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Efficient Design of Waveforms for Robust Pulse
Amplitude Modulation

Timothy N. Davidson, Member, IEEE

Abstract—In this paper, a large and flexible set of computa-
tionally efficient algorithms is developed for the design of wave-
forms for pulse amplitude modulation that provide robust perfor-
mance in the presence of uncertainties in the channel and noise
models. Performance is measured either by a sensitivity function
for threshold detection or by the mean square error of the data
estimate. For uncertainties that are modeled as being determinis-
tically bounded, robustness is measured in terms of the worst-case
performance, and for uncertainties that are modeled statistically,
robustness is measured in terms of the average performance. The
algorithms allow efficient evaluation of the inherent tradeoffs be-
tween robustness, nominal performance, and spectral occupation
in waveform design and are used to design “chip” waveforms with
superior performance to those specified in recent standards for dig-
ital mobile telephony.

Index Terms—Chip waveform, code division multiaccess, mul-
tirate FIR digital filters, optimization methods, pulse amplitude
modulation, robustness, signal design.

I. INTRODUCTION

I N DIGITAL communications, waveform coding is often
performed by linear pulse amplitude modulation (PAM)

of translated versions of a given waveform [1]. The choice of
waveform critically impacts many system performance criteria
and usually involves a compromise between spectral efficiency,
robustness to expected channel imperfections (including noise
and interference), system delay, and receiver complexity. In
applications in which accurate channel and noise models are
available (and satisfy certain assumptions), there are several
established techniques by which a waveform can be designed
[1]–[3]. For the special case of the additive white Gaussian
noise (AWGN) channel, a root-Nyquist waveform [1], [3]–[9]
(and references therein) is usually chosen. However, in some
applications, particularly in the wireless area, the transmission
environment may undergo substantial variations, and it might
not be possible to obtain accurate channel and noise models.
In that case, one ought to design a waveform that provides
robust performance in the presence of this model uncertainty.
Unfortunately, there are few design techniques that explicitly
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incorporate robustness to broad classes of uncertainty.1 (Two
candidate techniques [12], [13] are discussed at the end of this
section.) Furthermore, it can be rather difficult to determine
the extent to which the performance under the nominal channel
model must be compromised in order to obtain sufficient
robustness to uncertainties in that model.

The purpose of the present paper is to show that the design of
a waveform that provides maximal robustness to an uncertain
frequency-selective channel and an uncertain noise correlation
can be formulated as a convex optimization problem from which
an optimal filter can be efficiently obtained. An important im-
plication of this result is that the inherent design tradeoffs be-
tween robustness to model uncertainties, performance under the
nominal model, and spectral occupation can be efficiently eval-
uated. These tradeoffs are particularly important in applications
in which spectral efficiency is required, but (adaptive) equaliza-
tion of the (slowly-varying) channel is deemed to be too expen-
sive. In the design examples, we will use these trade-off curves
to select chip waveforms with substantially improved perfor-
mance over those specified in the IS95 standard [14] and UMTS
proposal [15] for code division multiple access (CDMA) digital
mobile telephony.

In this paper, we consider digital signal processor (DSP)-
based PAM schemes in which PAM is performed by a finite
impulse response (FIR) filter [4]–[9], [16]. In such schemes,
the nominal performance, robustness, and spectral occupation
of the scheme can be measured by functions of the filter coef-
ficients. Two measures of the performance of a PAM scheme
are employed in this paper: a sensitivity function that leads di-
rectly to a bound on the probability of error for threshold de-
tection and the mean square error of the data estimate (prior
to detection). For uncertainties that are modeled as being de-
terministically bounded, robustness is measured in terms of the
worst-case performance, and for uncertainties that are modeled
statistically, robustness is measured in terms of the average per-
formance. Spectral occupation is constrained by enforcing a rel-
ative spectral mask on the power spectrum of the filter output.
In some cases, we will also constrain the relative power trans-
mitted in given spectral bands. Although the derivations herein
generate nominal performance and robustness objectives that
confirm much of the established intuition, these criteria, and
the spectral occupation criteria, involve nonconvex functions of
the filter coefficients. Hence, any direct design algorithm for the
optimal filter is complicated by the intricacies of dealing with
potential local minima. The key observation in obtaining our

1For certain structured uncertainties, such as timing error [1], [8], [10]–[12],
some design techniques are available.
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Fig. 1. Standard model for baseband PAM.

Fig. 2. Equivalent discrete-time model of baseband PAM [for real-valuedp(t) andq(t) = p(�t)].

efficient design algorithms is that the nominal performance, ro-
bustness, and spectral occupation can all be expressed as linear
or convex quadratic functions of the autocorrelation coefficients
of the filter. By reformulating the design criteria in terms of the
autocorrelation coefficients of the filter, we obtain convex sym-
metric cone programs [17]–[19] that can be efficiently solved
using interior point methods [19]–[21]. (The resulting design
problems contain some of the previously obtained convex for-
mulations of root-Nyquist filter design problems [8] as special
cases. They are also related to some previous convex formula-
tions of the design of general FIR filters [22], [23] and certain
“signal-adapted” orthonormal multirate filterbanks [24]–[26]).
Once an optimal autocorrelation function has been obtained, an
optimal filter can be extracted (nonuniquely) by spectral fac-
torization [23], [27]. A feature of the method presented in this
paper is that the semi-infinite factorizability constraint is pre-
cisely transformed into a finite number of linear equality con-
straints on a (finite) positive semidefinite matrix.

As mentioned earlier, there are few PAM waveform design
techniques that explicitly incorporate robustness to broad
classes of model uncertainty. Verdú and Poor [13] considered
a signal selection problem for uncertain channels and noise
covariances that are deterministically bounded. Although that
signal selection problem reduces to an eigenvalue problem, their
technique does not lend itself to the inclusion of constraints on
spectral occupation. In addition, they simply seek the optimal
worst-case performance, without regard for performance under
the nominal model. A design technique that, like the technique
in the present paper, leads to a convex optimization problem
(in that case a semi-infinite linear program) was introduced by
Coleman [12]. However, his robust performance criteria are
based on “eye-flattening” arguments (i.e., the derivative of the
autocorrelation function of the waveform should be “small”
in the neighborhood of the “zero-crossings”), and hence, his
method is best suited to “small” structured uncertainties in the
channel model. In this paper, we develop methods that provide
robustness to more general perturbations in both the channel

and noise models and can easily incorporate constraints on the
nominal performance and spectral occupation.

II. BASEBAND PULSE AMPLITUDE MODULATION

Consider the standard model for baseband pulse amplitude
modulation in Fig. 1. In that figure, the transmitted signal can
be written as , where

th data symbol;
waveform;
symbol interval.

If the channel and the noise correlation are known at both the
transmitter and receiver (and satisfy certain assumptions), then

and the receiver filter can be designed to jointly op-
timize certain performance criteria [1], [2]. (Block-based gen-
eralizations of PAM schemes [28], such as multicarrier mod-
ulation [29], are also of interest in that case.) However, if the
channel and the noise correlation are not known and are deemed
too costly to obtain, a standard approach [1, p. 41] is to choose

and to design for a nominally AWGN
channel. In this paper, we will improve that approach by pro-
viding efficient design algorithms for that explicitly incor-
porate robustness to deviations from the AWGN assumption.
For simplicity, we will consider only real-valued waveforms,
but the methods can be extended to the complex-valued case
in a straightforward manner.

If the scheme in Fig. 1 [with being real-valued and
] is implemented in baseband DSPs at the transmitter and

receiver, then , where is the
FIR filter which synthesizes , is the impulse response
of the smoothing filter in the digital-to-analog converter, and
is the oversampling rate. In that case, we can form the equiva-
lent discrete-time model for baseband PAM shown in Fig. 2. In
Fig. 2, the equivalent channel includes conversion to and from
a continuous-time signal, carrier modulation and demodulation,
and the physical frequency-selective (fading) channel (as in [8],
for example). We will focus on scenarios in which the equivalent
channel does not vary significantly (in time) over the duration

Authorized licensed use limited to: McMaster University. Downloaded on August 14,2010 at 20:15:35 UTC from IEEE Xplore.  Restrictions apply. 



3100 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 12, DECEMBER 2001

of the waveform. In that case, the received data estimate
can be written as

(1)

where is the intersymbol interference
(ISI), is the equivalent channel from
the data perspective, is the (deter-
ministic) autocorrelation sequence for , and models the
additive noise. (Here, we have allowed finitely anticausal fil-
tering for notational convenience.)

The spectral occupation of a PAM scheme is usually mea-
sured in terms of the (time-averaged) power spectrum of the
transmitted signal. For stationary white data with zero mean
and variance , the power spectrum of in Fig. 1 is

, where and
are the (continuous-time) Fourier transform of

and the (discrete-time) Fourier transform of , respectively.
(Here, we have usedand to represent [angular] frequency in
the continuous-time and discrete-time settings, respectively.) In
many communications standards, must satisfy a relative
spectral mask of the form ,
where and are specified, and
is a reference value. In some applications, the relative
power transmitted in a given spectral band is also con-
strained, i.e., , for
given frequencies , and a given factor
. Using the expression for , we can transform

these constraints into corresponding constraints on
(see, e.g., [8]): , and

. The
derivation of , , and is particularly
straightforward in scenarios in which can be assumed
to have ideal spectral characteristics: For ,

, , and .
For simplicity, we will make that assumption here. However,
compensation for nonideal characteristics of can easily be
incorporated into the design methods presented herein. (See [8]
for some examples of compensation in closely related design
problems.) An observation that is a key element in our design
method is that . Hence, the spectral
occupation constraints involve linear functions of , but in
general, quadratic functions of .

The fundamental performance criterion of a PAM scheme is
the probability of error, which we now evaluate for the simple
receiver in Fig. 2. We assume that the noise is a zero-mean
Gaussian random process, with (stochastic) autocorrelation

, where . If is normalized so that it
has unit energy ( ), then for antipodal equally likely
signaling with a transmitted signal energy per bit ofand
threshold (sign) detection of , the probability of error is2

erfc (2)

2This expression is a straightforward generalization of [1, (4.64)] to the case
of possibly correlated noise. Ifr [m] = �[m], then� = 1, and [1, (4.64)] is
recovered.

where erfc is the complement
of the error function, denotes the noise am-
plification of the receiver filter,
is the length of , and is equal to the number of inter-
fering bits. Here

length of ;
length of (which may be unbounded in some
cases);
greatest integer .

The term

(3)

is the ISI generated by , , where
represents theth combination of 1s as the interfering
bits. [Note that the symmetry of the data guarantees that for each
, there exists a such that .]
By using (2) as an objective, it is possible to formulate a de-

sign problem for a filter that minimizes the probability of error
for a given channel or class of channels. However, the mere
evaluation of that objective, let alone its application in an op-
timization routine, has a computational cost that is exponential
in . The purpose of the following two sections of the paper
is to derive efficient design algorithms for pulse shaping filters
that yield “small” probability of error with threshold detection.
In Section V, we will derive efficient design algorithms for fil-
ters that yield minimal mean square error.

III. W ORST-CASE SENSITIVITY

A natural approach to the design of a robust pulse shaping
filter for threshold detection is to ensure that the intersymbol
interference (ISI) term in (1) is always “small” with respect
to the gain of the desired symbol and to ensure that the
noise amplification remains “close” to one. In this section,
we will derive a bound on the worst-case over a class of
unknown but (deterministically) bounded channels, a bound on
the worst-case , and a bound on the worst-caseover a class
of unknown but bounded noise correlations. It will be shown
that a filter that optimizes these bounds can be efficiently found
from the solution of a convex optimization problem. It will also
be shown that the designed filter directly minimizes an upper
bound on the probability of error for threshold detection in (2).

A. Formulation

The first step in the derivation is to determine the worst-case
value of over all combinations of data
symbols . Using an instance of the Hölder inequality
[30], we have that3

(4)

where , and the bound is achieved by at
least one combination of data symbols. The term is

3Certain other instances of the Hölder inequality can also be used. For ex-
ample, the Cauchy–Schwarz inequality is used in Section IV.
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the “peak ISI,” which was a key figure of merit in early equal-
ization algorithms [1, p. 79].

The second step is to determine the worst-case over
a deterministically bounded set of channels. If the channel is
genuinely unknown, then a neutral assertion is that the nominal
channel is the ideal channel , where is the Kronecker
delta. (The case of a general nominal channel is discussed at the
end of this section.) If denotes the distorting
component of the channel, then

(5)

The first term on the right-hand side of (5) is the ISI generated
by the filter itself (the “self-ISI”), and the other term is the addi-
tional ISI generated by the distorting channel. By applying the
triangle and Cauchy–Schwarz inequalities [30] to (4) and (5),
we have that

(6)

where is the “peak
self-ISI” (i.e., the peak ISI in an ideal channel). The term

, where

is a sensitivity coefficient for an unknown but bounded channel.
The coefficients determine
the “size” of the error channel, and it is assumed that

is bounded. (Note that this assumption does not re-
quire that is FIR.) Using similar analysis, it can be shown
that the gain of the desired symbol is bounded below by

(7)

If the noise correlation is genuinely unknown, then a neu-
tral assertion is that the nominal noise is white. If we define

to be the error in that nominal model,
then, in an analogous way, the worst-case value ofover the
class of unknown but bounded noise correlations is

(8)

where .
If the size of the uncertainties in the channel and noise

models are known (i.e., if , and are known), then one
might seek to minimize an appropriate linear combination of
the bounds in (6)–(8). Although that problem can be cast as a
convex optimization problem, in many wireless applications, it
is unlikely that , , and will be known at the transmitter.
For such applications, a natural design approach is to search for

a filter for which the sensitivity coefficients to the worst-case
channel and the worst-case noise correlation are both “small,”
and the worst-case gain of the desired symbol is “large,”
subject to a bound on the ISI in the nominal (ideal) channel,
a normalization constraint on the gain of the desired symbol
over the nominal channel, and a spectral mask constraint.
Under the normalization constraint ( ), minimizing

will minimize the sensitivity to both the worst-case channel
distortion and the worst-case noise correlation and will also
maximize the worst-case gain of the desired symbol. There-
fore, the design problem can be formulated as follows:For
a relative spectral mask specified by and ,
and for some , and , find a filter of length
achieving subject to , ,
and for all
and some , or show that none exist. Unfortunately,
is a quartic function of , and the constraint on and
the lower bound constraint on the power spectrum generate
nonconvex quadratic constraints on . Therefore, any direct
design algorithm for the optimal is complicated by the
intricacies of dealing with potential local minima. Furthermore,
the constraint on is not smooth, and hence, algorithms based
on analytic gradients cannot be directly applied. As a result,
algorithms for the direct solution of this optimization problem
can be rather computationally intensive.

In contrast, is a convex quadratic function of , and
the spectral mask generates linear constraints on . Fur-
thermore, the bound for some can be rewritten
as a set of linear constraints with additional variables ,

in the following standard manner:
with (where we have

exploited the symmetry of ). To complete the reformula-
tion of the design in terms of instead of , we must
add the additional constraint for all ,
which is a necessary and sufficient condition for to be
factorizable in the form (by the
Féjer–Riesz theorem). By performing this reformulation, we ob-
tain an optimization problem with a convex quadratic objective
and linear constraints (often called a quadratic program). How-
ever, the constraint generates an infinite number
of linear constraints on because it must be satisfied for all

. Although that constraint can be handled using dis-
cretization techniques [24], such an approach may lead to overly
conservative designs and can become rather awkward numeri-
cally. As an alternative, we can apply the positive real lemma
[31] to transform this semi-infinite constraint into a finite set of
linear equality constraints on a (symmetric) positive semidefi-
nite (PSD) matrix. (See [8], [22], [25], and [26] for applications
of the positive real lemma in other FIR filter design problems.) A
version of the positive real lemma [33]4 states that
for all if and only if there exists an PSD
matrix (denoted ) with trace and off-diagonal sums
satisfying

for (9)

4This is simply the dual of the version in [8] and [31] for an FIR system.
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Using this result and the symmetry of , the design problem
can be reformulated as the following problem.

Problem 1: Given , , , , and , find a
filter of length achieving over , ,

, , , , and , subject
to

(10)

with (11)

for all (12)

and to the linear equality constraints in (9), or show that none
exist.

Problem 1 consists of a linear objective, subject to linear
equality (9) and inequality [(11) and (12)] constraints, a
semidefiniteness constraint on , and the constraint in
(10). Since (10) can be transformed [32] into a “rotated”
second-order cone [18] constraint and an additional linear
constraint, Problem 1 is a convex symmetric cone program
[17]–[19], and the globally optimal autocorrelation sequence
can be efficiently found via interior point methods [19]–[21].
Furthermore, infeasibility of Problem 1 (i.e., where the con-
straints cannot be satisfied by any autocorrelation sequence
of the given length) can be reliably detected. For piecewise
constant (and piecewise trigonometric polynomial) mask
shapes, the infinite number of linear constraints in (12) can be
transformed into a finite set of linear equality constraints on
a finite set of PSD matrices [33] so that the mask constraint,
like the constraint , can be precisely enforced in
a finite manner. For other masks, we argue that (12) is usually
less “critical” than in the sense that a filter
with autocorrelation may still exist, even if the mask is
violated. Hence, discretization of (12) over a sufficiently fine
grid, with an appropriate “tightening” of the mask, will often
suffice. A “rule of thumb” is to choose 15 uniformly spaced
discretization points [23], plus any “corner” frequencies of the
masks. Once the optimal autocorrelation has been found by
solving Problem 1, an optimal pulse-shaping filter can be found
by spectral factorization (which can be performed in several
different ways [23], [27]).

Pulse-shaping filter design using Problem 1 has a number of
intuitively appealing interpretations. First, the quantity that is
minimized, namely , is the mean square difference between

(normalized so that ) and the “ideal” autocor-
relation function, . Second, using Parseval’s equality, we
have that

(13)

and hence, minimizing is equivalent to making
as flat as possible (in a mean-square sense). These in-
terpretations suggest natural weighted designs: Minimize

for some non-negative weights , or
minimize , for some real,
non-negative, weighting function . These weighted
designs can also be expressed as convex cone programs. (That

for the former can be deduced later in from Problem 2, and that
for the latter appeared in [34].) Third, the constraint
enforces pointwise frequency-flatness constraints on ,
as we now show: By generalizing Nyquist’s first criterion for
ISI-free transmission [1], [3], [35], [36] to filters designed
using Problem 1, it can be shown (see Appendix A) that

(14)

where is the optimal value of from Problem 1, and that at
the “folding frequency”

(15)

If the upper spectral mask has a constant “stop-band
level” for all and some (the mask
in Fig. 5 is an example), then (14) generates the following bound
on the “pass-band ripple”:

for all

(16)

A fourth intuitively appealing interpretation of Problem 1 is de-
rived from the fact (see Appendix B) that in scenarios of interest,
i.e., where so that the worst-case
eye is open [1, p. 67]), the probability of error in (2) is upper
bounded by

erfc

erfc

(17)

where . Since erfc is a monotonically de-
creasing function and the arguments of erfcin (17) are de-
creasing functions of and (when the bound is valid), the
bound in (17) is a decreasing function of and . Therefore,
Problem 1, which seeks to minimize (and, hence, ) sub-
ject to , and the spectral mask, provides direct
control over the upper bound on the probability of error in (17).
Finally, it is pointed out that an alternative design strategy to that
pursued in Problem 1 might be to minimize the peak self-ISI
subject to an upper bound on the sensitivity coefficient. This
problem can also be cast as a convex symmetric cone program
in and, hence, efficiently solved.

Problem 1 can be extended in a straightforward manner to
the case in which the channel and noise correlations are par-
tially known, rather than being totally unknown. The analysis
is almost identical—the difference being that

and , where
and represent the nominal models for the channel
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Fig. 3. Tradeoffs between the minimal value ofB (linear scale) and� (the
bound on� , logarithmic scale) for the specified (solid) and achieved (dashed)
spectral masks from the IS95 scheme (see Example 1). All points on or above the
appropriate curve can be achieved, but no point below the curve can be achieved
by a length 48 filter. Legend—�: IS95 filter;�, �: typical robust filters used to
generate Figs. 4–6.

and noise correlation, respectively. Once again, the design ob-
jective is to optimize the worst-case performance, subject to a
bound on the nominal performance and the spectral occupation.
Although the resulting design problem is also a convex cone
program, the receiver structure in Fig. 2 no longer resembles
the optimal receiver structure for the nominal channel.5 Since
the major application considered in this paper is chip wave-
form design for CDMA, and since it is unlikely in that appli-
cation that the equivalent discrete-time channel (atsamples
per chip) will be even partially known at the transmitter, we
will focus on the case where the channel and noise correla-
tions are genuinely unknown. Extensions of the principles of
this paper to more general communication schemes that incor-
porate partial knowledge of the environment are currently being
explored [38]. These schemes include both PAM-based schemes
and block-PAM based schemes, such as discrete multitone mod-
ulation (DMT) [29] and its generalizations [28].

B. Application: Tradeoffs in Chip Waveform Design

We now show how Problem 1 can be used to efficiently eval-
uate some of the tradeoffs in the design of chip waveforms for
CDMA-based digital mobile telephony. Once the tradeoffs have
been evaluated, we will select chip waveforms with improved
performance over those specified in the IS95 standard [14] and
the UMTS proposal [15].

Example 1: The filter specified for the synthesis of the chip
waveform in IS95 [14] has and . While that
filter satisfies the spectral mask specified in the standard, it has
rather large values of and . To determine whether these
values can be improved upon, Problem 1 was solved for a range
of values of , subject to the IS95 spectral mask. (Each in-
stance of Problem 1 was solved in under 20 s on a 400 MHz

5Optimal PAM receiver structures for more general nominal channels appear
in [1]–[3] and [37]. The receiver structure in Fig. 2 is the optimal receiver for
the AWGN channel when� = 0.

Fig. 4. Detail of the autocorrelation sequences for the designed (“�”) and
IS95 (“�”) filters from Example 1. For visual clarity, the sequences have been
interpolated using an ideal (“sinc-function”) interpolator.

PENTIUM II workstation using a MATLAB -based general-pur-
pose symmentric cone program solver called [32]. A
MATLAB “m-file” that expresses Problem 1 in the input format
required by is available from the author’s web site at
http://www.ece.mcmaster.ca/~davidson.) The resulting optimal
values of are plotted with a solid line in Fig. 3, from which
it can be seen that a substantial reduction inand can be
made, without violating the mask or increasing the filter length.
The “floor effect” in Fig. 3 for large values ofis due to the limit
which the lowpass nature of the spectral mask (see Fig. 5) im-
poses on the achievable frequency flatness [see (13)]. The fact
that cannot be made arbitrarily small reinforces a previous
result [8] that the shortest self-orthogonal filter for IS95 is of
length .

Theautocorrelationofa typicaloptimal filter for the IS95mask
(more precisely, one with ) is shown in Fig. 4, along
with that of the IS95 filter. The improved “zero-crossing” be-
havior of the designed autocorrelation enforced by the constraint
on is evident from that figure, as are the smaller deviations
from zero between the zero crossings induced by the minimiza-
tion of . The power spectra of the designed and IS95 filters are
shown in Fig. 5, from which the improved frequency-flatness in
the passband of the designed filter is clear. It is also clear from
that figure that the IS95 filter satisfies the specified spectral mask
by a considerable margin. The tradeoff betweenand for the
spectral maskachievedby the IS95 filter is shown by the dashed
line in Fig. 3, and the power spectrum of a typical optimal filter
for the achieved mask (again, one with ) is shown
in Fig. 5(c). The autocorrelation of this optimal filter is very close
to that of the optimal filter for the specified mask at the scale of
Fig. 4 and has been omitted for clarity.

To demonstrate the improved performance of the robust fil-
ters, we simulated the “chip error rate” (CER) for transmission
of binary chips over a slowly varying Rician-like channel with
additive white Gaussian noise and sign detection of the chips
at the receiver. The linear time-invariant “snap shots” of the
channel were of length 33 and, hence, extend over eight chips.
They were generated with , with the remaining
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(a) (b) (c)

Fig. 5. Relative power spectra (in decibels) of the filters in Example 1 with the IS95 spectral mask. Here,� is the optimal value of� from Problem 1.

Fig. 6. Simulated chip error rates (CER) against signal-to-noise ratio (SNR)
for Example 1. Legend—Dash-dot: IS95; Solid: robust, specified mask; Dashed:
robust, achieved mask.

being real, independent, and Gaussian with zero mean and stan-
dard deviation 0.05. (Such channels exhibit a wide variety of
frequency selective effects.) The resulting CER curves, aver-
aged over 100 000 channel realizations, are plotted in Fig. 6,
from which the improved performance of the robust filters in
Fig. 5(b) and (c) is evident. [The signal-to-noise-ratio (SNR) is
defined as the ratio of the transmitted signal energy per bit to
the receiver noise variance, i.e., in (2).]

In Example 1, we used Problem 1 to efficiently determine the
tradeoff between robustness and self-ISI, subject to a spectral
mask. While this is a key design tradeoff, one might also be in-
terested in other tradeoffs. For instance, efficient use of the elec-
tromagnetic spectrum requires that the frequency spacing be-
tween spectrally adjacent communication schemes that operate
independently of each other be kept as small as possible. The
required frequency spacing depends on the shape of the spectral
mask, the edge of the stopband or transition band, and on the
sidelobe level. For a number of lowpass mask shapes, we can
efficiently obtain the tradeoff between the sidelobe level and the
band edge, subject to bounds on the robustness coefficient and
the self-ISI, by using a bisection-based search for the feasibility
boundary of a convex cone feasibility problem.6 The feasibility

6For certain special mask shapes, the tradeoff can be evaluated even more
efficiently via convex optimization.

problem that is evaluated at each stage of the bisection search is
a modified version of Problem 1 in whichis fixed to the given
bound. This bisection-based technique is similar to that recently
outlined for self-orthogonal filters [8], and exploits the fact that
the infeasibility of Problem 1 can be reliably detected. We now
demonstrate the effectiveness of this technique by designing an
improved chip waveform for the UMTS proposal [15].

Example 2: The UMTS proposal [15] specifies that a root-
raised cosine (RRC) waveform7 with a roll-off factor
be used as the chip waveform. The power spectrum of an
, implementation of such a filter is illustrated in

Fig. 7(a), along with a spectral mask chosen to tightly bound
the spectrum. The implementation was chosen because
a fortuitous combination of sampling and truncation effects re-
sults in a rapid spectral decay. In fact, the spectral decay of the

filter is much faster than that of the filters of length
48, 50, 51, and 52. From a spectral efficiency perspective, this
makes a good choice amongst the RRC filters with

. However, a disadvantage of the RRC family of fil-
ters is that for a fixed filter length, both the transition-band edge,
which is indicated by in Fig. 8(a), and the height of the first
sidelobe, which is indicated by in Fig. 8(a), are determined
by the roll-off factor and, therefore, cannot be controlled inde-
pendently. To determine whether the resulting tradeoff between

and can be improved upon, without compromising the de-
sirable values of and achieved by the RRC filters, we con-
sider the following convex cone feasibility problem:Given ,

, , and , find a filter satisfying the constraints of Problem
1 with , , and the parameterized spec-
tral mask in Fig. 8(a), or show that none exist. For a fixed ,
a filter exists if , and none exists if , where

is the minimal sidelobe level. Hence, can be efficiently
found using a bisection search on for the feasibility boundary
of above problem. By repeating this process for different values
of , we obtain the tradeoff illustrated in Fig. 8(b), from which
it is clear that a substantial improvement can be made over the
RRC filter. (Each instance of the feasibility problem was eval-
uated in around 20 s.) The power spectrum of a filter with the
minimum sidelobe level and the same transition-band edge as
the RRC filter is plotted in Fig. 7(b), from which the reduction
of around 6.8 dB in the maximum sidelobe level can be seen.
Since the values of and of the optimal filter are con-
strained to be less than or equal to those of the RRC filter, one

7That is, a waveform with an RRC magnitude spectrum.
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(a) (b) (c)

Fig. 7. Relative power spectra (in decibels) for the filters in Example 2, along with their respective spectral masks. Note that in (b),D �D � 6:8 dB,
and in (c),D � D � 6:3 dB.

(a)

(b)

Fig. 8. (a) Parameterization of the spectral mask and (b) the tradeoffs between
the minimum value of the sidelobe levelD and the transition-band edgef
for Example 2. Legend for (b)—Solid: direct tradeoff; Dash-dot: tradeoff with
additional stopband energy constraint;�: RRC filter; , : optimal filters in
Fig. 7(b) and (c), respectively.

would expect the CER performance of the optimal and RRC fil-
ters in slowly varying frequency-selective fading environments
to be similar. Simulations results (which are not reported here)
have shown that under the channel model used in Example 1,
the CER curves for these optimal and RRC filters are almost in-
distinguishable at the scale of Fig. 6.

It is clear from Fig. 7(b) that the reduction in the sidelobe
level of the optimal filter has been achieved at the expense
of an increase in the power transmitted in the “stopband”

, where is illustrated in Fig. 8(a). Fortunately,
is a linear function of , [8], and therefore,

we can add the constraint that the designed filter transmits
no more power in the stopband than the UMTS filter [i.e.,

] while retaining the efficiency
of the design technique. [The power transmitted by the designed
filters in the “transition band,” namely , is lower than
that for the RRC filter.] The resulting tradeoff is also shown in
Fig. 8(b). For the representative filter in Fig. 7(c), the maximum
sidelobe level has been reduced by around 6.3 dB from that of
the RRC filter.

In addition to determining the “smallest” spectral mask that
can be achieved without degradation in or , one might
also be interested in determining how much “smaller” the spec-
tral mask can be made if the value of or is allowed to
degrade. Once again, this tradeoff can be efficiently evaluated
using a sequence of convex cone feasibility problems, as we now
illustrate.

Example 3: Let and denote the passband and stop-
band edges, respectively, of the IS95 spectral mask illustrated
in Fig. 5. For a given value of, the smallest such that there
exists a filter that satisfies the mask and has can be effi-
ciently found by a bisection search on for the fea-
sibility boundary of Problem 1. The resulting tradeoffs between
the spectral occupation and the self-ISI are illustrated in Fig. 9
for both the specified and achieved masks from IS95. The trade-
offs are calculated with and without the additional convex con-
straint . The floor effect in Fig. 9 for large is due
to the lower bound component of the mask and the constraint

(where it is present). The level at which a curve
flattens for small is the smallest , which can be achieved
by a root-Nyquist filter that satisfies the relevant mask. (These
levels are greater [8] than the stopband edge specified in IS95.)
Note that the constraint on is inactive for small because any
filter that satisfies the frequency flatness constraints imposed by

and the spectral mask [see (14) and (16)] also satisfies
the frequency flatness constraint imposed by [see
(13)]. For large , the constraint on (when it is applied) re-
stricts the amount by which the power spectrum can vary in the
passband of the mask and, hence, limits the stopband edge that
can be achieved.
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Fig. 9. Minimal stopband edgef against� for the mask specified (solid,
dash-dot) or achieved (dashed, dotted) in IS95. The solid and dashed curves
include the constraintB � B . The “�” denotes the position of the IS95
filter.

IV. A VERAGE SENSITIVITY TO FIR CHANNELS

Although the design method proposed in Section III is ap-
plicable in a broad range of scenarios, it may be conservative
in the sense of average performance in that it may provide ro-
bustness to channels and noise correlations that are unlikely to
occur at the expense of sensitivity to those which are more likely
to occur. If a statistical model for the channel and the noise cor-
relation coefficients is known, or can be postulated, then an al-
ternative design objective is to minimize an average sensitivity
over the statistical model.

Using the analysis in Section III, a natural approach would be
to attempt to make the expected worst-case ISI
“small” with respect to the expected gain of the desired symbol

, and to ensure that the expected noise amplification
factor remains “close” to one. Here, denotes expec-
tation over the statistical model for the channel or the noise cor-
relation coefficients, as appropriate. (We will model the channel
coefficients and the noise correlation coefficients as being sta-
tistically independent.) Unfortunately, it appears to be difficult
to incorporate the quantity into an optimization
problem that can be efficiently solved. Since the goal of this
paper is to obtain efficient design algorithms, we now make a
slight modification to the analysis in Section III in order to ob-
tain efficient design algorithms for filters that minimize the av-
erage sensitivity over a given statistical model.

An alternative representation of the worst-case data sequence
can be obtained by applying the Cauchy–Schwarz inequality to
(3), rather than the instance of the Hölder inequality that was
used to obtain (4). In that case, we have that

(18)

where and supp de-
notes the support of. (Note that for standard systems, we will
need and, therefore, , to be FIR to ensure that
is finite.) For a given constellation, the average value of this
worst-case ISI over the statistical model of the channel is pro-

portional to . By defining such that
, , and , where

(19)

with being the identity matrix, and being
the matrix consisting of ones on the antidiagonal
and zeros elsewhere, we can write , where

. Hence, the expected value of the worst-case
ISI is proportional to , where

. Similarly, the expected gain of
the desired symbol is , and the expected noise
amplification factor is , where ,

, and , .
Seeing as we wish to make both the averaged worst-case ISI
and the averaged noise amplification terms small with respect
to the average gain of the desired symbol, a natural optimization
problem would be to minimize subject to

, the spectral mask, and the linear equality constraints
(9) of the PSD matrix . Here, weights the contributions
from the ISI and the noise. Although that problem can be cast
as a convex cone program, our design framework is most suited
to applications in which the average channel is the AWGN
channel (because the receiver structure then resembles the
optimal receiver structure for the average channel). In that case

, and we obtain the following simplified
convex cone program that is independent of.

Problem 2: Given , , , , and
, find a filter of length achieving over , ,

and , subject to , , the
spectral mask in (12), and to the linear equality constraints in
(9), or show that none exist.

Note that in Problem 2, there is no explicit differentiation
between the ISI in the nominal channel and the ISI induced by
deviations from that nominal channel, as there was in Problem
1. The weighting of these nominal and uncertainty-induced ISI
terms is implicit in the statistical model of the channel via.

While solutions to Problem 2 generate PAM schemes that per-
form well under the assumed statistical model for the channel,
one may wish to modify that problem to ensure that the re-
sulting PAM scheme performs well even if the statistical channel
model is inaccurate. To do so, we let , where

represents the matrix for the nominal statistical model,
and the symmetric matrix represents the uncertainty in
due to inaccuracies in the statistical model. We model this un-
certainty by constraining to lie in the parameterized “ad-
missible set” ,
where represents the “size” of the uncertainty. The approach
we will take here is to minimize the worst-case value of
over all matrices in the admissible set, subject to a per-
formance degradation under the nominal statistical model of
at most 100%. That problem can be simplified by observing
that and that the per-
formance degradation constraint can be written as

, where is the solution to Problem 2 with .
Therefore, the design problem reduces to the following convex
cone program.
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Fig. 10. Value ofrrr QQQ rrr for the actual statistical channel model against
the pole position of the inaccurate statistical model used in the design ofrrr .
(When the pole position is zero the design model is accurate.) Legend—Dashed:
Original design using Problem 2; Solid: Modified design using Problem 3 with
� = 0:2 and� = 0:01; 4, : Designs for the inaccurate model used in
Fig. 11. Note that for the actual statistical channel model the IS95 filter generates
rrr QQQ rrr = 0:0948.

Problem 3: Given , , , ,
, , and , find a filter of length achieving
over , , , and , subject to ,

, , , the
spectral mask in (12), and to the linear equality constraints in
(9), or show that none exist.

Observe that as either, which is the “size” of the uncer-
tainty in , or , which is the nominal performance degrada-
tion factor, approach zero, the solution to Problem 3 approaches
that of Problem 2. We demonstrate the robustness of both de-
sign methods to inaccurate statistical channel models in the fol-
lowing example.

Example 4: As in Examples 1 and 3, we design chip wave-
forms for IS95 [14]. The actual statistical channel model in
which the designs will be evaluated in the same as that used
in the simulations in Example 1. That is, we have a real FIR
channel of length 33 (i.e., eight chips) with and the
remaining being independent zero-mean Gaussian random
variables with standard deviation 0.05. However, the statistical
channel model postulated in the design has and the
remaining being from a first-order autoregressive process
(of the same standard deviation) generated by passing an in-
dependent and identically distributed zero-mean Gaussian se-
quence with standard deviation 0.05 through the causal filter
with transfer function , which has a single
real pole at and no zeros. (When , the postulated
statistical model equals the actual statistical model.) In Fig. 10,
the variation of in the actual statistical model is plotted
against the pole position of the statistical model used in the de-
sign of for both the original and modified designs (Problems
2 and 3, respectively). For visual clarity, we report results only
for the specified IS95 mask—those for the achieved mask are
qualitatively similar. It is evident from Fig. 10 that when the de-
sign model is substantially inaccurate, the modified design pro-

Fig. 11. Simulated chip error rates (CERs) against SNR for the accurate and
inaccurate design models from Example 4. Legend—Dash-dot: IS95; Dashed:
standard design using Problem 2; Solid: modified design using Problem 3 with
� = 0:2 and� = 0:01. The triangles distinguish the case of the inaccurate
design model from Fig. 10 from that of the accurate design model.

vides improved performance. The (small) performance degra-
dation (controlled by ) that the modified design incurs for rea-
sonably accurate channel models (in order to obtain robustness)
is also evident from the figure. The chip error rates (CERs) eval-
uated in the actual statistical channel model are shown in Fig. 11
for designs based on accurate and inaccurate statistical channel
models. The improved robustness of the modified design and the
(small) performance degradation it incurs for accurate channel
models are also evident from these CER curves.

An interesting connection between the design for determin-
istically bounded uncertainty in Section III and those for sta-
tistically modeled uncertainty in this section can be obtained
by analyzing a limiting case of the modified design in Problem
3 when the mean of the nominal statistical model is the ideal
channel. As the size of uncertaintygrows, the objective of
Problem 3 is dominated by the term ,
and as the variance of the nominal statistical model approaches
zero, approaches . In this limiting case,
and with the normalization , Problem 3 reduces to the
minimization of subject to a bound on , the
spectral mask, and the linear equality constraints on in
(9). This is similar to Problem 1—the difference being that the
ISI in the nominal channel is constrained by (the square of) its
two-norm rather than its one-norm. The difference is due to the
different instances of the Hölder inequality used to determine
the worst-case data sequence in (4) and (18). However, the re-
sulting design tradeoffs are often qualitatively similar to those
obtained in Section III, as we will illustrate in the next section.

V. MEAN SQUARE ERRORDESIGNS

In Sections III and IV, the sensitivity function was chosen
with threshold (sign) detection in mind. However, in applica-
tions in which the filtered received signal is further processed
before detection, the mean square error (MSE) may be a more
appropriate sensitivity criterion. In this section, we show that
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worst-case and average MSE design criteria also result in
convex optimization problems in the autocorrelation sequence
of the filter, and hence, pulse-shaping filters that provide
robust performance from an MSE perspective can be efficiently
obtained. The resulting design tradeoffs are often qualitatively
similar to those obtained using the sensitivity functions in the
previous two sections, as we will demonstrate in an example.

A. Worst-Case MSE

With reference to Fig. 2 and (1), the error in the data estimate
(prior to detection) is

For white data with zero mean and transmitted energy per
symbol and for noise that is independent of the data with
autocorrelation and , the mean square error
is

MSE (20)

where , as in Section III. For applications
in which the channel environment is genuinely unknown, we
make the neutral assertion that the nominal environment is the
AWGN channel. Defining and

and making the normalization , we have
that

MSE

(21)

Here, the first term is the MSE due to the ISI in the ideal channel
(the “self-induced” MSE), the second and third terms represent
the MSE induced by the distorting channel, and the last term
represents the MSE due to the noise. Applying the triangle and
Cauchy–Schwarz inequalities to (21) [see Appendix C], we can
bound the MSE by

MSE (22)

where is the root MSE due to ISI
in the ideal channel. Here, measures the MSE sensitivity to
modeling errors, and , , and measure the “size” of the
channel and noise model errors, respectively. (These terms were
defined in Section III and are assumed to be finite.)

If the signal-to-noise ratio (SNR) is constant and
known, and if , , and are known, then one can for-
mulate a convex cone program to efficiently obtain a filter that
minimizes the right-hand side of (22), subject to normalization
of the nominal gain of the desired symbol and the spectral mask
constraints. However, in practice, the receiver noise level might
not be known by the transmitter, and it is unlikely that the other

Fig. 12. Tradeoffs between the minimal value ofB (linear scale) and� (the
bound on , logarithmic scale) for the specified (solid) and achieved (dashed)
spectral masks from the IS95 scheme (see Example 5). Legend—�: IS95 filter;
; +: typical robust filters used to generate Fig. 13.

terms will be known. An alternative approach would be to seek
the minimal value of the bound in (22), subject to a bound on
the self-induced MSE and the normalization .
Under those constraints, one only has to minimizein order
to minimize the MSE sensitivity to modeling errors. Therefore,
a filter that provides robust performance in an MSE sense in the
presence of unknown but bounded channel and noise models
can be efficiently obtained as the solution to the following
convex cone program, which is independent of the SNR.

Problem 4: Given , , , , and ,
find a filter of length achieving over ,

, , , and , subject to ,
, , the

spectral mask in (12), and to the linear equality constraints in
(9), or show that none exist.

Note that this problem is similar to Problem 1—the differ-
ence being that in Problem 4, the ISI in the nominal channel is
bounded by its two-norm rather than its one-norm. (Problem 4
is equivalent to the limiting case of Problem 3 described at the
end of Section IV.) As a result, the tradeoffs between robust-
ness, nominal performance, and spectral occupation obtained
for MSE performance are often qualitatively similar to those ob-
tained for the performance measure derived in Section III, as we
now illustrate. (Like the bound on , the bound on places
pointwise frequency-flatness constraints on ; see Ap-
pendix A.)

Example 2: In this example, we determine the tradeoff be-
tween and for both the spectral mask specified in IS95
and that achieved by the IS95 filter by solving Problem 4 for
different values of , with and . The tradeoff is
illustrated in Fig. 12. Observe the qualitative similarity to Fig. 3
and that it is once again clear that the IS95 filter is a substan-
tial distance from providing an optimal tradeoff betweenand

. The CER curves for typical filters on these tradeoff curves
(more precisely, those with ) in the environ-
ment of Example 1 are qualitatively similar to those in Fig. 6,
as shown in Fig. 13.
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Fig. 13. Simulated CER against SNR for Example 5 for the IS95 filter
(dash-dot) and the robust filters for the specified (solid) and achieved (dashed)
spectral masks from Fig. 12.

B. Average MSE

If statistical models for the channel and the noise correlation
coefficients are available, an alternative design objective to that
in the previous section would be to minimize the average MSE
over these models. By taking the expectation of (20) over the
channel and the noise correlation coefficients (assuming that the
channel and the noise correlation coefficients are independent),
the average MSE is given by

MSE

where we have used notation from Section IV and
. When the average channel is

the AWGN channel, , and a filter that
minimizes the average MSE, subject to a normalization of
the expected gain of the desired symbol, can be efficiently
found by solving the following convex cone program, which is
independent of the SNR.

Problem 5: Given , , , and
, find a filter of length achieving over ,

, and , subject to ,
, the spectral mask in (12), and to the linear equality

constraints in (9), or show that none exist.
This problem is similar to Problem 2, except thatreplaces
. Hence, robustness to inaccuracies incan be handled by

modifying Problem 3. A special case of Problem 5 has previ-
ously been used to find an optimal PAM scheme in the presence
of timing error with a known probability density function (see
[8, ex. 6]).

VI. CONCLUSION

In this paper, it was shown that the inherent tradeoffs between
robustness, nominal performance, and spectral occupation that
occur in the design of waveforms for pulse amplitude modula-
tion can be efficiently evaluated via convex optimization tech-
niques. Several of these tradeoffs were calculated for the de-
sign of “chip” waveforms for the IS95 standard [14] and the
UMTS proposal [15] for code division multiple access mobile
telephony and were used to select waveforms with substantially
improved performance over those specified in IS95 and UMTS.
These improved waveforms are directly implementable in trans-
ceivers equipped with baseband digital signal processors and
have the same implementation complexity as those in the stan-
dards.

The key to the efficiency of the methods described herein was
to show that the nominal performance, robustness, and spectral
occupation can all be effectively measured by linear or convex
quadratic functions of the autocorrelation sequence of the filter
that synthesizes the waveform. In this paper, performance was
measured either by a sensitivity function for threshold detection
or by the mean square error, and robustness was measured in
terms of the worst-case performance over a bounded uncertainty
set or the average performance over a statistically modeled un-
certainty set. Spectral occupation was measured via a relative
spectral mask and by constraints on the relative power trans-
mitted in given spectral bands.

Since the intersection of convex sets is itself convex, many
combinations of the problems considered herein (and others in
[8] and [23]) can be solved using similar techniques. These tech-
niques can also be generalized to the complex-valued case to
provide efficient methods for the joint design of the “inphase”
and “quadrature” pulse shapes (as distinct from the standard
practice of separate design). In addition, attempts to extend the
philosophy of the current work to more sophisticated commu-
nications schemes, such that those with (nominal or adaptive)
equalization, or block-based PAM transmission [28], are un-
derway [38].

In closing, it is pointed out that the goal of this work was to
obtain a large and flexible set of efficient design algorithms for
waveforms that provide robustness to uncertain but linear and
time-invariant channels. The design of waveforms that provide
robustness to channels with significant nonlinearities appears to
be more complicated, even in simplified scenarios [39]. An in-
teresting direction for further work is to examine ways in which
robustness to uncertain time-varying nonlinear channels can be
incorporated into the current design framework.

APPENDIX A
GENERALIZATION OF NYQUIST’S FIRST CRITERION

Using the definition of the Fourier transform, it can be shown
[35], [36] that
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Since is symmetric and , we have that

(23)

Applying the triangle inequality and an instance of the Hölder
inequality and using the fact that , we have that

and, hence, (14). Equation (15) can be obtained by using the fact
that to rewrite (23) for as

and then applying the triangle and Hölder inequalities.
It is pointed out that an application of the triangle and
Cauchy–Schwarz inequalities to (23) generates the bound

where , and is the optimal value
of . The term is used in Section V.

APPENDIX B
DERIVATION OF BOUND

Using the symmetry of in (2) with respect to and re-
ordering the s so that , we have that

(24)

where

erfc

Since erfc is a monotonically decreasing function of

erfc

erfc (25)

Furthermore, since , we have that

(26)

Substituting the lower bound on in (7) and the upper bound
on in (26) into the right-hand side of (25), we have that

erfc

erfc (27)

for all , where . If (that
is, if the worst-case eye is open [1, p. 67]) then by substituting
the upper bound for in (8) into (27), we have that

erfc

erfc

(28)

The expression in (17) is then obtained by substituting (28) into
the expression for in (24). Note that if the assumption that

is violated, then erfc
. In that case, the contribution of this

term to the bound on the overall is decreased by making
larger, that is, bydecreasingthe SNR.

APPENDIX C
DERIVATION OF (22)

The noise term is dealt with in the same way as (8) so that
we only consider the signal terms. Using the notation of Sec-
tion V-A and applying the Cauchy–Schwarz inequality, we have
that

(29)

and

(30)

Taking the absolute value of the right-hand side of (21) and ap-
plying the triangle inequality and (29) and (30), MSE

and, hence, (22).
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