that the nominal noise is white. If we defiféonservative designs and can become rather awkward numeri-
P, e[m] = r,[m] — 8[m] to be the error in that nominal model cally. As an aIterng'uve, we can apply thg positive re_al lemma
then, in an analogous way, the worst-case valug ofer the [31]to transform this semi-infinite constraint into a finite set of

class of unknown but bounded noise correlations is linear equality constraints on a (symmetric) positive semidefi-
nite (PSD) matrix. (See [8], [22], [25], and [26] for applications
E<r, 0]+ Bgv (8) ofthe positive real lemmain other FIR filter design problems.) A
version of the positive real lemma [33jtates thaR, (¢?*) > 0
whereV = (301, L ry c[m]?)Y2, for all w € [0, #] if and only if there exists a, x L, PSD

If the size of the uncertainties in the channel and noigeatrix X (denotedX > 0) with trace and off-diagonal sums
models are known (i.e., if,,, Co andV are known), then one satisfying
might seek to minimize an appropriate linear combination of
the bounds in (6)—(8). Although that problem can be cast as a
convex optimization problem, in many wireless applications, it Z [X1k, km = 74[m] for0<m<L,-1. (9
is unlikely thatC,,,, Cy, andV will be known at the transmitter. k=1
For such applications, a natural design approach is to search fdrhis is simply the dual of the version in [8] and [31] for an FIR system.

Ly—m
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Using this result and the symmetry®fm|, the design problem for the former can be deduced later in from Problem 2, and that
can be reformulated as the following problem. for the latter appeared in [34].) Third, the constraiigt < «
Problem 1: Given M, (e’*), M, (e’*), ¢, N, andL,, find a enforces pointwise frequency-flatness constraintg&m’« )|,
filter of length L, achievingmin # overr,[m],0 < m < L,—1, as we now show: By generalizing Nyquist's first criterion for
X>0,p4,20,1<¢<[(L,—1)/N],¢ > 0,andd, subject ISI-free transmission [1], [3], [35], [36] to filters designed
tor,[0] =1 using Problem 1, it can be shown (see Appendix A) that

m]? <6 10 . iy : .
722:179[777‘] = ( ) ||G(CJL°)|2 —N| < Nﬁg"’“C* Z M, (C](w—Qﬂk/J\)) (14)
k=1

—pi Srg[Ni gy with D7 < /2 (11)
i>1 where(* is the optimal value of from Problem 1, and that at

CMé(Cjw) < Rg(cjw) SCMU(Cjw)’ forallw € [0, 7] (12) the “folding frequency”ft1qa = 1/(2N)
and to the linear equality constraints in (9), or show that nOTF; (GJW/N) 2 _ E‘
exist. 2

Problem 1 consists of a linear objective, subject to linear Nj c Nl 2k /N
equality (9) and inequality [(11) and (12)] constraints, a < Tg"‘? > M, (@J(( I/ ))- (15)
semidefiniteness constraint oX, and the constraint in k=2
(10). Since (10) can be transformed [32] into a “rotated} ihe upper spectral mask, (¢/*) has a constant “stop-band
second-order cone [18] constraint and an additional linegke|” A, for all 27 f, < w < 7 and somef; < 1/N (the mask

constraint, Problem 1 is a convex symmetric cone prografirig. 5 is an example), then (14) generates the following bound
[17]-[19], and the globally optimal autocorrelation sequencg, the “pass-band ripple”:

can be efficiently found via interior point methods [19]-[21].

Furthermore, infeasibility of Problem 1 (i.e., where the con-||G(c?“)* — N|
straints cannot be satisfied by any autocorrelation sequencec NB, + (N — 1)¢*A,, for all || < 27(1/N — f,).
of the given length) can be reliably detected. For piecewise (16)
constant (and piecewise trigonometric polynomial) mask

shapes, the infinite number of linear constraints in (12) can B&qrth intuitively appealing interpretation of Problem 1 is de-
transformed into a finite set of linear equality constraints gf,eq from the fact (see Appendix B) that in scenarios of interest,
a finite set of PSD matrices [33] so that the mask constraift, wherer, [0]— 8, — B,(Co+Chy,) > 050 that the worst-case

Iikg t_he constraint?, (e’*) > 0, can be precisely enforced i“eye is open [1, p. 67]), the probability of error in (2) is upper
a finite manner. For other masks, we argue that (12) is usualf¥,,nded by

less “critical” thanR,(¢’*) > 0 in the sense that a filtey[k]

with autocorrelatiorr,[m] may still exist, even if the mask is 1 . E

violated. Hence, discretization of (12) over a sufficiently finel= < ; erfc<(rg[0] - BgCO)\/N O+ BV )

grid, with an appropriate “tightening” of the mask, will often 0\ly g

?ﬁfﬁce:A .ruIe of thumb” is to ChOOfe 15, L,J’nlformly s'paced n 1 erfc| (r,[0] - 3, B o) E )
iscretization points [23], plus any “corner” frequencies of the 4 9 9 9 No(r,[0] + B,V)

masks. Once the optimal autocorrelation has been found by 17)

solving Problem 1, an optimal pulse-shaping filter can be found

by spectral factorization (which can be performed in severghereC = C, + C,,. Since erf¢z) is a monotonically de-
different ways [23], [27]). creasing function and the arguments of é#fén (17) are de-
Pulse-shaping filter design using Problem 1 has a number@gasing functions aB, and3, (when the bound is valid), the
intuitively appealing interpretations. First, the quantity that i§ound in (17) is a decreasing functioni8f ands,. Therefore,
minimized, namelyBZ, is the mean square difference betweeproplem 1, which seeks to minimiz2, (and, hencep,) sub-
r4[m] (normalized so that,[0] = 1) and the “ideal” autocor- jectto, < ¢, r,[0] = 1 and the spectral mask, provides direct
relation function,é[m]. Second, using Parseval’s equality, wgontrol over the upper bound on the probability of error in (17).
have that Finally, it is pointed out that an alternative design strategy to that
) = o2 2 pursued in Problem 1 might be to minimize the peak selfdSI
2nBy = / (|G(CJ ) 1) dw (13) subject to an upper bound on the sensitivity coefficiBpt This
' problem can also be cast as a convex symmetric cone program
and hence, minimizing3, is equivalent to makindG(c’“)| in r,[m] and, hence, efficiently solved.
as flat as possible (in a mean-square sense). These inProblem 1 can be extended in a straightforward manner to
terpretations suggest natural weighted designs: Minimigge case in which the channel and noise correlations are par-
> us1 ¥mrg[m]? for some non-negative weights,, or tially known, rather than being totally unknown. The analysis
minimize [* W (e™*)(|G(¢’*)]? — 1) dw, for some real, is almost identical—the difference being thafk] = c[k] —
non-negative, weighting functio®V(e’*). These weighted com[k] and ra.elm] = rglm] — 75 nom[m], Where cpom[k]
designs can also be expressed as convex cone programs. (&hdi,, nom[m] represent the nominal models for the channel

—TT
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. . . Fig. 4. Detail of the autocorrelation sequences for the designefl &hd
Fig. 3. Tradeoffs between the minimal valueBf (linear scale) and (the  |Sg5 (“x ") filters from Example 1. For visual clarity, the sequences have been
bound ong,, logarithmic scale) for the specified (solid) and achieved (dashegherpolated using an ideal (“sinc-function”) interpolator.
spectral masks from the IS95 scheme (see Example 1). All points on or above the
appropriate curve can be achieved, but no point below the curve can be achieved

by a length 48 filter. Legend-<: IS95 filter; o, o: typical robust filters used to penTIUM || Workstation using a MrLAB-based general-pur-
generate Figs. 4-6. pose symmentric cone program solver calfeduMi [32]. A
MATLAB “m-file” that expresses Problem 1 in the input format
and noise correlation, respectively. Once again, the design @squired byseDulMi is available from the author's web site at
jective is to optimize the worst-case performance, subject tthp://www.ece.mcmaster.ca/~davidson.) The resulting optimal
bound on the nominal performance and the spectral occupatigalues of 3, are plotted with a solid line in Fig. 3, from which
Although the resulting design problem is also a convex cofiecan be seen that a substantial reductiopjrand B, can be
program, the receiver structure in Fig. 2 no longer resemblggide, without violating the mask or increasing the filter length.
the optimal receiver structure for the nominal charingince The “floor effect” in Fig. 3 for large values efis due to the limit
the major application considered in this paper is chip wavghich the lowpass nature of the spectral mask (see Fig. 5) im-
form design for CDMA, and since it is unlikely in that appli-poses on the achievable frequency flatness [see (13)]. The fact
cation that the equivalent discrete-time channelNasamples that 3, cannot be made arbitrarily small reinforces a previous
per chip) will be even partially known at the transmitter, weesult [8] that the shortest self-orthogonal filter for 1S95 is of
will focus on the case where the channel and noise correlength L, = 51.
tions are genuinely unknown. Extensions of the principles of The autocorrelation of a typical optimalfilter for the 1IS95 mask
this paper to more general communication schemes that inc@frore precisely, one with= Brses/10) is shown in Fig. 4, along
porate partial knowledge of the environment are currently beiRgth that of the 1S95 filter. The improved “zero-crossing” be-
explored [38]. These schemes include both PAM-based scherRgsior of the designed autocorrelation enforced by the constraint
and block-PAM based schemes, such as discrete multitone mgf3_ is evident from that figure, as are the smaller deviations

ulation (DMT) [29] and its generalizations [28]. from zero between the zero crossings induced by the minimiza-
o ) _ ) tion of B,,. The power spectra of the designed and 1S95 filters are
B. Application: Tradeoffs in Chip Waveform Design shown in Fig. 5, from which the improved frequency-flatness in

We now show how Problem 1 can be used to efficiently evahe passband of the designed filter is clear. It is also clear from
uate some of the tradeoffs in the design of chip waveforms firat figure that the IS95 filter satisfies the specified spectral mask
CDMA-based digital mobile telephony. Once the tradeoffs hay a considerable margin. The tradeoff betwégrande for the
been evaluated, we will select chip waveforms with improvespectral maskchievedy the 1S95 filter is shown by the dashed
performance over those specified in the I1S95 standard [14] diwe in Fig. 3, and the power spectrum of a typical optimal filter
the UMTS proposal [15]. for the achieved mask (again, one with= [is95/10) is shown

Example 1: The filter specified for the synthesis of the chipn Fig. 5(c). The autocorrelation of this optimal filter is very close
waveform in 1S95 [14] hasV = 4 and L, = 48. While that to that of the optimal filter for the specified mask at the scale of
filter satisfies the spectral mask specified in the standard, it haig. 4 and has been omitted for clarity.
rather large values gf, and B,. To determine whether these To demonstrate the improved performance of the robust fil-
values can be improved upon, Problem 1 was solved for a rariges, we simulated the “chip error rate” (CER) for transmission
of values ofe, subject to the 1S95 spectral mask. (Each imf binary chips over a slowly varying Rician-like channel with
stance of Problem 1 was solved in under 20 s on a 400 Middditive white Gaussian noise and sign detection of the chips

5Optimal PAM receiver structures for more general nominal channels appgtr the receiver. The linear time-invariant *snap ShOt.S” of the

flannel were of length 33 and, hence, extend over eight chips.

in [1]-[3] and [37]. The receiver structure in Fig. 2 is the optimal receiver fof ) - -
the AWGN channel wher#, = 0. They were generated witt{0] = 1, with the remaining[£]
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Fig. 5. Relative power spectra (in decibels) of the filters in Example 1 with the IS95 spectral mask; Herthe optimal value of from Problem 1.

1

107 : ' ' ' w problem that is evaluated at each stage of the bisection search is
\ a modified version of Problem 1 in whichis fixed to the given
. bound. This bisection-based technique is similar to that recently
3 outlined for self-orthogonal filters [8], and exploits the fact that
\ the infeasibility of Problem 1 can be reliably detected. We now
. demonstrate the effectiveness of this technique by designing an
. . improved chip waveform for the UMTS proposal [15].
u . Example 2: The UMTS proposal [15] specifies that a root-
~ raised cosine (RRC) waveformvith a roll-off factora = 0.22
| N Sl be used as the chip waveform. The power spectrum df an
N Te------4 4,L, = 49 implementation of such a filter is illustrated in
N Fig. 7(a), along with a spectral mask chosen to tightly bound
S the spectrum. Thé, = 49 implementation was chosen because
“““ a fortuitous combination of sampling and truncation effects re-
107 ‘ . . . . sults in a rapid spectral decay. In fact, the spectral decay of the
0 5 ST T 25 3 L, = 49 filter is much faster than that of the filters of length
' 48, 50, 51, and 52. From a spectral efficiency perspective, this
Fig. 6. Simulated chip error rates (CER) against signal-to-noise ratio (SNR)akesL, = 49 a good choice amongst the RRC filters with
for Example 1. Legend—Dash-dot: 1S95; Solid: robust, specified mask; Dashegl:—= ().22. However, a disadvantage of the RRC family of fil-
robust, achieved mask. ters is that for a fixed filter length, both the transition-band edge,

being real, independent, and Gaussian with zero mean and st4aich is indicated byf; in Fig. 8(a), and the height of the first
dard deviation 0.05. (Such channels exhibit a wide variety Std€lobe, which is indicated by, in Fig. 8(a), are determined

frequency selective effects.) The resulting CER curves av@gthe roll-off factoree and, therefore, cannot be controlled inde-
aged over 100000 channel realizations, are plotted in Fig_p@ndently. To determine whether the resulting tradeoff between

from which the improved performance of the robust filters i+ @1d/; can be improved upon, without compromising the de-

Fig. 5(b) and (c) is evident. [The signal-to-noise-ratio (SNR) &rable values o, andB, achieved by the RRC filters, we con-
defined as the ratio of the transmitted signal energy per bit $§l€r the following convex cone feasibility proble@iven f;,
the receiver noise variance, i.€/N in (2).] n Dt,lN, andL,, find a filter satisfying the constraints Qf Problem

In Example 1, we used Problem 1 to efficiently determine theWithe = Sumrs, By < Bunrs, and the parameterized spec-
tradeoff between robustness and self-ISI, subject to a specif@] mask in Fig. 8(a), or show that none exigor a fixedf:,
mask. While this is a key design tradeoff, one might also be iA-filter exists ifD; > D¢, and none exists ib, < D7, where
terested in other tradeoffs. For instance, efficient use of the eld&: IS the minimal sidelobe level. HencB; can be efficiently
tromagnetic spectrum requires that the frequency spacing Bnd using a bisection search b for the feasibility boundary
tween spectrally adjacent communication schemes that opei@ftgP0ve problem. By repeating this process for different values
independently of each other be kept as small as possible. Tiig We obtain the tradeoff illustrated in Fig. 8(b), from which
required frequency spacing depends on the shape of the spedi/§iclear that a substantial improvement can be made over the
mask, the edge of the stopband or transition band, and on fH&C f|_|ter. (Each instance of the feasibility problem was eval-
sidelobe level. For a number of lowpass mask shapes, we &ated in around 20 s.) The power spectrum of a filter with the
efficiently obtain the tradeoff between the sidelobe level and tReiNimum sidelobe level and the same transition-band edge as
band edge, subject to bounds on the robustness coefficient §#IRRC filter is plotted in Fig. 7(b), from which the reduction
the self-ISI, by using a bisection-based search for the feasibil@jy @round 6.8 dB in the maximum sidelobe level can be seen.

boundary of a convex cone feasibility problériihe feasibility Since the values ofi, and B, of the optimal filter are con-
strained to be less than or equal to those of the RRC filter, one
For certain special mask shapes, the tradeoff can be evaluated even more
efficiently via convex optimization. "That is, a waveform with an RRC magnitude spectrum.
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Fig. 7. Relative power spectra (in decibels) for the filters in Example 2, along with their respective spectral masks. Note tHat in)s — D; =~ 6.8 dB,

and in (¢),D;, vmrs — D = 6.3 dB.

It is clear from Fig. 7(b) that the reduction in the sidelobe
level of the optimal filter has been achieved at the expense
of an increase in the power transmitted in the “stopband”
P,(fs, 1/2), where f, is illustrated in Fig. 8(a). Fortunately,
P,(f1, f2) is a linear function ofry[m], [8], and therefore,
we can add the constraint that the designed filter transmits
. ] no more power in the stopband than the UMTS filter [i.e.,
. P,(fs, 1/2) £ Povrs(fs, 1/2)] while retaining the efficiency
AN ] of the design technique. [The power transmitted by the designed
Mmoo filters in the “transition band,” namel,( f;, f.), is lower than
that for the RRC filter.] The resulting tradeoff is also shown in
fté j?fs Fig. 8(b). For the representative filter in Fig. 7(c), the maximum
-80; ; . T - sidelobe level has been reduced by around 6.3 dB from that of
the RRC filter. O

In addition to determining the “smallest” spectral mask that
can be achieved without degradationf#y or j3,, one might
also be interested in determining how much “smaller” the spec-
tral mask can be made if the value @f or B, is allowed to
degrade. Once again, this tradeoff can be efficiently evaluated
using a sequence of convex cone feasibility problems, as we now
illustrate.

Example 3:Let f, and f; denote the passband and stop-
band edges, respectively, of the 1S95 spectral mask illustrated
in Fig. 5. For a given value of, the smallesyf; such that there
exists a filter that satisfies the mask and fgs< ¢ can be effi-
ciently found by a bisection search gne [f,,, 1/2] for the fea-

, sibility boundary of Problem 1. The resulting tradeoffs between
S0 the spectral occupation and the self-ISI are illustrated in Fig. 9
for both the specified and achieved masks from 1S95. The trade-
offs are calculated with and without the additional convex con-

straintB, < Biggs. The floor effect in Fig. 9 for large is due
(b) to the lower bound component of the mask and the constraint
Fig. 8. (a) Parameterization of the spectral mask and (b) the tradeoffs betw@y < Bises (Where it is present). The level at which a curve
tne minimum el of e sdelobe vt and e wranston band edde attens for smalk is the smallesy., which can be achieved
additional stopband energy constrairt; RRC filter; <1, I>: optimal filters in DY & root-Nyquist filter that satisfies the relevant mask. (These
Fig. 7(b) and (c), respectively. levels are greater [8] than the stopband edge specified in 1S95.)
Note that the constraint af, is inactive for smalt because any
filter that satisfies the frequency flatness constraints imposed by
would expect the CER performance of the optimal and RRC fi, < ¢ and the spectral mask [see (14) and (16)] also satisfies
ters in slowly varying frequency-selective fading environmenthe frequency flatness constraint imposediy < Bisgs [see
to be similar. Simulations results (which are not reported her@)3)]. For largee, the constraint o, (when it is applied) re-
have shown that under the channel model used in Examplestrjcts the amount by which the power spectrum can vary in the
the CER curves for these optimal and RRC filters are almost ipassband of the mask and, hence, limits the stopband edge that
distinguishable at the scale of Fig. 6. can be achieved. O
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portional toE{}_, ., flé]?}. By definingr, such thafr,],, =

0.156
rglm], 0 < m < Ly — 1, andr, = T'ry, where
0.154 0 Ji, .
0.152 T=|1 0 (29)
0 I,
0.15 with Ix being the K x K identity matrix, andJ being
0148 the K x K matrix consisting of ones on the antidiagonal
and zeros elsewhere, we can wrif§i] = ¢f'7,, where
0.146¢ [e;]e = ¢[f + Ni]. Hence, the expected value of the worst-case
ISI is proportional toE{3_, fl*}y = riQ.ry, where
01441 Q. =1" 20 E{ecicl'}T. Similarly, the expected gain of
0.142¢ ‘._ 41 thedesired symbol i&{f[0]} = Xr,, and the expected noise
amplification factor isE{¢} = Il'r,, wherel, = T"E{co},
0.14 : : : : : 7 7
107 107 107 10 10° ly = TTE{#,}, and[#y], = ry[m], 1 — Ly < m < Ly — L.
€ Seeing as we wish to make both the averaged worst-case ISl

Fig. 9. Minimal stopband edgg. againste for the mask specified (solid, and the averageq noise amp_llflcatlon terms small Wlth r_eSp_eCt
dash-dot) or achieved (dashed, dotted) in 1S95. The solid and dashed cuf@the average gain of the desired symbol, a natural optimization
include the constrainB, < Bisgs. The “x” denotes the position of the 1S95 problem would be to minimiZ@;{chg + )\lfrg subject to
flter. lcTrg = 1, the spectral mask, and the linear equality constraints
(9) of the PSD matrixX. Here, A weights the contributions
IV. AVERAGE SENSITIVITY TO FIR CHANNELS from the ISI and the noise. Although that problem can be cast

Although the design method proposed in Section Ill is agS & convex cone program, our design framework is most suited
plicable in a broad range of scenarios, it may be conservati@e applications in which the average channel is the AWGN
in the sense of average performance in that it may provide @annel (because the receiver structure then resembles the
bustness to channels and noise correlations that are unlikelpgsimal receiver structure for the average channel). In that case
occur at the expense of sensitivity to those which are more likdfyry = & 7y = 74[0], and we obtain the following simplified
to occur. If a statistical model for the channel and the noise c@envex cone program that is independenaof
relation coefficients is known, or can be postulated, then an al-Problem 2: Given M(¢’*), M, (¢’*), Q, = L.L., N, and
ternative design objective is to minimize an average sensitivify, find afilter of lengthZ,, achievingmin ¢, overr,, X = 0,
over the statistical model. ¢ > 0 and#,,, subject tory[0] = 1, ||[LI7y[l3 < fay, the

Using the analysis in Section I11, a natural approach would t@ectral mask in (12), and to the linear equality constraints in
to attempt to make the expected worst-caseBET,, | f[i]|}  (9), or show that none exist.

“small” with respect to the expected gain of the desired symbol Note that in Problem 2, there is no explicit differentiation
E{f[0]}, and to ensure that the expected noise amplificati®i¢tween the ISl in the nominal channel and the ISl induced by
factorF{£} remains “close” to one. Her&{-} denotes expec- deviations from that nominal channel, as there was in Problem
tation over the statistical model for the channel or the noise cdr- The weighting of these nominal and uncertainty-induced ISI
relation coefficients, as appropriate. (We will model the chann&@rms is implicit in the statistical model of the channel ga
coefficients and the noise correlation coefficients as being sta-While solutions to Problem 2 generate PAM schemes that per-
tistically independent.) Unfortunately, it appears to be difficuform well under the assumed statistical model for the channel,
to incorporate the quantiy{3", , | /[i]|} into an optimization one may wish to modify that problem to ensure that the re-
problem that can be efficiently solved. Since the goal of thiylting PAM scheme performs well even if the statistical channel
paper is to obtain efficient design algorithms, we now makenaodel is inaccurate. To do so, we Bt = Q. + Aq, where
slight modification to the analysis in Section lil in order to obQ. represents the matrig, for the nominal statistical model,
tain efficient design algorithms for filters that minimize the avand the symmetric matrid ¢ represents the uncertainty ¢,
erage sensitivity over a given statistical model. due to inaccuracies in the statistical model. We model this un-

An alternative representation of the worst-case data sequefggainty by constrainingdq to lie in the parameterized “ad-
can be obtained by applying the Cauchy—Schwarz inequalityfissible set'?, = {Aq|Aqg = A, —vl < Ag < vl},

(3), rather than the instance of the Holder inequality that wagerev represents the “size” of the uncertainty. The approach

used to obtain (4). In that case, we have that we will take here is to minimize the worst-case vaIueﬁchg
) ) 2 over all matricesA¢ in the admissible set, subject to a per-
uln]” < Cg, Z Sl (18)  formance degradation under the nominal statistical model of
i#0 at most 100%. That problem can be simplified by observing

Wherngz = maxy[ Ei#07iCSUI)I)f dln — i]? and supgf de- thatmaxageq, ’I‘Z;Qc’r‘g = TZ;QCTQ -l—vrz;rg and thaithe per-
notes the support of. (Note that for standard systems, we wilformance degradation constraint can be writtem?@crg_ <
need f[i] and, thereforec[k], to be FIR to ensure thafy, (1+»)6%,,whered” isthe solutiontoProblem2wi}, = Q..

is finite.) For a given constellation, the average value of thiherefore, the design problem reduces to the following convex
worst-case ISI over the statistical model of the channel is proene program.
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Fig. 10. Value ofrTQ_ r, for the actual statistical channel model against . ) )
the pole position of the inaccurate statistical model used in the desigp. of Fig- 11. Simulated chip error rates (CERs) against SNR for the accurate and

(When the pole position is zero the design model is accurate.) Legend—DasHegccurate design models from E_xam‘pl.e 4. Legend—Dash-dot: 1S95; Dashed:
Original design using Problem 2; Solid: Modified design using Problem 3 witffandard design using Problem 2; Solid: modified design using Problem 3 with
v = 0.2 andv = 0.01; A, v: Designs for the inaccurate model used in? = 0.2 andv = 0.01. The triangles distinguish the case of the inaccurate

Fig. 11. Note that for the actual statistical channel model the IS95 filter generafi&$ign model from Fig. 10 from that of the accurate design model.
rTQ,r, = 0.0943.
vides improved performance. The (small) performance degra-
Problem 3: Given M,(¢’*), M,(¢'*), Q. = ZCZCT, v, N dation (controlled by/) that the modified design incurs for rea-
L,, 07, andv, find afilter of lengthL, achievingmin 6,, ,o,+ Sonably accurate channel models (in order to obtain robustness)
vl overr,, X = 0,( > 0, 6y, ;o1 andé, subject tor,[0] = 1, is also evident from the figure. The chip error rates (CERs) eval-
IZT7,]12 < Bav.voms [IFall2 < 6 By o < (14 )65, the Uated inthe actual statistical channel model are shown in Fig. 11

spectral mask in (12), and to the linear equality constraints far designs based on accurate and inaccurate statistical channel
(9), or show that none exist. models. The improved robustness of the modified design and the

Observe that as either, which is the “size” of the uncer- (small) performance degradation it incurs for accurate channel

tainty in @, or v/, which is the nominal performance degradalodels are also evident from these CER curves. .
tion factor, approach zero, the solution to Problem 3 approache4\n interesting connection between the design for determin-
that of Problem 2. We demonstrate the robustness of both égically bounded uncertainty in Section Il and those for sta-
sigh methods to inaccurate statistical channel models in the fiffically modeled uncertainty in this section can be obtained
lowing example. by analyzing a limiting case of the modified design in Problem
Example 4: As in Examples 1 and 3, we design chip wave3 When the mean of the nominal statistical model is the ideal
forms for 1S95 [14]. The actual statistical channel model ighannel. As the size of uncertaintygrows, the objective of

which the designs will be evaluated in the same as that udggblem 3 is dominated by the te”ﬁ’"s{ = rg0]* + B /2,
in the simulations in Example 1. That is, we have a real Fig&nd as the variance of the nominal statistical model approaches

channel of length 33 (i.e., eight chips) witfo] = 1 and the Z€r0.r; Q 1, approache8 3., ry[Ni]>. Inthis limiting case,
remainingc[k] being independent zero-mean Gaussian randgtfid With the normalization, [0] = 1, Problem 3 reduces to the
variables with standard deviation 0.05. However, the statistidBinimization of Bj subject to a bound ob_,., r4[Vi]*, the
channel model postulated in the design b = 1 and the spectrql r_nas_k,_and the linear equality gonstralntiqﬁ 0in
remainingc[k] being from a first-order autoregressive proced®)- This is similar to Problem 1—the difference being that the
(of the same standard deviation) generated by passing an!®Lin the nominal chqnnel is constralned_by (the square of) its
dependent and identically distributed zero-mean Gaussian ¥R-norm rather than its one-norm. The difference is due to the

quence with standard deviation 0.05 through the causal filf@fferent instances of the Hélder inequality used to determine
with transfer function /1 — 22/(1— z,2=1), which has a single the worst-case data sequence in (4) and (18). However, the re-
p L

sulting design tradeoffs are often qualitatively similar to those
real pole at: = z, and no zeros. (Whes, = 0, the postulated g g d y

T L . %btained in Section Ill, as we will illustrate in the next section.
statistical model equals the actual statistical model.) In Fig. 10,

the variation ofrchrg in the actual statistical model is plotted
against the pole position of the statistical model used in the de-
sign ofr,, for both the original and modified designs (Problems In Sections Ill and IV, the sensitivity function was chosen

2 and 3, respectively). For visual clarity, we report results onlyith threshold (sign) detection in mind. However, in applica-
for the specified 1IS95 mask—those for the achieved mask di@ens in which the filtered received signal is further processed
qualitatively similar. It is evident from Fig. 10 that when the debefore detection, the mean square error (MSE) may be a more
sign model is substantially inaccurate, the modified design prappropriate sensitivity criterion. In this section, we show that

V. MEAN SQUARE ERRORDESIGNS
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worst-case and average MSE design criteria also result "7

convex optimization problems in the autocorrelation sequent 4 75| i
of the filter, and hence, pulse-shaping filters that providi !
robust performance from an MSE perspective can be efficient 1711 !
obtained. The resulting design tradeoffs are often qualitative :
similar to those obtained using the sensitivity functions in th \
previous two sections, as we will demonstrate in an example. _ 169} i .

1.7+

A. Worst-Case MSE 1.68

With reference to Fig. 2 and (1), the error in the data estima 1671
(prior to detection) is

dln] — dn] = 37 (F10] = 8Dl — i)+ 3 glk — Nolulhl. |
k

T

For white data with zero mean and transmitted energy pi 1.6140_3 16
symbol £ and for noise that is independent of the data witt 10 10
autocorrelationVyr,[m] andr,[0] = 1, the mean square error

IS Fig. 12. Tradeoffs between the minimal valuel®f (linear scale) ane, (the
bound ony,, logarithmic scale) for the specified (solid) and achieved (dashed)

MSE = E i1 — 6[iN2% - N, 20) spectral masks from the IS95 scheme (see Example 5). LegendS95 filter;
Z (f[L] [L]) + Nog (20) 0O, +: typical robust filters used to generate Fig. 13.
T

where{ = 3 ry[m]r,[m], as in Section lll. For applications terms will be known. An alternative approach would be to seek
in which the channel environment is genuinely unknown, We minimal value of the bound in (22), subject to a bound on
make the neutral assertion that the nominal environment is {@ self-induced MSEy, and the normalizatiom,[0] = 1.
AWGN channel. Defininge[k] = c[k] — 6[k] andr, [m] = Under those constraints, one only has to mininiZgin order
ry[m] — 6[m] and making the normalizatian [0] = 1, we have to minimize the MSE sensitivity to modeling errors. Therefore,
that a filter that provides robust performance in an MSE sense in the
MSE = E Z rg[IN]? presence c_)f_unknown t_Jut bounded chan_nel and noise mpdels
=20 can be efficiently obtained as the solution to the following
. - convex cone program, which is independent of the SNR.
+2E Y rg[Ni] Y cell+ Nilry[4] Problem 4: Given M,(¢/*), M,(¢’*), ¢,, N, and L,

70 ¢ ) find a filter of length L, achieving min 8, over r,[m],
) 0<m<L,—1,X = 0,{ > 0,andf,.., subjectta,[0] = 1,
TE ) |2 el Nilrll ot 7l S Oser (Disy 7 NiP)Y? < e/V/2, the
’ ¢ spectral mask in (12), and to the linear equality constraints in
. . (9), or show that none exist.
+No <1 + Em: 7"7€[m]79[m]> ' L) "Note that this problem is similar to Problem 1—the differ-

, . : . ence being that in Problem 4, the ISI in the nominal channel is
':ﬁ re“, thlf T'nrjt ter(rjrl ',\S/Itshé MtﬁE due tr?dthildstlr:i?glerlriearl Chrannk%clfunded by its two-norm rather than its one-norm. (Problem 4
(the "self-induce ). the second & erms represeg equivalent to the limiting case of Problem 3 described at the

tzzrlt\aﬂsseitlsn:jhl:acﬁ/ldsgy dt:ee tglfﬁzrag?sghzggle;i,nzntiglﬁ;iztlézrn d of Sec_t|on IV.) As a result, the tradeoffs betwgen robu_st—
Cauchy-Schwarz inequalities to (21).[see Appendix CJ, we Cn ss, hominal performance, and s_pec;tral opcgpatlon obtained
bound the MSE by ' B mse performance are often qualitatively similar to those ob-
tained for the performance measure derived in Section Ill, as we
MSE< E ((,yg + CnZBg)2 + COB§> + No(1+ Bgv) (22) now illustrate. (Like the bound of,, the bounql ony, places
pointwise frequency-flatness constraints |6H{c’“)|; see Ap-
wherey, = (23,5, 7,[Ni]?)*/? is the root MSE due to ISI pendix A.)
in the ideal channel. Heré§g measures the MSE sensitivity to  Example 2: In this example, we determine the tradeoff be-
modeling errors, and’,,, Cy, andV measure the “size” of the tweenB, and~, for both the spectral mask specified in 1IS95
channel and noise model errors, respectively. (These terms wene that achieved by the 1S95 filter by solving Problem 4 for
defined in Section 1l and are assumed to be finite.) different values ot.,, with L, = 48 and/N = 4. The tradeoff is
If the signal-to-noise ratio (SNRE/N, is constant and illustrated in Fig. 12. Observe the qualitative similarity to Fig. 3
known, and ifC,,, Cy, andV are known, then one can for-and that it is once again clear that the 1S95 filter is a substan-
mulate a convex cone program to efficiently obtain a filter thdital distance from providing an optimal tradeoff betwegnand
minimizes the right-hand side of (22), subject to normalization,. The CER curves for typical filters on these tradeoff curves
of the nominal gain of the desired symbol and the spectral maskore precisely, those with, = ~is95/+/50) in the environ-
constraints. However, in practice, the receiver noise level mighient of Example 1 are qualitatively similar to those in Fig. 6,
not be known by the transmitter, and it is unlikely that the othexs shown in Fig. 13. O
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VI. CONCLUSION

In this paper, it was shown that the inherent tradeoffs between
robustness, nominal performance, and spectral occupation that
occur in the design of waveforms for pulse amplitude modula-
tion can be efficiently evaluated via convex optimization tech-
niques. Several of these tradeoffs were calculated for the de-
sign of “chip” waveforms for the I1S95 standard [14] and the
UMTS proposal [15] for code division multiple access mobile
telephony and were used to select waveforms with substantially
improved performance over those specified in 1IS95 and UMTS.
These improved waveforms are directly implementable in trans-
ceivers equipped with baseband digital signal processors and
have the same implementation complexity as those in the stan-
‘ dards.

20 25 30 The key to the efficiency of the methods described herein was
to show that the nominal performance, robustness, and spectral
Fig. 13. Simulated CER against SNR for Example 5 for the 1S95 fiItecr)CCl’lpm_Ion C&lﬂl all be effectively meagured by linear or Con,vex
(dash-dot) and the robust filters for the specified (solid) and achieved (dashégadratic functions of the autocorrelation sequence of the filter
spectral masks from Fig. 12. that synthesizes the waveform. In this paper, performance was
measured either by a sensitivity function for threshold detection
or by the mean square error, and robustness was measured in
terms of the worst-case performance over a bounded uncertainty

If statistical models for the channel and the noise correlati@et or the average performance over a statistically modeled un-
coefficients are available, an alternative design objective to titatrtainty set. Spectral occupation was measured via a relative
in the previous section would be to minimize the average MS#pectral mask and by constraints on the relative power trans-
over these models. By taking the expectation of (20) over thatted in given spectral bands.
channel and the noise correlation coefficients (assuming that th&ince the intersection of convex sets is itself convex, many
channel and the noise correlation coefficients are independentinbinations of the problems considered herein (and others in
the average MSE is given by [8] and [23]) can be solved using similar techniques. These tech-

niques can also be generalized to the complex-valued case to
F{MSE} =E Z ro[mlrglk] Z F{c[m + Ni]c[k + Ni]} provide efficient methods for the joint design of the “inphase”

i and “quadrature” pulse shapes (as distinct from the standard
practice of separate design). In addition, attempts to extend the
philosophy of the current work to more sophisticated commu-
nications schemes, such that those with (nominal or adaptive)

-4

10 . . . .

15
SNR, dB

B. Average MSE

m, k

—-2E Z rolm|E{c[m]} + E

+No Z rolm]E{ry[m]} equalization, or block-based PAM transmission [28], are un-
o - - derway [38].
=E(r, Qury(No/EL, = 2. )rg + 1) In closing, it is pointed out that the goal of this work was to

obtain a large and flexible set of efficient design algorithms for

where we have used notation from Section IV angaveforms that provide robustness to uncertain but linear and
Q. = Q. + T"F{cocg}T. When the average channel igime-invariant channels. The design of waveforms that provide
the AWGN channell;r, = I;r, = r,[0], and a filter that ropustness to channels with significant nonlinearities appears to
minimizes the average MSE, subject to a normalization gk more complicated, even in simplified scenarios [39]. An in-
the expected gain of the desired symbol, can be efficienlyresting direction for further work is to examine ways in which
found by solving the following convex cone program, which igohystness to uncertain time-varying nonlinear channels can be
independent of the SNR. L incorporated into the current design framework.

Problem 5: Given M,(e’*), M,(e’*), Q. = L L, , N and
L,, find a filter of length L, achievingmin f,se, 2w OVErs,,
X > 0, > 0andfe, o, Subject tor,[0] = 1, L2 7,2 <
Omse, av, the spectral mask in (12), and to the linear equality
constraints in (9), or show that none exist.

This problem is similar to Problem 2, except tiibctreplaces
Q.. Hence, robustness to inaccuracieglincan be handled by
modifying Problem 3. A special case of Problem 5 has pre

APPENDIX A
GENERALIZATION OF NYQUIST' S FIRST CRITERION

Using the definition of the Fourier transform, it can be shown
\L@S], [36] that

ously been used to find an optimal PAM scheme in the presence | M-
of timing error with a known probability density function (see r [Nile—dwNt — = R | eilw—27k/N) Y
[8, ex. 6]). Z oV N kz:o o )
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Sincer,[m] is symmetric and-,[0] = 1, we have that Substituting the lower bound ¢ff0] in (7) and the upper bound
on|A®|in (26) into the right-hand side of (25), we have that
R,(¢"*) — N =2N Z a[Ni] cos(wN©)
>0 - N E
N-1 ' 2P < erfc<(rg [0] — B,Co) N—>
_ Z Rg (eg(w—Qﬂ'k/N)) ) (23) 05

k=1 ~ E

Applying the triangle inequality and an instance of the Holder +erfe| (r5[0] = By — By C) No& (@7)

inequality and using the fact th&t;(c’~) > 0, we have that
ot for all 7, whereC' = Co 4 Ch,.. If 7,[0] — 8, — B,C > 0 (that

iy _ NI < oN NG J(w—2mk/N) is, if the worst-case eye is open [1, p. 67]) then by substituting
[By(e”) = Z IrolVell + Z Ry (6 ) the upper bound fof in (8) into (27), we have that

i>0 k=1
and, hence, (14). Equation (15) can be obtained by using thefﬁﬁt( ) < erfc (r,[0] — B Co) E
that R,(c7¢) = Ry(c’) to rewrite (23) forw = 7/N as TN No(rg[0] + B, V)
2R, (¢""N) = N + erfc| (r,[0] = 8, — B,C B :
ol P = B O o1+ B,V)
=2N Z [Vi] cos(mri) Z R, (ej((l_Qk)’T/N)) (28)
>0 k=1

The expression in (17) is then obtained by substituting (28) into
and then applying the triangle and Holder inequalitieg,q expression foP. in (24). Note that if the assumpt|on that
It is pointed out that an application of the triangle an;l [0]— 5, B C > 0is violated, ther{1/2)erfc((r4[0] —

Cauchy—Schwarz inequalities to (23) generates the bound B ,C) E/(Noﬁ)) > 1/2. In that case, the contribution of this
term to the bound on the overdh is decreased by makirng
Nt larger, that is, bydecreasinghe SNR.

< Nygyf2l(Ly = D/N]+¢* D M, (ej(w_%k/m) APPENDIX C

k=1 DERIVATION OF (22)
wherey, = (23,5, 74[Ni]?)}/?, and(* is the optimal value  The noise term is dealt with in the same way as (8) so that

|1G( (&) )P = N

of ¢. The termyy, is used in Section V. we only consider the signal terms. Using the notation of Sec-
tion V-A and applying the Cauchy—Schwarz inequality, we have
APPENDIX B that
DERIVATION OF P, BOUND 2
Using the symmetry ofA(¥) in (2) with respect ta and re- <Z c.[t + Nilr, [f]) < B2C? (29)
ordering theA s so thatA(+2"/ ) = — A we have that ¢
glp—2 and
P. sz - Z ® (24)
=1 > rg[Ni] Y e[t + Nilry[4]
where 70 ¢
1/2
5 1 - E <5 Z(ce [¢ + Nilry[f])?
P® = = f ‘ A@N 2 ) 9 < g
=52 erc((f[OHS ) No& :
s==x1 1/2
Since erf¢z) is a monotonically decreasing function:of < v4By Z C? . (30)
i#0
o) b - i -
2P, < erfc| f[0] Nof Taking the absolute value of the right-hand side of (21) and ap-
0 plying the triangle inequality and (29) and (30), MSEN, +
E E(y2 + 27,B,Cn, + B2(C2, + C3)) and, hence, (22).
+erfel (f[0] - ‘A(”) W |- @ 777 0
No&
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