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Abstract — The design of a pulse shaping filter
which provides maximal robustness to an unknown
frequency-selective channel is formulated as a convex
semidefinite programme, from which an optimal filter
can be efficiently obtained. Robustness is measured
by a sensitivity function derived from a bound on the
probability of error. For unknown but bounded chan-
nels, the worst-case sensitivity is minimized, and for
statistically modelled channels we minimize the av-
erage sensitivity. The formulation is used to design
a ‘chip’ waveform with superior performance to that
specified in a recent standard.

1 Introduction

In digital communications, waveform coding is often per-
formed by linear pulse amplitude modulation (PAM) of a
self-orthogonal (‘root Nyquist’) waveform, or an approxi-
mation thereof. The choice of waveform critically impacts
many system performance criteria, and hence waveform
design has been a topic of interest for many years. Al-
though waveform design can be reduced to the design of
a multi-rate finite impulse response (FIR) filter, typical
design objectives (such as narrow ‘bandwidth’ and small
intersymbol interference, ISI) are non-convex quadratic
functions of the filter coefficients. That non-convexity
can expose design algorithms to the intricacies of local
minima. In previous work [1, 2], we reformulated the
design of a spectrally-efficient orthogonal ‘pulse shaping’
filter as a convex semidefinite programme (SDP) [3] in
the autocorrelation sequence of the filter. In that case,
the bandwidth and intersymbol interference constraints
become convex, and the globally optimal autocorrelation
can be found using highly efficient interior point methods.
An advantage of our formulation is that the transmission
and reception filters can be computed directly from the
output of the SDP, without auxiliary spectral factoriza-
tion.

Although our previous work was focussed on distortion-
less transmission, we also showed [2, 4] that when sen-
sitivity to timing error is measured in terms of the av-
erage mean square error of the data estimate, we obtain
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Fig. 1: Discrete-time model of baseband PAM.
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a convex quadratic function of the autocorrelation which
can be efficiently incorporated into the SDP. That re-
sult can be extended to more general linear statistically
modelled channels, but we will not do that here. In-
stead, we derive an alternative sensitivity measure from
a bound on the probability of error. This measure in-
volves linear and convex quadratic functions of the au-
tocorrelation, and hence also can be efficiently incorpo-
rated into the SDP. We consider both statistically mod-
elled channels and channels which are genuinely unknown,
but are bounded. For the unknown but bounded chan-
nels, we minimize the worst-case sensitivity subject to a
natural bound on performance in a distortionless channel,
whereas for the statistically modelled channels we mini-
mize the expected value of the sensitivity. As an example,
we design a chip waveform with superior performance to
that chosen in the IS95 standard [5] for Code Division
Multiple Access mobile telephony.

2 Design framework

Consider the discrete-time baseband PAM scheme il-
lustrated in Fig. 1, where the equivalent channel in-
cludes conversion to and from a continuous-time signal,
carrier modulation and demodulation, and the physical
frequency-selective (fading) channel. We focus on scenar-
ios in which the equivalent channel does not vary signif-
icantly (in time) over the duration of an individual data
symbol. In that case, the received data estimate d[n] is

din] = f[0]d[n] +uln] + Y _ glk — NnJn[k], (1)
k

where uln] = >, fliJdln — 4] is the ISI, f[i] =
Yoi clklrg[k — Ni], rg[m] = >, g[klglk + m] is the auto-
correlation function of g[k], and n[k] models the additive
noise. (Here we have allowed finitely anti-causal filtering
for convenience.)

A central design constraint in most applications is the
spectral occupation (the ‘bandwidth’), which is usually



measured in terms of the (time-averaged) power spec-
trum. For stationary white data with zero mean and
variance vg, the power spectrum of s[k] is S(e’*) =
vd|G'(ej“’)|2. In our designs we will constrain the spec-
tral occupation by enforcing a relative spectral mask con-
straint expressed in decibels, (11). Note that Ry(e’¥) =
|G(e7¥)|?, and hence that S;(e’“) is linear in r4[m] but
is, in general, a non-convex quadratic function of g[k].

The fundamental performance criterion of a PAM scheme
is the probability of error, which we now evaluate in a
simple case. We assume that n[k| is zero mean, white
and Gaussian, with variance Ny, and we normalize g[k]
so that it has unit energy (ry[0] = 1). For binary equally-
likely signalling with a transmitted signal energy per bit
of E, and sign detection of J[n], the probability of error
for a given value of ISI is

Py, = i Z erfc ((f[O] +§u)\/E/N0) ,

g==+1

(2)
which is the average of P, gjnj=+1- The probability den-
sity function (pdf) of the ISI is
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where Ly = [(2Lg + L. — 3)/N| + 1 is the length of f[3],

= flild[n —1),
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and d®)[n —i], i # 0, represents the vth combination of
+1’s as the Ly — 1 interfering bits. Hence,
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By using Eq. (4) as an objective, it is possible to for-
mulate a design problem for a filter which minimizes the
probability of error for a given channel or class of chan-
nels. However, the mere evaluation of that objective, let
alone its application in an optimization routine, has a
computational cost which is exponential in Ly. In the
next section, we attempt to bound P, in such a way that
we obtain efficient design algorithms for the filter which
minimizes the bound.

3 Worst-case sensitivity

In this section, we seek a bound for the worst-case prob-
ability of error over a class of bounded channels. In pass-
ing, we will also show that the worst case P, in a distor-
tionless channel is bounded by the ‘peak self-ISI’ of the
filter. We begin by observing that erfc(z) is a monotoni-
cally and rapidly decreasing function of z. Therefore that
we have the following bound for the internal summation

in Eq. (4), which holds for all v:

> exte ((£10] + 1AM ) /N )

£=+1
< erfc ( O]M) + erfc (( [0] - |A(v)|)\/W) .

Furthermore, by applying the Holder inequality,
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where the bound is achieved by at least one value of v.
By expanding the expression for f[i] in Section 2, we have

Fli] = rg[0]cc[Ni] + g [Ni] + ) ce[€ + Nilr[€],
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where c[k] = c[k] — d[k] is the ‘error channel’. Applying
the triangle and Cauchy-Schwartz inequalities,

DOIFLE] < [rgl0]] D fee[Na]| + D g [N

i#0 i#0 i#0
Lg—1 ) 1/2
+«/Bgz( > Jeele+ Ni| ) . (6)
i#0 M=—Lg+1
where By = 3,47y [€)2. Using similar analysis,
Lg—1 ) 1/2
£I0] > —|rg[0]]|ce[0]] — w/Bg( S el ) .
{=—Lg+1
Combining these results we have that
P. < ierfc (f[O]\/E/No)
_erfc(( 0] — > 141l ) E/N0> (8)

1#£0

where f[0] and }_,, |f[z]| are bounded by Egs. (7) and
(6), respectively.

We make two important observations from Eq. (8): (i) in
a distortionless channel, P, is bounded by an increasing
function of the ‘peak self-ISI" of g[k], By = >, ¢ |rg[V1][;
(ii) the worst-case P, in a channel with a bounded two-
norm is bounded by an increasing function of 3, and B,.
Hence, a natural objective is to design a filter which mini-
mizes B, subject to a bound on 3,, and a relative spectral
mask constraint on s[k]. Unfortunately, B, is a quartic
polynomial in g[k], and B, and the power spectrum are,
in general, non-convex quadratic functions of g[k]. This
can expose the design algorithm to the intricacies of local
minima.

In contrast, the spectral mask constraint and the con-
straint on [, generate linear constraints on r4[m], and
By is a convex quadratic function of ry[m]. To com-
plete the formulation of this design in terms of ry[m]
instead of g[k], we must add the additional constraint
Ry(e?¥) > 0 for all w € [0,], which is a necessary and



sufficient condition for r,[m] to be factorizable in the form
relm] = >, glklg[k + m], (by the Féjer-Reisz Theorem).
This is a semi-infinite constraint in that it must be sat-
isfied for all w € [0,7]. Although this constraint can be
handled using discretization techniques, such an approach
may lead to overly conservative designs and can be rather
awkward numerically. As an alternative, we can apply the
Positive Real Lemma [6] to transform this semi-infinite
constraint into a finite dimensional linear matrix inequal-
ity. The Positive Real Lemma implies that R,(e’“) > 0
for allw € [0, 7] if and only if there exists a real symmetric
matrix P such that

My e | P ATPA o'~ ATPY) o)
" (T - ATPb)" 24-bTPb| T
where
[0 I, o
L R
c=[rg[L—1] 7], d=1/2, (10b)

and 7y = [rg[L — 2],74[L — 3],...,74[1]]. By using this
result, the design problem can be formulated as:

Formulation 1 Given py(w), py(w), €, N and Ly, find
a filter of length L, achieving min o over rg[m], m =
0,1,...,L, -1, P = PT (> 0 and o > 0, subject to
Tg [0] = ]-7

€107 /10 < R (7)) < €107/ for allw € [0,7], (11)

L(Lg—1)/N]

Z |rg[Ni]| < e (12)
> rgll)? <a (13)
=1

and to Eq. (9) holding for the realization in Eq. (10), or
show that none exist.

Although Eq. (11) is also a semi-infinite constraint, it is
less ‘critical’ than Ry(e’“) > 0 in the sense that a filter
g[k] with autocorrelation r,[m] may still exist, even if the
mask is violated. Hence discretization of Eq. (11) over a
sufficiently fine grid will usually suffice. Note also, that
Eq. (12) can be re-written as a set of linear constraints
with additional variables ; > 0, in the following stan-
dard manner: —vy; < ry[Ni| <~; with ), 7; <e. There-
fore, Formulation 1 consists of a linear objective, sub-
ject to linear inequality constraints (11) (12), a second-
order cone [7] constraint (13), and a linear matrix inequal-
ity (9). Hence it is a convex ‘symmetric cone programme’
(of which SDPs are a special case), and the globally opti-
mal autocorrelation sequence can be efficiently found via
interior point methods. (SeDuMi [8] is a highly efficient
MaTLAB-based tool for this purpose.) Furthermore, a
‘certificate of infeasibility’ can be issued if the constraints
cannot be satisfied by an autocorrelation sequence of the

given length. An additional advantage of Formulation 1
is that the minimal phase optimal filter can be found di-
rectly from the optimal autocorrelation and the ‘minimal’
P, without auxiliary spectral factorization [1, 2, 6]. (A
simple modification to Formulation 1 ensures that the
‘minimal’ P is found [2].)

Pulse shaping filter design using Formulation 1 has an
intuitively appealing interpretation in the frequency do-
f:r7r(|G(ej‘”)|2 — 1)2dw/(27r), mini-
mizing B, is equivalent to making |G(e’*)| as flat as
possible (in a mean-square sense). This interpretation
also suggests a natural frequency-weighted design: mini-
mize [7 W (e?*)(|G(e?)|* — 1)2 dw, for some real, non-
negative, weighting function W (e’“). To incorporate such
a weighting into Formulation 1, we define 7, such that
[Pglm = rg[m], m = 0,1,...,L, — 1, and then define
I such that [" W(e*)R(e*)dw = ITr, and Q such
that [7 W(e’“)R(e’*)?dw = rIQr,. Finally, we re-
place the objective by a —21Tr,, and ‘rotate’ the second-
order cone constraint (13) to ||LTr,||3 < a, where L is an
L, xrank(Q) matrix such that LLT = Q. This frequency
weighted version of Formulation 1 remains a symmetric
cone programme and can also be efficiently solved.

main. Since B, =

Example 1 The filter specified for the synthesis of the
chip waveform in IS95 [5] has L = 48 and N = 4. As an
alternative to that filter, we designed a filter of the same
length which minimizes B, subject to 3, < 0.02 and the
IS95 spectral mask, using Formulation 1. The power spec-
trum of the resulting filter is shown in Fig. 2, along with
that of the IS95 filter. The improved frequency-flatness
of the designed filter is clear from that figure. To demon-
strate the performance improvement of the robust filter,
we simulated the ‘chip error rate’ (CER) for transmis-
sion of binary chips over a slowly-varying linear channel
with additive white Gaussian noise and sign detection of
the chips at the receiver. The linear time-invariant ‘snap
shots’ of the channel were of length 11 and were generated
with ¢[0] = 1 and the remaining c[k] being independent
and Gaussian with zero mean and variance 0.1. (Such
channels exhibit a wide variety of frequency selective ef-
fects.) The resulting CER curves, averaged over 1000
channel realizations, are plotted in Fig. 3, from which
the improved performance of the robust filter is clear.
For filters of this length, the spectral mask and self-ISI
constraints are so ‘tight’ that the effects of a frequency-
weighted sensitivity on the error rate are negligible. How-
ever, those effects become appreciable for longer filters. O

4 Average sensitivity

As an alternative to minimizing a worst-case sensitivity
over a class of bounded channels, we might attempt to
minimize an average sensitivity over a statistically mod-
elled channel, where the channel taps c[k] are random
variables with known pdfs. Using the analysis in Sec-



|G(ei/)|2, dB

3

a0
| WW
0 oms o1 5 04 s

0as

T

7, cycles-per-sample

(b) 1S95 filter.

7, cycles-per-sample

(a) Robust filter.

Fig. 2: Relative power spectra (in decibels) of the filters
in Example 1, with the spectral mask from IS95.
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Fig. 3: Simulated chip error rates (CER) against signal-
to-noise ratio for transmission over the class of channels
in Example 1, using the filters in that example. Legend—
Solid: robust filter; Dashed: IS95 filter.

tion 3, a natural approach would be to attempt to max-
imize EE{f[0]} and to minimize ]E{Z#O|f[i]|}, where
E{-} denotes expectation over the channel coeflicients.
Unfortunately this results in an optimization criterion
which is not amenable to a simple efficient solution.
However, by applying the Cauchy-Schwartz inequality

to Eq. (3) we obtain |A(”)| <VLf-1 (Z#o f[i]2)1/2-
Now,
E{> fi*} = rTE{Q.}rs, (14)

i#0

and Q. is a positive semidefinite matrix determined by
the channel coefficients. Similarly, E{f[0]} = E{IT}r,,
where [, is also determined by the channel coefficients.
Since Eq. (14) is a convex quadratic in r4[m], and E{ f[0]}
is linear in r4[m] then these costs can be efficiently incor-
porated into the SDP. For example, one might wish to
minimize Eq. (14) subject to a bound on E{f[0]}, or to
directly minimize an appropriate linear combination of
Eq. (14) and E{f[0]}. That problem starts to resemble
the weighted version of Formulation 1, but with differ-
ent weights. However, the performance of the scheme
in a distortionless channel is now determined implicitly,
rather than by a specific constraint on 3,.

5 Conclusion

In this paper we formulated the design of a robust
spectrally-efficient pulse shaping filter as a semidefinite

programme (SDP), from which an optimal filter can be
efficiently obtained. Our sensitivity measure was based
on a bound on the probability of error for binary sig-
nalling, which was derived by applying the Holder in-
equality twice. As indicated in Section 4, other sensitiv-
ity measures can be obtained by using different instances
of the Holder inequality, but these measures do not nec-
essarily lead to design problems which can be efficiently
solved. Spectral efficiency was measured in terms of a rel-
ative spectral mask, but ‘energy bandwidth’ constraints
can be easily accommodated [1, 2].

An alternative measure of robustness is the mean square
error (MSE) in the data estimate. By generalizing ear-
lier work on the robustness to timing error [2, 4] we can
formulate the design of a filter which minimizes the aver-
age MSE for a statistically modelled channel as an SDP.
Minimization of the worst-case MSE in a class of bounded
channels can also be incorporated into the SDP by (sig-
nificantly) modifying some analysis in [9].

In closing, we point out that we have sought robustness to
unknown, but linear, channels. An interesting direction
for further work is to examine ways in which robustness
to channels with (unknown) non-linearities can be incor-
porated into the design framework.
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