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Abstract—In this paper, we determine the linear precoder
that minimizes the bit error rate (BER) at moderate-to-high
signal-to-noise ratios (SNRs) for block transmission systems
with zero-forcing (ZF) equalization and threshold detection. The
design is developed for the two standard schemes for eliminating
inter-block interference, viz, zero padding (ZP) and cyclic prefix
(CP). We show that both the ZP minimum BER precoder and
the CP minimum BER precoder provide substantially lower
error rates than standard block transmission schemes, such as
orthogonal frequency division multiplexing (OFDM). The corre-
sponding SNR gains can be on the order of several decibels. We
also show that the CP minimum BER precoder can be obtained
by a two-stage modification of the water-filling discrete multitone
modulation (DMT) scheme in which the diagonal water-filling
power loading is replaced by a full matrix consisting of a diagonal
minimum mean square error power loading matrix post multi-
plied by a discrete Fourier transform (DFT) matrix.

Index Terms—Block precoding, cyclic prefix, discrete multitone
modulation (DMT), minimum bit error rate, orthogonal frequency
division multiplexing (OFDM).

I. INTRODUCTION

I N THE transmission of digital data over dispersive media,channel induced inter-symbol interference (ISI) is a major
performance limiting factor [14]. To mitigate such an effect,
it is often helpful to transmit information-bearing data in
equal-size blocks [7]. Examples of block based communication
systems include important multicarrier (MC) systems such as
orthogonal frequency division multiplexing (OFDM) [1], [6],
which has been selected as the standard modulation scheme
for terrestrial digital audio and video broadcasting in Europe,
as well as discrete multitone (DMT) modulation [3], [15],
which has been adopted for high-bit-rate digital subscriber
line (HDSL) and asymmetric digital subscriber line (ADSL)
systems. Recently, a broad class of linear block-by-block
transmission schemes, which includes DMT and OFDM as
special cases, has been studied in detail in [18], [19], and
[21]. The block-based linear transmitter that maximizes the
information rate was derived in [18]. However, to obtain the
performance predicted by this type of design, we may need to
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employ sophisticated encoding and decoding structures, which
may lead to unacceptable receiver complexity or communi-
cation latency. The design of block based linear transmitters
for block-by-block linear receivers was studied in [19]. In
particular, the transmitters that minimize the mean square error
of the equalized symbols were derived for both zero-forcing
(ZF) and minimum mean square error (MMSE) equalizers,
under the assumption that the channel state information is
known. For the case of ZF equalization, this idea has been
extended to scenarios in which only the second-order statistics
of the channel are known [12]. While the design of transmitters
based on the minimumMSE criteria is mathematically tractable
and results in simple realizations of the optimal precoder, and
although such transmitters perform reasonably well in practice,
the MMSE criterion does not guarantee minimum bit error rate
(MBER). In this paper, we consider the design of an MBER
linear precoder for a system with a block-by-block linear ZF
receiver and threshold detection. We examine the bit error prob-
ability function and show that it is convex in the appropriate
design parameters at moderate-to-high signal-to-noise ratios
(SNRs). By exploiting the convexity, we obtain a closed-form
expression for the MBER precoder. A simple test that deter-
mines whether the SNR is sufficiently high for the design to be
optimal is provided, along with a natural scheme for dropping
the low-gain subchannels to ensure that the SNR over the
remaining channels is sufficiently high. Our simulation studies
demonstrate that the performance improvement provided by
the MBER precoder can be substantial and can be in excess of
several decibels in SNR gain at a BER of around .

II. BLOCK-BY-BLOCK TRANSMISSION

In this paper, we employ the generalized block-by-block
transceiver model developed in [19]. This model encompasses
many modern communication systems, including OFDM
and DMT. The system model is shown in Fig. 1. Related
schemes that involve overlapped block-based transmission are
also available [16], [19], [23]–[25], but we will focus on the
block-by-block case here.

A. System Description
To describe our system model, we let

denote the th block of data to be transmitted. For each block
of data symbols, symbols are transmitted across the
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Fig. 1. Discrete-time baseband equivalent model for the block-by-block transceiver model developed in [19]. The and boxes denote serial-to-parallel
and parallel-to-serial conversion, respectively. (The corresponding dimensions are noted.) The precoder is denoted by , the channel by , the additive noise
by , and the equalizer by .

channel. This redundancy is the key to avoiding interblock in-
terference (IBI) at the receiver, as we will see below. The vector
of transmitted symbols

is given by

(1)

where is . If

(2)

denotes the th block of receiver inputs, then the vector of equal-
ized data symbols is given by

(3)

where is . The receiver inputs are the result of convo-
lution with the channel impulse response and the corrup-
tion by additive noise. Hence

This can be written in vectorized form as

(4)

where the matrices are determined as

. . .
...

. . . . . .
...

(5)

Hence, the equalized symbols can be written as

(6)

B. Zero-Padded and Cyclic-Prefix Transmission
For finite impulse response (FIR) channels, (6) can be sim-

plified by judicious choice of the block size and redundancy, as

is well known in the special case of cyclic prefix-based trans-
ceivers (see, e.g., [1], [21]). To state this formally, we make the
following assumptions.
A1) The channel is an (at most) th-order FIR channel,

with impulse response satisfying , for
and .

A2) The length of the block of transmitted symbols is
chosen so that and .

Using (5) and these assumptions, (6) simplifies to

(7)

The IBI on the th block of equalized symbols now comes only
from the previous block, but this IBI will still limit the perfor-
mance of the system at high SNR. To eliminate this IBI, we
observe that since is zero outside , has
nonzero elements only in its top right submatrix. There-
fore, IBI can be eliminated, irrespective of the actual impulse
response of the channel, if we impose structure on and
so that . In this paper, that structure is imposed
by choosing and so that and ,
where and are free parameters, and and are chosen
such that . There are two standard choices for
and , namely (see [21] and references therein) the following.
ZP) Zero-padded transmission: Choose

and

which results in being a “tall”
matrix and being an “fat” matrix.

CP) Cyclic prefix transmission with removal of interfered
samples at receiver: Choose

and

which results in being a “tall”
matrix and being an “fat”
matrix.
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The vector of equalized symbols for both the zero-padding (ZP)
and cyclic prefix (CP) options can be written in a common form

(8)

where . For the ZP case, we have

...
. . . . . .

...
. . . . . .
. . . . . .

...
. . . . . .

...
. . .

(9)

which is a “tall” Toeplitz matrix. For the CP case,
we have

. . . . . . . . . . . . . . . . . . . . . . . .
(10)

which is a circulant matrix. The eigenvector
matrix of such a circulant matrix is the (normalized) discrete
Fourier transform (DFT) matrix [10], and advantage of this fact
has been taken in the design of CP systems [1], [21]. In simple
scenarios, CP schemes typically employ precoders and equal-
izers of the form and ,
where is the (normalized) DFT matrix

(11)

for , and and are the power loading
and equalization matrices, respectively. When ,
and are diagonal, and in that case, (8) simplifies to

(12)

Here, , and is a diagonal matrix with th di-
agonal element , , where

is the frequency response of
the channel. The standard CP-OFDM scheme, in which

and , is an example of this simple scheme.
In more general scenarios, the power loading algorithm may re-
sult in subcarriers being allocated power, and we
may transmit symbols over these subcarriers [3], [15],
[21], [22]. For these scenarios, the precoder can be written in the
form , where is a
diagonal matrix containing the nonzero (diagonal) elements of

, and is the corresponding selection matrix
consisting of the columns of corresponding to the nonzero
elements of . The matrix is a matrix that satisfies

. In standard DMT schemes [3], [15], we typically
have and , but in certain wireless applications,
diversity gains can be obtained by choosing and

with chosen so that a certain rank condition holds
[21], [22]. Although we will not impose any structure on our
MBER CP precoders, our designs can be written in an analo-
gous form, as we will show in Section V.

C. Derivation of BER
In our study of the block transmission systems described

above, we will make the following assumptions in addition to
Assumptions A1) and A2).
A3) During transmission, IBI has been eliminated by

adopting either zero padded or cyclic-prefix-based
transmission.

A4) The channel is completely known and ZF equalization
is employed at the receiver. That is

(13)

and hence , where
denotes the left pseudo-inverse

of a “tall” matrix of full column rank. A necessary
condition for the left pseudo-inverse of to exist
is that , which is the number of columns of , is
no more than rank , [10]. (We will show below that
this condition is also sufficient by constructing such an
.)

A5) The transmitted symbols are equiprobable antipodal
symbols (i.e., ) uncorrelated with each other, i.e.,

(14)

The antipodal assumption is made for simplicity, and
our results can be extended to other constellations,
such as 4-QAM/QPSK [5].

A6) The noise vector is zero-mean, white and Gaussian,
with covariance matrix

(15)

We now derive an expression for the average BER of the
system. For the communication system shown in Fig. 1, when
is transmitted, , as given by (8), will be the received signal

vector. The elements of this vector are then quantized by a
threshold detector to obtain , whose elements will be .
The average BER of the detected signal is the average of the
probability of error of each element of the block, i.e.,

(16)

where denotes the BER of the th symbol. Since the signal
power of each data symbol is unity and the covariance matrix of
the received noise is , by following standard steps (e.g.,
[14]), it can be shown that the probability of the th symbol in
being in error can be written as

erfc (17)
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where erfc , and de-
notes the th element of the matrix . The term

represents the noise variance in the receiver’s
estimate of the th symbol of the transmitted signal vector.
Substituting (17) into (16), we have

erfc (18)

If we define erfc for , then

(19)

Therefore, if , then . Applying this
fact to (18), we determine that is a convex func-
tion if the noise power is less than . If this
condition is satisfied for all (i.e., if there is sufficiently large
SNR at the receiver), then the average block BER is also
convex. The property of convexity is desirable in the develop-
ment of a design algorithm for the precoder that minimizes the
BER because any locally optimal precoder is also globally op-
timal. The development of such an algorithm is presented in the
next section.

III. DESIGN OF THE MINIMUM BER PRECODER

We now design an optimum precoder in (8) such that the
minimum BER is achieved, subject to a bound on the transmis-
sion power.Wewill not impose any structure on , but in the CP
case, we will show that the MBER precoder retains some of the
structural features of the OFDM and DMT schemes. The trans-
mission power is given by tr tr .
For ZP systems, tr tr , i.e., the transmission
power is equal to the power used to transmit the data. For CP sys-
tems, the total transmission power is the power used to transmit
the data plus the power used to transmit the cyclic prefix. How-
ever, the proportion of the total power used to transmit the cyclic
prefix is typically small, and it is standard practice to define the
transmission power as simply the power required to transmit
the data [3], [9], [21]. (See [5] for further discussion.) Hence,
tr will also be used to represent the transmission power
for CP systems. We can formulate the design problem as fol-
lows:

subject to tr (20)

where is given by (18), the matrix in (18) is the ZF equal-
izer in (13), which depends on both and , and is a con-
stant limiting the transmission power. Since is convex at

moderate-to-high SNRs, we can apply Jensen’s inequality [4]
to obtain the following lower bound on :

erfc

erfc (21)

erfc
tr

(22)

Equality in (21) holds if and only if are equal
. The inequality of (21) is valid only when is convex,

i.e., when

(23)

The quantity in (22) defines a lower bound on the BER
. To obtain an optimum precoder design, we will first mini-

mize . In doing so, we will show that a particular choice
of precoder achieves this minimized lower bound.
Now, from Section II, we have learned that is a “tall”

rectangular matrix. If we parameterize in terms of
its singular value decomposition [8], we have

(24)

where is a positive diagonal matrix, and and
are square unitary matrices of dimension and , re-
spectively. From (9) and (10), the nature of the channel matrix
depends on whether ZP or CP is employed, but in either case,

we can write

(25)

where and are, respectively, the (square) eigenvalue and
eigenvector matrices of and are both of dimension

. The eigenvalues in , which are non-negative,
are arranged in descending order. In the ZP case, is
guaranteed to be nonsingular as long as is not identically
zero. However, in the CP case, will drop rank if
happens to have a zero at for some integer
. For ease of exposition, we will explicitly exclude such
channels in the CP case so that will be assumed to
be of full rank in both the ZP and CP cases. However, our
minimum BER precoder remains valid for CP systems for
which for some integer because the
corresponding subchannels will automatically be dropped by
the subchannel dropping algorithm described in Section IV.
Given (24), for a ZF equalizer , we can write

(26)
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Now, since erfc is a monotonically decreasing function, to
minimize in (22), we need only minimize tr . For
notational simplicity, we define

(27)

As one would expect from (24), is a function of only
the first columns of . However, our notation enhances the
connections with related transmission schemes, as discussed in
Section II-B. Now, the problem of minimizing over ,
subject to tr , the “convexity constraint” in (23)
and being a ZF equalizer, is equivalent to

tr (28a)

tr (28b)

(28c)

where we have used the unitary property of and the relation
tr tr for dimensionally compatible matrices and
to simplify the objective in (28a).
The problem in (28) is quite awkward to solve directly, due

to the presence of (28c), but, as we will show below, the min-
imization of (28a) over and subject to (28b) has an ana-
lytic solution. Therefore, we will solve the problem in (28) by
first dealing with (28c) for any and and then solving the
remaining problem. To do so, we observe that the design pa-
rameter does not enter the objective in (28a) nor the power
constraint in (28b). Rather, its role is to try to satisfy the con-
straint in (28c), which ensures the convexity of in (18) and,
hence, the validity of the lower bound in (22). For any given
and , an optimal choice for is one that maximizes the min-
imum constraint satisfaction (or minimizes the maximum con-
straint violation) in (28c), i.e., the that minimizes the largest
diagonal element on the left-hand side of (28c). Such a is pro-
vided by the following lemma.
Lemma 1: Given an positive semi-definite (sym-

metric) matrix , where is a diagonal matrix
whose diagonal elements are the eigenvalues of and
, then we have the following.
i)

tr
(29)

ii) The minimum value of (29) can be achieved by choosing

(30)

where denotes the (normalized) DFTmatrix.
Proof: We first prove that the right-hand side of (29) is a

lower bound for the left-hand side. Then, we show that the in
(30) achieves this lower bound.
i) Since is unitary, tr tr . Furthermore,
since is positive semidefinite, the diagonal elements
of and are non-negative. Given the set
of all length sequences of non-negative numbers

that sum to , the sequence minimizing the
maximum value of is . Applying that

result to the left-hand side of (29) and observing that
the constraint on may restrict the values that the
diagonal elements of can take on, we have that

tr .
ii) Let , where is some unitary matrix. Then, we
have

where is the th diagonal element of , and is
the th element of . If is chosen to be the (nor-
malized) DFT matrix, i.e., if , then since the
magnitude of each element of the DFT matrix is equal to

, we have that

tr
for all

This completes the proof.

Without compromising Lemma 1, we point out that there are
other matrices that will achieve the minimum in (29), in-
cluding the (normalized) inverse DFT matrix and, if is
a power of two, the normalized Hadamard matrix. All
that we require for to be optimal is for it to be unitary and for
all its elements to have the same magnitude.
Lemma 1 provides the key to obtaining an analytic solution

to the problem of minimizing in (28), as we show below.
It also shows us that there is a precoder that minimizes
and actually achieves this lower bound, as we point out later
on. To derive an analytic solution to the problem in (28), we
observe that by applying Lemma 1, there exists a satisfying
(28c) if and only if the optimal value of the objective is less
than . Hence, the problem in (28) can be solved in
the following two stages. First, minimize (28a) over and ,
subject to (28b), i.e.,

tr (31a)

subject to tr (31b)

Let and denote the optimal solution to the problem
in (31). Then, there exists a complementary that satisfies
(28c) if and only if

tr (32)

Furthermore, if this condition holds, one such is ,
where is an eigen decomposition of

. We will show below that is diagonal, and
hence, , and the normalized DFT matrix is an optimal
choice for . With the above analysis, we have reduced the
awkward design problem in (28) to the solution of the simpler
optimization problem in (31) followed by the feasibility test in
(32) and construction of via Lemma 1, should (32) show
that the solution to the simplified problem in (31) is feasible
for the problem in (28).
All that remains is to solve the simpler optimization problem

in (31). This problem is equivalent to the design of the
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minimum MSE precoder for ZF equalization. To show that
equivalence, we note that since we are using a ZF equalizer, the
mean square error in in (8), namely tr , can
be written as tr . Using (26) and the unitary invariance
of the trace function, we have that tr tr
and, hence, the equivalence. As shown in the Appendix, the pre-
coder that minimizes the squared error in for ZF equalization
has

tr
(33)

(34)

where diag consists of the
smallest eigenvalues of arranged in descending
order, is of size and consists of the last

columns of (which are the eigenvectors corresponding
to those smallest eigenvalues), and consists of the first

columns of . (For the case where ,
this result was stated, but not proved, in [19, Part I fn 5].)
By substituting (33) and (34) into (32), we find that the op-

timal solution to the problem in (31) is feasible for the problem
in (28) if and only if

tr
(35)

Furthermore, is diagonal, and hence, we can simply
choose . Therefore, if (35) is satisfied, then a pre-
coder that solves the problem in (28), i.e., minimizes sub-
ject to the lower bound being valid and to a bound on the trans-
mitted power, is given by

tr
(36)

Moreover, this results in the diagonal elements of
being the same [see the part ii) of the proof of Lemma 1], and
hence, the actual BER of this precoder achieves the minimized
lower bound. Therefore, in (36) is a minimum BER pre-
coder. The minimized BER is

erfc
tr

(37)

IV. REMARKS

The following remarks on theminimumBER precoder design
are in order.
1) The above design for a minimum BER precoder regards
the precoder as a general “tall” matrix of full column
rank and is therefore applicable to both the ZP and CP
options for the elimination of IBI.

2) The MBER precoder design is obtained from further
exploitation of the MMSE precoder for ZF equalization

given by (33) and (34). The set of all MMSE precoders
for ZF equalization is given by

- (38)

where is an arbitrary unitary matrix. Therefore,
the minimum BER precoder is also an MMSE-ZF pre-
coder, but the reverse is not necessarily true. In particular,
only those in (38) with elements of equal magnitude
achieveminimumBER. The role of this special class of
matrices is to ensure that the diagonal elements of
are equal and, hence, that we achieve theminimized lower
bound on the BER generated by Jensen’s inequality and
the minimization of the MSE. In practice, the role of this
class of matrices is to distribute the noise power across
the subchannels so that the SNR at the input to each de-
tector in Fig. 1 is the same. The effectiveness of this class
of matrices will be illustrated in Section VI.

3) If we define the ratio of the transmitted signal power to
the receiver noise power (SNR) to be , then
from (35), the above MBER design is valid if

tr
(39)

This condition is a function of the channel (through
) and the block sizes and and can be evaluated

before one attempts to solve the problem in (31). In
order to satisfy this condition, we can either increase
the transmitting power to raise the SNR or drop the
subchannels corresponding to the largest elements of

to lower the value of . Dropping subchannels
corresponds to avoiding transmission on the “low-gain”
subchannels and reallocating transmission power among
the surviving ones. Although the denominator in (39) is
also decreased, the numerator decreases more rapidly,
and therefore, the value of diminishes. The benefit
of dropping subchannels is that the MBER precoder is
guaranteed without violating the transmission power
budget, but the block size, and hence transmission rate, is
lower. [Recall from Assumption A5) that the bit loading
is uniform.] The value of determines the SNR below
which subchannel dropping is required and thus deter-
mines how the tradeoff is made between the BER and
transmission rate. The process of dropping subchannels
and the corresponding MBER precoder design can be
implemented by the following steps:
— First, determine the new block size : Let ,
and while tr , set .

— Then, construct - , which is the MBER
precoder after dropping subchannels, via (36) with
replaced by , i.e.,

tr
(40)
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Fig. 2. MBER precoder for the CP transmission scheme. The system inside the dashed box can be viewed as a DMT system with MMSE-ZF power loading (and
ZF equalization).

V. MBER PRECODERS FOR CP SYSTEMS

The MBER precoder design scheme in Section III is appli-
cable to both ZP and CP transmission schemes. In both these
schemes, the precoder is a full column rank ma-
trix. However, in the case of CP transmission, we can use the
special structure of in (10) to simplify the expression for

. In that case, , where the
th element of the diagonal matrix is ,

. Let us define a square permutation ma-
trix of dimension such that the diagonal elements of

are ordered so that their magnitudes are in increasing
order. Furthermore, let

(41)

denote the diagonal matrix containing the subcarrier
gains with the largest magnitudes. Then, ,

, and , where
contains the last columns of . Therefore, for CP systems,
the condition for the validity of our MBER precoder can be
rewritten as

tr
(42)

and the CP-MBER precoder can be rewritten as

- tr

(43)

Using (38), the set of all MMSE precoders for CP systems with
ZF equalization can be expressed as

- - - (44)

where is an arbitrary unitary matrix, and

-
tr

(45)
is the diagonal MMSE power loading matrix for
ZF equalization. When , the MMSE-ZF precoder in
(44) takes a similar form to that of the standard DMT scheme
discussed at the end of Section II-B; see also (53) and (54)
later. The difference is that in standard DMT, the diagonal
power loading is calculated via water filling, whereas (45) is
the diagonal power loading that minimizes the MSE (for ZF
equalization). An advantage of the MMSE-ZF power loading

in (45) is that it has a closed form and, hence, is rather simple
to implement. In contrast, the water-filling power loading
requires the solution of a nonlinear optimization problem
via an iterative algorithm. The CP-MBER precoder in (43)
also takes a similar form to that of a standard DMT system,
but in this case, the diagonal power loading is replaced by
a full matrix consisting of a diagonal MMSE-ZF power
loading matrix post-multiplied by a DFT matrix. The block
diagram of a CP transmission system with MBER precoding
is shown in Fig. 2, where the receiver is a ZF equalizer, i.e.,

. The
system inside the dashed box can be regarded as a DMT system
with MMSE-ZF power loading.

VI. PERFORMANCE EVALUATION

We consider the performance of several ZP and CP precoders
in binary transmission over a well-conditioned channel, and an
ill-conditioned channel, and the average performance of these
precoders over a class of randomly generated channels. As men-
tioned in Section IV, the SNR is defined as . In
all of our designs, the transmission power will be normalized,
i.e., .
For ZP precoders, comparisons are given among the pre-

coders designed by the criteria of MBER, MMSE (for ZF
equalization) [19], maximum SNR [19], and zero-padded
OFDM [13], [19]. From the set of MMSE precoders in (38), we
choose the one in which the unitary matrix degree of freedom
is given by . If symbols are to be transmitted in each
block, the ZP precoders are expressed, respectively, as follows:

-
tr

(46)

- -
tr

(47)

- tr
(48)

- (49)

where consists of columns of . [For the ZP-OFDM
precoder in (49) and the CP-OFDM precoder in (52) below, we
will usually choose , in which case, .]
For CP transmission schemes, we examine the following
precoders: MBER, MMSE (for ZF equalization), OFDM, and
water-filling DMT. The unitary matrix in the MMSE design is
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again chosen to be the identity matrix. The precoders have the
following forms:

- tr

(50)

- - - (51)

- (52)

- (53)

where . Here, is the water-
filling power loading matrix that maximizes the achievable in-
formation rate, and consists of the columns of cor-
responding to the nonzero values of . The th diagonal el-
ement of is [3], [15]

if

otherwise
(54)

where , , and
is a constant chosen such that power tr .

From (54), it is clear that subchannels with low gain might not
be allocated any power, i.e., they might be dropped. However,
the channel dropping criterion in (54) is different from that in
Section IV (see Example 2). Before proceeding with the exam-
ples, we emphasize the fact that in order to provide a consistent
comparison between the various transmission schemes, we will
employ a uniform bit loading (one bit per subchannel) to each of
the subchannels that are allocated power. As such, our results
for the water-filling scheme are best considered as a reference or
benchmark because in practice, a nonuniform bit loading would
normally be used for water-filling power loaded systems.
Example 1: In this example, we examine the per-

formance of the various linear transceivers when the
data blocks are sent over a channel with tap coeffi-
cients

. The data
blocks are of length , the channel has order ,
and we choose the transmitted block size to be . In this
case, , and hence, and . The
magnitude of a -point DFT of the impulse response
of the channel is shown in Fig. 3. It can be observed that the
ratio of the largest to the smallest subchannel gains is 4. For ZP
schemes, the critical value of SNR in (39) for this channel is

dB, whereas that for CP schemes is
dB. (For a given channel and block sizes and ,

, [21], and hence, it can be
shown that .) We compare the BER performance
of the various linear transceivers at SNRs between 0 and 18 dB.
Fig. 4 shows the performance of the various ZP schemes, and
Fig. 5 shows the performance of the various CP schemes. We
have not used the subchannel dropping scheme here but will do
so in Fig. 6. It is observed that in both cases, the MBER design
provides significantly improved performance over the other

Fig. 3. Frequency response of the channel in Example 1.

Fig. 4. BER performance of ZP precoders in Example 1.

Fig. 5. BER performance of CP precoders in Example 1.

schemes when . At lower SNRs, the differences between
the performance of the various schemes become small. We note
from Fig. 4 that even though the ZP-MSNR scheme is not an
MMSE design, at high SNR, it outperforms the ZP-MMSE-ZF
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(a)

(b)

Fig. 6. BER performance of CP-MBER and ZP-MBER precoders with
sub-channel dropping and the water-filling DMT precoder in Example 1. (a)
BER versus (block) SNR. (b) BER versus average SNR-per-bit.

design in which the unitary matrix degree of freedom is chosen
as the identity matrix. However, our minimum BER scheme,
which is an MMSE design with a special unitary matrix degree
of freedom, outperforms both the ZP-MMSE-ZF-I design and
the ZP-MSNR design.
Fig. 6(a) presents the performance of the ZP and CP min-

imum BER schemes in which the system is allowed to drop
the subchannels with poor frequency responses. We compare
the performance of these two schemes with that of the DMT
scheme equipped with the water-filling algorithm of (54)
(and uniform bit loading). As expected, it is observed that
at high SNR, the performance of the MBER schemes with
subchannel dropping (designated as ZP-MBER-DROP and
CP-MBER-DROP in Fig. 6) is the same as that of the ZP-MBER
and CP-MBER schemes, respectively. At SNRs below , the
ZP-MBER-DROP and CP-MBER-DROP schemes begin to
drop subchannels, whereas for the water-filling DMT scheme,
subchannels are dropped below about 5 dB. Over the whole

Fig. 7. Diagonal elements of for the ZP schemes in Example 1.

SNR range, both the ZP-MBER-DROP and CP-MBER-DROP
schemes provide better BER performance than uniformly
bit-loaded water-filling DMT. The gain of these new optimum
schemes over DMT at a BER of 10 is about 3.5 dB. Recall
that when a subchannel is dropped, the power that was allocated
to that subchannel is distributed over the remaining subchan-
nels, and therefore, the BER improves in a discontinuous
fashion. This leads to the “jagged” nature of the curves in a
Fig. 6(a) at low SNR. Given our uniform bit allocation policy,
subchannel dropping results in a reduction of the number of
bits per block and, hence, a drop in the bit rate. To include the
effects of this rate change in our analysis, in Fig. 6(b), we plot
the BER performance data from Fig. 6(a) against the average
SNR-per-bit , rather than the block SNR ,
which is used in Fig. 6(a). Since the subchannel dropping
criteria of both our MBER schemes and the water-filling DMT
scheme are based on a constraint on the transmitted power per
block, not per subchannel, the BER versus average SNR-per-bit
curves can be multivalued at low SNR. However, the basic
trends of both graphs in Fig. 6 are the same.
To explain the performance advantage of our designs, Figs. 7

and 8 show the diagonal elements of the matrices for the
different ZP and CP schemes. The comparison here is evaluated
at dB so that for all designs, none of the subchannels are
dropped. Recall from Section III that in order to minimize the
BER, we first need to minimize tr . For the ZP schemes,
we note that neither the ZP-OFDM nor ZP-MSNR are MMSE
designs. Therefore, the values of tr for these schemes are
higher than that for the MMSE designs. However, we also note
that for the ZP-MSNR scheme, the diagonal elements of
are equal. On the other hand, among the MMSE designs [which
minimize tr ], the ZP-MBER scheme is the only design
for which has equal diagonal elements. Similar observa-
tions can be obtained from Fig. 8. Both CP-OFDM and water-
filling DMT are not MMSE designs and do not result in the
product having equal diagonal elements. The CP-MBER
scheme is the only CP design that results in having equal
diagonal elements while minimizing tr .
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Fig. 8. Diagonal elements in for the CP schemes in Example 1.

Fig. 9. Frequency response of the channel in Example 2.

Example 2: In this example, we examine the performance
of the various block transmission schemes when the data are
sent over a channel with tap coefficients

. The data blocks are of
length and the channel is of order , and we
choose the transmitted block size to be . The magnitude
of a point DFT of the impulse response of the
channel is shown in Fig. 9. The ratio of the largest to the smallest
subchannel gain is 8.75, which means that this channel is more
frequency selective than the one in Example 1. For ZP schemes,
the SNR threshold of (39) for this channel is
dB, whereas that for CP schemes is dB. Figs. 10
and 11 show the BER performance of the ZP and CP schemes,
respectively. Similar to Example 1, the MBER designs show
clearly superior performance when . When , the
differences between the BERs of each scheme become small.
The SNR gain of the MBER precoders over OFDM at a BER of

is about 7 dB in this case.
Fig. 12(a) compares the BER performance of schemes in

which the subchannels with low gain are allowed to be dropped

Fig. 10. BER performance of the ZP precoders in Example 2.

Fig. 11. BER performance of the CP precoders in Example 2.

at low SNR. At SNRs below the corresponding , both the
ZP-MBER-DROP and CP-MBER-DROP schemes start drop-
ping subchannels. These dropping schemes provide substantial
improvement over the performance of the corresponding
ZP-MBER and CP-MBER schemes. The water-filling DMT
system carries out its own subchannel dropping scheme. Since
the subchannel dropping schemes are different, the water-filling
DMT scheme starts dropping subchannels at a higher SNR
of around 14 dB. Despite the fact that the water-filling DMT
scheme employs a smaller block size than our MBER precoders
for SNRs below about 14 dB (see Fig. 13), the MBER scheme
provides better BER performance. This trend is also clear
from Fig. 12(b), in which we have plotted the same BER
performance data against average SNR-per-bit rather than the
block SNR. As was mentioned in the discussion in Example 1,
the BER versus average SNR-per-bit curves can be multivalued
at low SNR.
Example 3: In Examples 1 and 2, we examined the BER

performance of various precoders in a “good-quality” and a
“moderate-quality” channel, respectively. In this example, we
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(a)

(b)

Fig. 12. BER performance of the CP-MBER and ZP-MBER precoders and
the water-filling DMT precoder in Example 2. (a) BER versus (block) SNR. (b)
BER versus average SNR-per-bit.

Fig. 13. Block sizes generated by the ZP-MBER-DROP, CP-MBER-DROP,
and water-filling DMT schemes in Example 2.

examine the average BER performance of some precoders over
a class of randomly generated channels. The (complex-valued)
taps of the channels were generated independently from a
zero-mean circular Gaussian distribution with unit variance
per dimension. Each channel realization was then normalized
so that the impulse response had unit two-norm. The channels
were of order , and the block sizes were chosen as

and . The average BER perfor-
mance curves for various ZP precoders over 2000 channel
realizations from this class are shown in Fig. 14(a). The average
BER performance curves for various CP schemes are shown in
Fig. 14(b), and those for the MBER schemes with subchannel
dropping and the water-filling DMT precoders are shown in
Fig. 14(c). These curves indicate that the trends established in
the previous two examples extend to the average case. Further-
more, the SNR gains of our MBER designs remain significant.
For example, from Fig. 14(a), it can be seen that at a BER
of the SNR gain of our ZP-MBER precoder (without
sub-channel dropping) over the ZP-MMSE-ZF-I precoder is
around 2 dB, and from Fig. 14(b), the corresponding SNR gain
of our CP-MBER precoder (without sub-channel dropping)
over CP-OFDM is around 7.5 dB.

VII. CONCLUSION

In this paper, we have designed a linear block-by-block pre-
coder that minimizes the BER achieved with ZF equalization
and threshold detection. The design was obtained by observing
that at high SNR the expression for the BER is a convex func-
tion of the magnitude of the diagonal elements of the equal-
izer. A lower bound for the BER was derived, and its min-
imum value was obtained by minimizing the trace of the ma-
trix product , where is the equalization matrix. We then
showed that this (minimized) lower bound on the BER can be
attained by certain members of the set of precoders that mini-
mize the lower bound. The set of precoders that minimize the
lower bound was shown to be the set of MMSE precoders for
ZF equalization—a set which is parameterized by a unitary ma-
trix degree of freedom. The MBER precoders were obtained
from special choices of this unitary matrix. One such choice
is the (normalized) DFT matrix. The design scheme is flex-
ible because it applies directly to both the zero-padding and
cyclic-prefix schemes for avoiding inter-block interference and
allows the block sizes to be chosen freely [up to Assumption
A2)]. We also provided a natural modification of the design
method for low SNR scenarios. In the modified design, the low
gain subchannels are systematically dropped (thus reducing the
data block size) in order to maintain a sufficiently high SNR on
the remaining subchannels.
Performance comparisons have been provided to demonstrate

that theMBER design can provide substantially lower BER than
all current designs. The improvement in BER performance over
some commonly used systems may be as much as several deci-
bels in SNR at reasonable BER levels. Another advantage of
our design is that the MBER precoder has a simple analytic
form, whereas the water-filling-based designs require the so-
lution of a nonlinear optimization problem using an iterative
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Fig. 14. Average BER performance of various precoders over the class of channels in Example 3. (a) BER versus (block) SNR for ZP precoders. (b) BER versus
(block) SNR for CP precoders. (c) BER versus (block) SNR for subchannel dropping precoders.

algorithm. The extra computational load incurred when oper-
ating an MBER design in place of one of the currently used
systems is minimal, being only the additional DFTs at the trans-
mitter and the receiver. Thus, theMBER design proposed in this
paper is an attractive alternative for realizing linear precoders
for block-by-block data transmission with zero-forcing equal-
ization.
The optimal design obtained in the paper is for a single-user

system, with ZF equalization and threshold detection, white
uncoded data, white noise, uniform bit loading, and a known
channel. We are currently working on extending the ideas
in this paper to various other schemes such as multiuser
systems, different equalization techniques (MMSE [2], deci-
sion feedback, etc.), maximum likelihood detection, colored
noise, and alternative “bit-loading” schemes, as well as other
scenarios in which the channel is imprecisely known at the
transmitter. To keep the exposition of our minimumBER design
method reasonably simple, we have restricted our attention
to single-input, single-output block transmission systems in
this paper. However, the algebraic model of multiple-input,

multiple-output (MIMO) block transmission systems, such as
those considered in [17], [20], and [26] is essentially the same
as that in (8), and hence, our design approach extends naturally
to the MIMO case.

APPENDIX
OPTIMUM VALUES OF AND IN (31)

If , an optimal product can be found directly
using a straightforward Lagrange multiplier argument [11]. In
the more general case where , it is more convenient
to first find the optimal for a given choice of and then find
an optimal . For a fixed , the optimization problem in (31)
can be reparameterized in terms of as

tr subject to tr (55)

Here, as in (27), .
The Lagrangian function for this problem is

tr tr (56)
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where is the Lagrange multiplier. Equating the derivatives of
(56) with respect to and to zero, we obtain the following
necessary conditions for optimality:

tr (57)

To satisfy these necessary conditions, we require
, and hence

(58)

where, as in (25), is an eigenvalue decomposition
of with eigenvalues arranged in descending order.
However, since , and is diagonal, the optimal
must be diagonal and positive semidefinite. Therefore, since
is a unitary matrix, the optimal product must be a

permutation matrix, say, . Hence, . Making the
dependence of on explicit, the resulting objective in (55) is

tr

An optimal places the smallest elements of in the top
left corner of . Since the elements of are arranged
in descending order, an optimal is

and hence, an optimal is ,
as given in (34). Hence, , where
diag . By choosing tr
so that (57) is satisfied, we have that

tr

Since is positive semidefinite (by construction),
and therefore, the diagonal elements of are real and non-neg-
ative, as required. Hence, (33) holds.
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[12] J. P. Milanović, T. N. Davidson, Z.-Q. Luo, and K. M. Wong, “Design
of robust redundant precoding filterbanks with zero-forcing equalizers
for unknown frequency-selective channels,” in Proc. Int. Conf. Acoust.,
Speech, Signal Processing, Istanbul, Turkey, June 2000.

[13] B. Muquet, M. de Courville, P. Duhamel, and G. Giannakis, “OFDM
with trailing zeros versus OFDM with cyclic prefix: Links, compar-
isons and application to the HiperLAN/2 system,” in Proc. Int. Conf.
Commun., New Orleans, LA, June 2000.

[14] J. G. Proakis, Digital Communications, Fourth ed. New York: Mc-
Graw-Hill, 2001.

[15] A. Ruiz, J. M. Cioffi, and S. Kastuia, “Discrete multiple tone modula-
tion with coset coding for the spectrally shaped channel,” IEEE Trans.
Commun., vol. 40, pp. 1012–1029, June 1992.

[16] S. D. Sandberg and M. A. Tzannes, “Overlapped discrete multiple tone
modulation for high speed copper wire communications,” IEEE J. Se-
lect. Areas Commun., vol. 13, pp. 1571–1585, Dec. 1995.

[17] H. Sampath, P. Stoica, and A. Paulraj, “Generalized linear precoder and
decoder design for MIMO channels using the weighted MMSE crite-
rion,” IEEE Trans. Commun., vol. 49, pp. 2198–2206, Dec. 2001.

[18] A. Scaglione, S. Barbarossa, and G. B. Giannakis, “Filterbank trans-
ceivers optimizing information rate in block transmissions over disper-
sive channels,” IEEE Trans. Inform. Theory, vol. 45, pp. 1988–2006,
Apr. 1999.

[19] A. Scaglione, G. B. Giannakis, and S. Barbarossa, “Redundant filterbank
precoders and equalizers, Parts I and II,” IEEE Trans. Signal Processing,
vol. 47, pp. 1988–2022, July 1999.

[20] A. Scaglione, P. Stoica, S. Barbarossa, G. B. Giannakis, and H. Sampath,
“Optimal designs for space-time linear precoders and decoders,” IEEE
Trans. Signal Processing, vol. 50, pp. 1051–1064, May 2002.

[21] Z. Wang and G. B. Giannakis, “Wireless multicarrier communications,”
IEEE Signal Processing Mag., pp. 29–48, May 2000.

[22] , “Linearly precoded or coded OFDM against wireless channel
fades?,” in Proc. Third IEEE Workshop Signal Processing Advances
Wireless Commun., Taoyuan, Taiwan, R.O.C., Mar. 2001.

[23] K. M. Wong, J. Wu, T. N. Davidson, and Q. Jin, “Wavelet packet divi-
sion multiplexing and wavelet packet design under timing error effects,”
IEEE Trans. Signal Processing, vol. 45, pp. 2877–2890, Dec. 1997.

[24] G. Wornell, “Emerging application of multirate signal processing and
wavelet in digital communications,” Proc. IEEE, vol. 84, pp. 586–603,
Apr. 1996.

[25] X.-G. Xia, “New precoding for intersymbol interference cancellation
using nonmaximally decimated multirate filterbanks with ideal FIR
equalizers,” IEEE Trans. Signal Processing, vol. 45, pp. 2431–2441,
Oct. 1997.

[26] J. Yang and S. Roy, “On joint transmitter and receiver optimization for
multiple-input-multiple-output (MIMO) transmission systems,” IEEE
Trans. Commun., vol. 42, pp. 3221–3231, Dec. 1994.

Yanwu Ding received the B.Eng. degree from
Southwest Jiaotong University, Chengdu, Sichuan
Province, China in 1985 and the M.Eng. degree from
McMaster University, Hamilton, ON, Canada, in
2002.
She is currently a research associate with the

Department of Electrical and Computer Engineering,
McMaster University. She has previously held po-
sitions with the Department of Communication and
Control Engineering, Northern Jiaotong University,
Beijing, China, and the Information Center of State

Bureau of Quality Technical Supervision, Beijing, China. Her research interests
are in signal processing and communications.
Ms. Ding was a recipient of the Outstanding Thesis Research Award from

McMaster University in 2002 and the Outstanding Graduate Award from South-
west Jiaotong University in 1985.

Authorized licensed use limited to: McMaster University. Downloaded on July 18,2010 at 19:56:01 UTC from IEEE Xplore.  Restrictions apply. 



DING et al.: MINIMUM BER BLOCK PRECODERS FOR ZERO-FORCING EQUALIZATION 2423

Timothy N. Davidson (M’96) received the B.Eng.
(Hons. I) degree in electronic engineering from The
University of Western Australia (UWA), Perth, in
1991 and the D.Phil. degree in engineering science
from The University of Oxford, Oxford, U.K., in
1995.
He is currently an assistant professor with the

Department of Electrical and Computer Engineering,
McMaster University, Hamilton, ON, Canada. His
research interests are in signal processing, commu-
nications, and control, with current activity focused

on signal processing for digital communication systems. He has held research
positions at the Communications Research Laboratory, McMaster University,
the Adaptive Signal Processing Laboratory, UWA, and the Australian Telecom-
munications Research Institute, Curtin University of Technology, Perth.
Dr. Davidson was awarded the 1991 J. A. Wood Memorial Prize (for “the

most outstanding [UWA] graduand” in the pure and applied sciences) and the
1991 Rhodes Scholarship for Western Australia.

Zhi-Quan Luo (SM’03) was born in Nanchang,
Jiangxi province, China. He received the B.Sc.
degree in applied mathematics in 1984 from Peking
University, Beijing, China. From 1984 to 1985,
he studied at the Nankai Institute of Mathematics,
Tianjin, China. He received the Ph.D. degree in op-
erations research from the Department of Electrical
Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, in 1989.
In 1989, he joined the Department of Electrical

and Computer Engineering, McMaster University,
Hamilton, ON, Canada, where he is now a Professor and holds the Canada
Research Chair in Information Processing. His research interests lie in
the union of large-scale optimization, information theory and coding, data
communications, and signal processing. He is presently serving as an associate
editor for Journal of Optimization Theory and Applications, SIAM Journal
on Optimization, Mathematics of Computation, Mathematics of Operations
Research, and Optimization and Engineering.
Prof. Luo is a member of SIAM and MPS and is an Associate Editor for the

IEEE TRANSACTIONS ON SIGNAL PROCESSING.

Kon Max Wong (F’02) was born in Macau.
He received the B.Sc.(Eng.), D.I.C., Ph.D., and
D.Sc.(Eng.) degrees, all in electrical engineering,
from the University of London, London, U.K., in
1969, 1972, 1974 and 1995, respectively.
He started working at the Transmission Division

of Plessey Telecommunications Research Ltd.,
London, in 1969. In October 1970, he was on leave
from Plessey, pursuing postgraduate studies and
research at the Imperial College of Science and
Technology, London. In 1972, he rejoined Plessey

as a research engineer and worked on digital signal processing and signal
transmission. In 1976, he joined the Department of Electrical Engineering,
Technical University of Nova Scotia, Halifax, NS, Canada, and in 1981, he
moved to McMaster University, Hamilton, ON, Canada, where he has been a
Professor since 1985 and served as Chairman of the Department of Electrical
and Computer Engineering from 1986 to 1987 and again from 1988 to 1994.
He was on leave as Visiting Professor with the Department of Electronic
Engineering, Chinese University of Hong Kong, from 1997 to 1999. At present,
he holds the title of NSERC-Mitel Professor of Signal Processing and is the
Director of the Communication Technology Research Centre at McMaster
University. His research interest is in signal processing and communication
theory, and he has published over 170 papers in this area.
Prof. Wong was the recipient of the IEE Overseas Premium for the best paper

in 1989, and is a Fellow of the Institution of Electrical Engineers, a Fellow of the
Royal Statistical Society, and a Fellow of the Institute of Physics. He also served
as anAssociate Editor of the IEEETRANSACTIONS ONSIGNAL PROCESSING from
1996 to 1998 and has been the chairman of the Sensor Array and Multichannel
Signal Processing Technical Committee of the Signal Processing Society since
1998. He was the recipient of a medal presented by the International Biograph-
ical Centre, Cambridge, U.K., for his “outstanding contributions to the research
and education in signal processing” in May 2000 and was honored with the
inclusion of his biography in the two books: Outstanding People of the 20th
Century and 2000 Outstanding Intellectuals of the 20th Century published by
IBC to celebrate the arrival of the new millennium.

Authorized licensed use limited to: McMaster University. Downloaded on July 18,2010 at 19:56:01 UTC from IEEE Xplore.  Restrictions apply. 




