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Abstract— We propose two strategies for improving the (un-
coded) bit error rate (BER) performance of practical rate-
adaptive block-by-block communication schemes, such as discrete
multitone modulation (DMT). Our strategies are inspired by
some recent work which showed that for uniformly bit-loaded
schemes, the transmission strategy which minimizes the BER for
a linear receiver involves allocating power to the subchannels
that are implicit in the block-by-block framework in a minimum
mean square error (MMSE) fashion and linearly combining these
subchannels using a normalized discrete Fourier transform (DFT)
matrix. This combining equalizes the decision point signal-to-
noise ratios (SNRs) of the subchannels. Given a non-uniformly
bit-loaded scheme, our first design strategy simply performs a
DFT-based linear combination within the groups of subchannels
which share the same constellation. Our second strategy provides
further reduction in the BER by re-allocating power within
these groups in a MMSE fashion prior to DFT combining.
Our examples indicate that our design strategies can provide
significant reductions in the BER, and give rise to substantial
SNR gains (of the order of several decibels).

I. INTRODUCTION

Block-by-block transmission schemes, such as orthogo-
nal frequency division multiplexing (OFDM) and discrete
multitone modulation (DMT), are popular schemes for effi-
ciently and effectively transmitting data over diverse classes
of channels; e.g., digital subscriber lines and wireless local
area network channels. For applications in which a feedback
channel from the receiver to the transmitter is available, and
for channels which vary slowly, there are several mature design
methods for (linear) block-by-block transceivers; see [1] for
an insightful overview. A taxonomy of these methods reveals
three dominant classes:

I. Rate-adaptive designs based on the maximization of the
achievable information rate, subject to a bound on the
transmitted power; e.g., water-filling based DMT [2–4].

II. Performance orientated designs based on maximizing a
measure of the fidelity of (a linearly processed version of)
the received block, subject to a bound on the transmitted
power; e.g., minimum mean square error (MMSE) [5–8];
maximum signal-to-noise ratio (SNR) [7]; and minimum
(uncoded) bit error rate (BER) [1], [9–11].

III. Constraint satisfaction designs based on minimizing the
transmitted power required to achieve a given fidelity at
a given rate; e.g., margin adaptive designs [3], [12].

A unifying feature of these three design classes is that the
structure of the optimal (linear) transmitter-receiver pair diag-
onalizes the appropriate channel matrix, and hence exposes a
set of parallel subchannels for communication. The classes are
differentiated by the way in which the transmission power and
the bits to be transmitted are allocated to these subchannels,
and the way in which the parallel subchannels are (linearly)
combined by the transmitter. The standard transmitter design
techniques obtain optimal performance (for the given criterion)
without combining the subchannels. However, it has recently
been shown [1], [10], [11] that achieving the minimum BER
of a uniformly bit-loaded scheme with linear equalization and
symbol-by-symbol detection requires linear combination of
the subchannels with a special class of unitary matrices; see
Section III.

The rate-adaptive designs of Class I are usually derived from
the fact that the capacity of a block-by-block transmission
system can be achieved if the appropriate channel matrix
is diagonalized and power is allocated to the subchannels
according to the water-filling distribution [2]. Unfortunately,
achieving this capacity involves the implementation of ideal
Gaussian codes—a rather awkward task in practice. Standard
practical rate-adaptive designs achieve (reasonably) reliable
transmission at rates which are a significant fraction of the
capacity by employing members of standard constellation and
code families on each subchannel. The goal of this paper
is to apply some of the principles of the minimum BER
designs from Class II to improve the BER of standard rate-
adaptive designs from Class I. The key observation is that once
the constellation for each subchannel has been determined,
the work in [1], [10], [11] indicates that the BER can be
improved by re-allocating power among those subchannels
which share the same constellation and by linearly combining
these subchannels. We will demonstrate in our examples that
the resulting reduction in the BER can be quite significant,
and can give rise to substantial SNR gains (of the order
of several decibels). Our development is based on uncoded
error rates for systems with linear equalization and symbol-
by-symbol (i.e., parallel) detection. However, we will observe
that our design approach equalizes (and maximizes) the deci-
sion point SNRs of each set of subchannels which have the
same constellation. This fact has the potential to significantly

GLOBECOM 2003 - 1654 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

Authorized licensed use limited to: McMaster University. Downloaded on August 15,2010 at 18:32:32 UTC from IEEE Xplore.  Restrictions apply. 



F H G+
s

v

u r
ŝ1
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Fig. 1. Generic block-by-block transmission system with symbol-by-symbol
(parallel) detection.

simplify the design of appropriate coding schemes, especially
when ‘hard-decision’ decoding is employed. Before we present
our results, we point out that while this paper was being
prepared we discovered that the principles of some methods
from Class III had been independently applied [12] to reduce
the power required to achieve a given quality of service at the
rates determined by standard rate-adaptive designs. While the
technical details of the work in [12] and that herein are quite
similar, the design objectives are complementary but somewhat
different.

II. LINEAR BLOCK-BY-BLOCK TRANSMISSION

In this paper we consider linear block-by-block transmission
schemes of the form in Fig 1. The transmitter (precoder)
linearly transforms a block of M data symbols s into a block
of P ≥ M channel symbols u = Fs. For each transmitted
block, the receiver collects a block of N ≥ M samples r,
from which the estimates ŝ = Gr of s are linearly obtained.
These estimates can be written as

ŝ = GHFs + Gv, (1)

where H is the N × P (equivalent) channel matrix, and v
denotes the zero-mean Gaussian receiver noise, which has a
covariance matrix Rvv. The model in Fig 1 and Eq. (1) is quite
flexible. In particular, it covers both zero-padded and cyclic-
prefixed transmission over both single and multiple antenna
frequency-selective channels. For brevity, we will focus on
systems with zero-forcing equalization in this paper, and
will exploit the results in [10] for minimum BER precoding
for zero-forcing equalization. However, the principles of our
designs can be directly extended to systems with minimum
MSE equalization by exploiting results in [1], [11]; see [12] for
a related approach. If zero-forcing equalization is employed,
G = (HF )†, where (·)† denotes the pseudo-inverse. Assum-
ing that HF has full column rank, Eq. (1) becomes

ŝ = s + Gv. (2)

A standard simple way to design a practical rate-adaptive
transmission scheme is to constrain each element of the signal
vector s to come from a member of the family of I–ary QAM
constellations. The order of the QAM constellation used on
each subchannel is typically chosen according to the decision
point SNR. If the elements of s are uncorrelated1, then a
simple way to choose the number of bits to be assigned to

1If s is correlated, then the data vectors can be pre-whitened, so long as
the covariance matrix of s has full rank.

the mth subchannel is

bm =
⌊
log2

(
1 +

SNRm

Γ

)⌋
, (3)

where �·� denotes the greatest integer ≤ x, Γ is the so-called
SNR gap [3] which reflects the desired uncoded error rate
performance, and SNRm is the decision-point signal-to-noise
ratio of the mth subchannel. (If Γ > 2, the ‘floor’ operation
in (3) is often replaced by a rounding operation.) If each
element of s is scaled so that Rss = E{ssH} = EsI (the
elements of s have already been assumed to be uncorrelated),
then for the zero-forcing equalized scheme in (2)

SNRm =
Es

[GRvvGH ]mm

=
Es

[(HF )†Rvv

(
(HF )†

)H ]mm

,

(4)

where [·]ij denotes the (i, j)th element of a matrix. Since
the subchannel SNR in (4) depends on the precoder, jointly
optimal bit-loading/precoder pairs can be rather awkward to
obtain directly. However, effective designs can be obtained in a
straightforward manner by designing the precoder via water-
filling and then assigning bits to the subchannels according
to (3). For simplicity, we will focus on such a power load-
ing algorithm in this paper. However, the principles of our
approach are essentially independent of the manner in which
bm is determined, and hence our approach is also applicable
to systems designed via standard bit loading algorithms [3].

If the mth element of s is selected from a Gray-coded
square QAM constellation of order 2bm , where bm is even,
then the average probability of error for the scheme in (2) is
closely approximated by [13]2

Pe ≈ 2
M

M∑
m=1

(√
2bm − 1

bm

√
2bm

erfc
(√

3SNRm

2(2bm − 1)

)

+

√
2bm − 2

bm

√
2bm

erfc
(

3

√
3SNRm

2(2bm − 1)

))
, (5)

where erfc(x) = 2√
π

∫∞
x

e−t2dt. In what follows it will be
convenient for us to permute the elements of s so that the
symbols from the same constellation are grouped together. To
describe that grouping, let K denote the number of distinct
constellations used, let b̃i, i = 1, 2, . . . ,K, denote the number
of bits in the ith distinct constellation, and let Gi denote the
set of subchannels in the ith group; i.e., Gi = {m|bm = b̃i}.
Using that notation, Eq. (5) can be rewritten as

Pe ≈ 2
M

K∑
i=1

∑
m∈Gi

(
αi erfc

(√
βi

[GRvvG
H ]mm

)

+ ζi erfc
(

3

√
βi

[GRvvGH ]mm

))
, (6)

2A related formula applies for rectangular QAM constellations [13], but
for brevity we only include the square case. Furthermore, although we will
use (5), the principles of our approach remain valid when we use the simpler
(and more common) approximation of Pe in which the second component of
the summand in (5) is deemed negligible.
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where αi =
√

2b̃i−1

b̃i

√
2b̃i

, βi = 3Es

2(2b̃i−1)
, and ζi =

√
2b̃i−2

b̃i

√
2b̃i

.

A key component in our design approach is the observation
that the function erfc

(√
a
x

)
with a > 0 is convex in 0 <

x < 2a
3 . Hence, the summand of m ∈ Gi in (6) is a convex

function of [GRvvG
H ]mm so long as [GRvvG

H ]mm < 2βi

3 .
If the bit loading is performed via (3), then for all m ∈ Gi,
[GRvvGH ]mm ≤ Es

Γ(2b̃i−1)
= 2βi

3Γ , and hence the summand of

m ∈ Gi in (6) is convex for all m and i. (If Γ > 1/(
√

2 − 1)
then the summand of m ∈ Gi in (6) remains convex when
the rounding function replaces the floor function in (3).)
Therefore, we can apply Jensen’s inequality [2] to (6) to obtain
the following lower bound on the average bit error rate,

Pe ≥ 2
M

K∑
i=1

Mi

(
αi erfc

(√
βiMi∑

m∈Gi
[GRvvGH ]mm

)

+ ζi erfc
(

3

√
βiMi∑

m∈Gi
[GRvvG

H ]mm

))

=
2
M

K∑
i=1

P̄e,i

= P̄e, (7)

where Mi is the number of subchannels in the ith group (i.e.,
the cardinality of Gi), and the definition of P̄e,i is implicit.

In the following section we will exploit results in [10]
to show how once the bit loading has been established, the
lower bound in (7) can be achieved by linearly combining
the subchannels within each group with a unitary matrix
whose elements have equal magnitude; e.g., a normalized
DFT matrix (see Design A). Furthermore, we will show how
the power allocation among the subchannels in each group
can be modified to reduce the lower bound P̄e. This reduced
lower bound can also be achieved by linearly combining the
subchannels in the group with a normalized DFT matrix (see
Design B). In both Designs A and B the linear combining of
the subchannels has the desirable effect of making the decision
point SNRs of each subchannel in the same group equal.

III. NEW PRECODER DESIGNS

As we mentioned in Section II, our design approach is
essentially independent of the manner in which the constel-
lation for each subchannel is chosen. However, the standard
water-filling based rate-adaptive schemes have many desirable
properties. Here we will use the simple scheme in (3).

For the block transmission system in (1), the precoder F
which maximizes the achievable information rate subject to a
transmission power budget tr(FRssF

H) = Es tr(FF H) ≤
Esp0 is (e.g., [2])

F WF = W∆WF, (8)

where WΛW H is an eigenvalue decomposition of
HHR−1

vv H , and hence the matrix W ‘exposes’ the
(eigen) subchannels of the system. The diagonal matrix ∆WF

is the water-filling power loading matrix. Its mth diagonal
element is δWF,m ≥ 0, where

δ2
WF,m = max{γ − Γ/(Esλm), 0}. (9)

Here, λm is the mth diagonal element of Λ, and γ is chosen
so that

∑
m δ2

WF,m = p0. The decision point SNR for the mth
subchannel for this precoder is

SNRWF,m = Esδ
2
WF,mλm. (10)

In the design of our modified precoders below, we consider
precoders of the form

F = W∆Q, (11)

where W was defined after (8), ∆ is a diagonal power
loading matrix, and Q is a structured unitary matrix which
can be chosen to linearly combine the subchannels which
employ the same constellation. To describe the structure of
Q, let P denote a permutation matrix that groups together
the elements of s that employ the same constellation; i.e., for
q ∈ (

∑i−1
j=1 Mj ,

∑i
j=1 Mj ] the elements [s̃]q of s̃ = Ps all

come from the same 2b̃i–ary QAM constellation. The matrix
Q takes the form Q = P T UP , where U is a block diagonal
matrix whose ith block is a square unitary matrix of dimension
Mi, 1 ≤ i ≤ K; i.e., U = blkdiag{U1,U2, . . . ,UK}.
Observe that F = W∆P T UP = WP T ∆̃UP , where ∆̃ =
P∆P T is the power loading matrix when the subchannels
are grouped according to their assigned constellations. To
simplify the notation, we let ∆̃i denote the ith diagonal block
of ∆̃ = P∆P T , where the blocks are of size Mi, and let
Λ̃i denote the ith diagonal block of Λ̃ = PΛP T . We now
proceed with our designs.

A. Design A: Subchannel combining

In this design we choose ∆ = ∆WF, and hence our only
degree of freedom is the block diagonal unitary matrix U ; i.e.,
F A = W∆WFP

T UP . If we let GA = (HF A)†, then for
each symbol in each group which is allocated bits (i.e., for
which b̃i > 0), the decision point SNR of the mth subchannel
is

SNRA,m =
Es

[GARvvG
H
A ]mm

=
Es

[UH
i ΘiU i]��

(12)

where m ∈ Gi, and �, 1 ≤ � ≤ Mi, is the position of the
mth symbol within that group (as determined by P ). Here,
Θi = ∆̃

−1

i Λ̃
−1

i ∆̃
−1

i , where Λ̃i and ∆̃i are guaranteed to be
invertible if b̃i > 0. (Note that if Λ̃i is singular, then b̃i = 0,
according to (3).) Since each U i is unitary, for any subchannel
in the ith group, m ∈ Gi,

min
m∈Gi

SNRWF,m ≤ SNRA,m ≤ max
m∈Gi

SNRWF,m, (13)

where SNRWF,m is the decision point SNR on the mth sub-
channel of the water filling precoder. Equation (13) shows that
for any U i, the decision point SNR of subchannel m ∈ Gi for
Design A lies between the largest and smallest SNRs achieved
by the subcarriers from the same group in the water-filling
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design. Hence, the bit loading determined for the water-filling
precoder via (3) remains valid for Design A.

Now, since U i is unitary, the lower bound, P̄e,i, on the
BER of the ith group for the water-filling design remains
valid for Design A. What remains to be shown is that this
lower bound can be achieved by specific choices of U i. Using
Jensen’s inequality [2], we observe that P̄e,i is achieved if all
the decision point SNRs in the ith group are equal. Using an
argument similar to that in [10], these SNRs can be made equal
by choosing U i to be a normalized Mi ×Mi discrete Fourier
transform (DFT) matrix, DMi

. Therefore, the precoder

F A = W∆WFP
T blkdiag{DM1 ,DM2 , . . . ,DMK

}P (14)

is guaranteed to have a lower (uncoded) BER than the water-
filling precoder.

B. Design B: Power re-allocation and subchannel combining

Design A achieves the lower bound in (7) on the BER of
the water-filling based design. However, this lower bound can
be reduced by re-allocating power among the subchannels in
each group. Furthermore, this reduced lower bound is also
achievable. Deriving such a precoder involves the design of
both ∆ and U in (11). The role of ∆ is to reduce P̄e while
ensuring that power allocated to each group of subchannels
remains the same as it was for the water-filling design. This
constraint ensures that the original bit loading continues to
satisfy (3) with the original SNR gap. Using the work in [10],
the lower bound on the group BER, P̄e,i, is minimized if
the power loading over the ith group is the minimum mean
square error (MMSE) power loading for that group (and zero-
forcing equalization) subject to the total power allocated to
that group remaining the same as the water-filling design.
So long as b̃i > 0, the appropriate MMSE power loading

for group i is ∆̃B,i = φiΛ̃
−1/4

i , where φi > 0 satisfies

φ2
i = trace(∆̃

2

WF,i)/ trace(Λ̃
−1/2

i ). The scalar φi ensures that
the total power allocated to the ith group is the same as it was
for the water-filling design. As shown in the Appendix, for
any subchannel in the ith group (i.e., m ∈ Gi), a relationship
analogous to (13) holds:

min
m∈Gi

SNRWF,m ≤ SNRB,m ≤ max
m∈Gi

SNRWF,m. (15)

Hence, the original bit loading continues to satisfy (3) under
the modified power loading scheme.

Since the modified group power loading, ∆̃B,i, minimizes
P̄e,i, the lower bound P̄e on the total BER is lower for
Design B than it was for Design A and the water-filling design.
Moreover, using an analogous argument to that for Design A,
this reduced lower bound on the BER is achieved by choosing
U i = DMi

. That is, the reduced lower bound on the BER is
achieved by the following precoder:

F B = WΦΛ−1/4P T blkdiag{DM1 ,DM2 , . . . ,DMK
}P ,

(16)
where Φ = P T Φ̃P and

Φ̃ = blkdiag{φ1IM1 , φ2IM2 , . . . , φKIMK
}.

Here, for brevity, we have assumed that b̃i > 0 for all i.

IV. PERFORMANCE ANALYSIS

In this section, we compare the BER performance of our De-
signs A and B to that of the underlying water-filling based rate-
adaptive design in a simple single-antenna discrete multitone
system. In this case, W is a normalized inverse DFT matrix.
The noise on each subcarrier is assumed to be Gaussian, zero
mean, and independent from that on the other subcarriers (as
is often assumed in standard DMT designs). Therefore, the
mth diagonal element of Λ is |H(ej2π(m−1)/M )|2/σ2

m, where
H(ejω) is the frequency response of the channel, and σ2

m

is the noise variance on the mth subcarrier. The particular
DMT scheme that we will consider has M = 32 subcarriers,
and a cyclic prefix of length 4. Hence, P = 36 is the
transmitted block size. The noise is modelled as being white;
i.e., σ2

m = σ2. To determine the bit loading, we applied (3)
to the water-filling power loaded precoder with Γ = 8 dB and
with a rounding operation replacing the floor operation in (3).
For simplicity of implementation, we restricted our attention
to square QAM constellations, so bm was always even. In
Fig. 2, we provide the BER performance of our precoders and
the water-filling precoder averaged over 1000 realizations of a
frequency-selective Rayleigh fading channel of length 5. (The
channel taps were generated independently from a circular
complex Gaussian distribution of variance 0.5 per dimension.)
The block SNR is defined as Esp0/(Mσ2), which is equal
to the average symbol SNR. Since we are performing a rate-
adaptive design, as the block SNR increases the number of
bits transmitted per block also increases. For each realization
of the channel, all three precoders transmit the same number
of bits for each subcarrier and hence the same number of bits
per block. The number of bits per transmitted block at each
SNR, averaged over the randomly generated channels is shown
in Fig. 3.

As predicted by our derivations, Fig 2 illustrates the fact
that Design A provides a lower BER than the underlying
water-filling design, and that Design B provides a further
improvement in the BER. At various points on these BER
curves the SNR gain of Design A over the water-filling design
is around 12 to 15 dB. Design B provides an additional SNR
gain of around 2 to 3 dB.

V. CONCLUSION

We have provided two strategies for improving the (un-
coded) BER of rate-adaptive block-by-block communication
schemes. These strategies were based on extending recent
results on minimum BER transmission for uniformly bit
loaded schemes [1], [10], [11] to the case of non-uniform
bit loading. The resulting precoders involve a DFT-based
linear combination of the subchannels which share the same
constellation. In the case of the second strategy, a re-allocation
of power across these subchannels in a minimum mean square
error sense is also performed. Our precoders have the rather
appealing property that they equalize the decision point SNRs
of those subchannels which share the same constellation. The
examples indicated that our precoders can provide significant
reductions in the BER and can give rise to substantial SNR
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Fig. 2. Average BER performance of the three precoders for the system
described in Section IV.
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Fig. 3. Number of bits transmitted per block in Fig. 2, averaged over the
1000 realizations of the channel. Recall that each precoder transmits the same
number of bits.

gains (of the order of several decibels). Since our precoders
have a simple structured closed form expression (viz. Eqs (14)
and (16)), they are also relatively simple to implement in
practice.

For simplicity, the focus of this paper was on block-by-block
schemes with linear zero-forcing equalization. However, the
principles behind our design extend immediately to the case
of MMSE equalization [1], [11]. Some independent comple-
mentary work in that direction appeared recently in [12].

APPENDIX

DERIVATION OF (15)

If we let xm = [Λ−1]mm and ym = [∆2
WF]mm, then if

subchannel m is a member of the ith group (and b̃i > 0),

[GBRvvG
H
B ]mm ≥

∑
m∈Gi

x
1/2
m∑

m∈Gi
ym

(
min
m∈Gi

xm

)1/2

≥ Mi(minm∈Gi
xm)1/2

Mi maxm∈Gi
ym

(
min
m∈Gi

xm

)1/2

= min
m∈Gi

xm

ym

= min
m∈Gi

[GWFRvvG
H
WF]mm,

and hence the right inequality in (15). The inequality on the
left of (15) can be derived in an analogous fashion.
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