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A BICM-IDD Scheme for Non-Coherent MIMO Communication
Mohamed A. El-Azizy, Ramy H. Gohary, and Timothy N. Davidson

Abstract—A bit-interleaved coded modulation (BICM) scheme
with iterative (soft) demapping and decoding (IDD) is developed
for non-coherent communication over a multiple-input multiple-
output (MIMO) channel. The scheme exploits the underlying
Grassmannian geometry of the signalling scheme that approaches
the ergodic capacity of the non-coherent model at high signal-to-
noise ratios. In particular, this geometry guides the construction
of the constellation and the mapper at the transmitter, and
gives rise to a computationally-efficient list-based demapping
algorithm. The incorporation of a scheme that enables the
decoder to augment the demapping list virtually eliminates
the mild performance degradation of the efficient demapper.
Simulation results demonstrate that at high data rates the
proposed scheme can provide significantly better performance
than several training-based BICM-IDD schemes.

Index Terms—Ergodic capacity, Grassmannian signalling, it-
erative decoding, list demapping, training, mismatched decoding.

I. INTRODUCTION

IN a standard model for multiple-input multiple-output
(MIMO) communication, the receiver is assumed to have

complete channel state information (CSI) a priori, which
enables coherent detection. An alternative framework that
accounts for the communication resources that would need to
be expended to acquire the CSI is the non-coherent model, in
which the receiver does not have any a priori CSI; e.g., [1].
Under a standard model for narrow-band communication in
a richly-scattered environment, the high signal-to-noise ratio
(SNR) ergodic capacity of the non-coherent model is a sig-
nificant fraction of that of the coherent model. However, the
underlying geometry of the corresponding signalling scheme
is significantly different [1]–[3]. In particular, the high-SNR
capacity achieving channel symbols are unitary matrices that
span isotropically distributed linear subspaces [1], [2]. In such
a system, the information is conveyed by the subspaces rather
than the matrices themselves, and these subspaces can be
represented by points on a compact Grassmann manifold [3].
The purpose of this paper is to develop a pragmatic coded
Grassmannian transceiver that provides low error rates at data
rates close to the ergodic capacity of the non-coherent MIMO
channel.
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Fig. 1. A BICM-IDD scheme for non-coherent MIMO communication.

The proposed transceiver is based on the principle of bit-
interleaved coded modulation (BICM) [4] with iterative (soft)
demapping and decoding (IDD), e.g., [5], and is illustrated in
Figure 1. Some coded schemes for the non-coherent MIMO
channel have previously been proposed (e.g., [6]–[9]), but
our scheme directly exploits the underlying Grassmannian
geometry of the optimal signalling scheme at high SNRs.
This geometry guides the construction of the Grassmannian
constellations and the mapper at the transmitter, and gives rise
to an efficient list-based demapping algorithm that substan-
tially reduces the computational complexity of the receiver.
Furthermore, we suggest a method that enables the decoder to
augment the list used by the demapper, and we demonstrate
that this feature virtually eliminates the mild performance
degradation of the efficient demapper.

An alternative to the Grassmannian signalling approach to
high-SNR non-coherent MIMO communication is to transmit
a block of training symbols, and then communicate in a
coherent mode [10]–[12]. We compare the performance of
the proposed scheme to that of two classes of training-based
BICM-IDD schemes, one with a “mismatched” demapping
metric that presumes that an explicit channel estimate is
precise, and another with the “optimum” metric that does
not involve explicit channel estimation; cf. [13]. Simulation
results show that at high data rates the proposed scheme can
provide significantly better performance than these training-
based schemes.

II. SYSTEM MODEL

We consider a system with M transmit antennas and
N receive antennas communicating over a frequency-flat
richly-scattered block-fading channel of coherence time T ≥
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min(M, N) + N ,1 with M = min{�T/2�, N}; cf. [3]. We
will denote the signal vector transmitted at each channel use
by the rows of a T × M matrix QX , and hence the T × N
received signal matrix Y is

Y = QXH + V, (1)

where H is the M × N channel matrix whose entries are
drawn independently from the standard complex Gaussian
distribution CN (0, 1), and V is the T×N additive noise matrix
whose entries are drawn independently from CN (0, M/(ρT )),
where ρ is the signal-to-noise ratio.

In the non-coherent scenario, neither the transmitter nor the
receiver knows H, and the capacity achieving input signals
for high-SNR operation are T ×M (tall) unitary matrices that
span isotropically distributed subspaces [1], [3]. The columns
of each such matrix QX span an M -dimensional subspace that
can be represented by a “constellation” point on a compact
Grassmann manifold, GM (CT ), [3]. These basis vectors are
rotated (and scaled) when right multiplied by the channel
matrix H, but since the receiver has no channel information,
the rotation of the basis vectors cannot be detected. However,
the subspace spanned by QX is detectable [3]. In fact, the
likelihood of the received signal given a transmitted unitary
matrix satisfies [1], [3]

P (Y|QX)

∝ exp
(
−ρT

M
Tr

(
Y†

(
IT − 1

1 + M/(ρT )
QXQ†

X

)
Y

))
.

(2)

In Figure 1 we show how the generic structure of a
BICM-IDD scheme (e.g., [5]) can be adapted to the case of
non-coherent MIMO communication. The outer components
consist of a standard binary encoder and its corresponding
soft-input/soft-output decoder. The proposed design of the
inner components, namely the constellation and mapper at the
transmitter and the demapper at the receiver, is discussed in
the following sections.

III. CONSTELLATION DESIGN AND LABELLING

Finding T × M unitary matrices that span isotropically
distributed linear subspaces has been identified in [3] with
the packing of spheres on the compact Grassmann manifold,
GM (CT ); i.e., given a target cardinality |C|, we seek a
constellation C with maximized minimum distance [14],

{QXi}
|C|
i=1 = arg max

{Qr : Q†
rQr=IM , r=1,...,|C|}

min
j �=k

d(Qj ,Qk),

(3)
where d(·, ·) is a distance metric on the Grassmann manifold.
While several metrics have been considered (e.g., [2], [14]),
it has been shown [15], [16] that the chordal Frobenius norm
quantifies the perturbation due to noise in the received signal
subspace, and hence that it conforms to the non-coherent
MIMO communication model.

1In this model, the channel remains constant for a block of T channel
uses, and in each block the channel coefficients are statistically independent
of those in other blocks; e.g., [3].

Several techniques for generating “good” constellations
have been proposed. Some are based on algebraic construc-
tions (e.g., [17], [18]), but their inherent structure typically
inhibits the full exploitation of the underlying degrees of
freedom. Other techniques are based on various optimization
techniques for finding “good” solutions to (3); e.g., [14], [16].
Although these optimized constellations tend to perform better
than the algebraic ones, their lack of structure makes their
storage, regeneration and labelling quite unwieldy.

In our BICM transmission scheme we will use constel-
lations designed via the two-phase rotation-based technique
in [16], [19], as those constellations possess structure, but
are better able to exploit the underlying degrees of freedom.
In this technique a small proto-constellation, Cp, is designed
using an efficient numerical optimization technique. The final
constellation is then expressed as the disjoint union of R
rotated versions of the proto-constellation; that is,

C =
R∐

r=1

(I|Cp| ⊗ Φr)Cp, (4)

where the constellations Cp and C are represented by one
and R block diagonal matrices, respectively, ⊗ denotes the
Kronecker product, and {Φr}R

r=1 are T ×T unitary matrices.
An optimized set of matrices {Φr}R

r=1 can be obtained by
using efficient optimization techniques on the group of uni-
tary matrices, and the resulting constellations possess several
desirable distance properties [16], [19].

In addition to the distance properties of the underlying con-
stellation, the performance of a BICM-IDD scheme is also de-
pendent on the labelling of the constellation points. However,
labelling points in a Grassmannian constellation is difficult,
because even for small dimensions, “good” constellations are
not known to possess a structure that could be exploited to
determine an appropriate labelling strategy. In practice, the
number of (real) dimensions, 2M(T − M), can be quite
large. Furthermore, numerical optimization of the mapping
of large constellations (e.g., [8]) is a formidable task. In the
case of rotation-based Grassmannian constellations, these dif-
ficulties can be mitigated by exploiting the inherent structure.
This structure admits a labelling technique that mimics the
principles of the set-partitioning technique, which, roughly
speaking, assigns labels with small Hamming distances to
points that lie at large distances in the signalling space. In
particular, if the proto-constellation, Cp, is properly designed,
its points will lie at maximum distance in the signalling
space. Since rotation preserves the distance between points
in the proto-constellation [16], [19], the smaller distances in
the final constellation, C, occur between points that belong to
different rotations of Cp. Using this insight, we now describe
our labelling strategy.

Consider a rotation-based constellation with |Cp| = 2n1 and
R = 2n2 . The mapper M(·) is required to label the points of
the constellation with binary vectors of length n = n1 + n2.
We will use the first n1 bits to index the point on the
underlying proto-constellation and the remaining bits to index
the rotation. By partitioning the label in this way, we ensure
that constellation points generated by the same rotation, which
will be well-spaced (so long as the proto-constellation is
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well-designed), differ by a Hamming distance of at most n1.
The remaining n2 bits label the rotation, and since there is
no known structure for these rotations, they will be chosen
pseudo-randomly. By partitioning the labels in this way, we
highlight the fact that the choice of the cardinality of the
proto-constellation and the number of rotations provides a
trade-off between favourable geometric and Hamming distance
properties of transmitted codewords.

IV. NON-COHERENT SOFT DEMAPPING

The role of the (soft) demapper in a BICM-IDD scheme
is to compute (or approximate) the (conditioned) log likeli-
hood ratio (LLR) of each (encoded interleaved) bit given the
received signal matrix. If we let xk denote the kth element of
the length-n block of x in Figure 1 associated with a given
channel use, and if we let Y denote the corresponding received
matrix, then the LLR is (e.g., [5])

LD1(xk|Y) = ln
P (xk = +1|Y)
P (xk = −1|Y)

= ln

∑
QX∈Xk,+1

P (Y|QX)P (QX)∑
QX∈Xk,−1

P (Y|QX)P (QX)
, (5)

where an expression for P (Y|QX) was given in (2), and an
approximation to P (QX) can be obtained from the decoder
outputs at the previous iteration using the standard assumption
of independence of the interleaved encoded bits (e.g., [5]); i.e.,
P (QX) ≈

∏n
k=1 P (xk = [M−1(QX)]k), where [·]k denotes

the kth element of the vector. The set Xk,+1 contains all the
matrices QX in the constellation whose indices have xk =
+1; i.e., Xk,±1 = {QX ∈ C|xk =

[
M−1(QX)

]
k

= ±1}.
For most MIMO BICM schemes, the computation of the

LLRs in (5) is the computational bottleneck. List-based
demappers reduce this bottleneck by approximating the LLRs
by computing the summations over a subset of the constel-
lation points, L, rather than over the whole constellation;
i.e., Xk,±1 is replaced by X̃k,±1 = {QX ∈ L|xk =[
M−1(QX)

]
k

= ±1}. In coherent MIMO systems the inher-
ent tree structure of the demapping problem can be exploited
in the construction of the list (e.g., [5]), but the geometry of the
non-coherent case is substantially different, and an alternative
approach is required. We propose to choose the demapping
list L to be the list generated by the reduced-search non-
coherent detector for the uncoded Grassmannian constellations
developed in [15], [16], [20]. That list is briefly described in
Section IV-A.

A. List-based Demapper

The reduced-search detector developed in [15], [16], [20]
uses the structure of Grassmannian constellations and the
received signal Y to determine a list of candidate constel-
lation points. The generation of the list is based on the QR
decomposition, Y = QY RY , and the observation [16], [20]
that all the information available about QX is contained in
QY , while all that about H is contained in RY . The list is
generated as follows: Prior to operation, the demapper picks
a reference point Qref,1 and builds a look-up table in which
the constellation points are sorted according to their distance

Fig. 2. A “strap” on the Grassmann manifold G1(R3) that contains QY .

Fig. 3. The intersection of two “straps” on the Grassmannian manifold
G1(R3).

from the reference point. When a received signal matrix Y
arrives, its QR decomposition is computed and the distance
d(QY ,Qref,1) is measured. All constellation points that are
“about the same distance” from the reference point as QY are
included in the candidate list. More specifically, the channel
information implicit in RY is used to generate two values, AY

and BY , which are used to define the width of a “strap” on
the Grassmann manifold that contains QY ; see Figure 2 for an
illustration and [16], [20] for the details. The demapper’s list
is defined to be all those constellation points that lie within
the strap; i.e.,

L(Y,Qref,1)
= {QX |AY ≤ d(QX ,Qref,1) − d(QY ,Qref,1) ≤ BY }. (6)

The choice of AY and BY involves a trade-off between
the length of the list and the probability that the transmitted
constellation point is not in the list. In particular, using the
Chebychev inequality, one can find a lower bound on the width
of the strap |AY − BY | that is required for the probability
of “missing” the transmitted constellation point to be below
a given threshold [16], [20]. A feature of the proposed
demapper is that the length of the list is adapted to the channel
realization (through AY and BY ). This is in contrast to the
demapper for coherent MIMO systems proposed in [5], in
which the length of the candidate list is fixed a priori and
is made as large as possible subject to acceptable receiver
complexity. In order to operate with an even shorter list, the
look-up table in the proposed demapper can be augmented
to include distances from other reference points, Qref,j . Each
reference point can be used to generate a strap, and only
those constellation points that lie in the intersection of the
straps are assigned to the list; see Figure 3. That is, the list is
L = {QX |QX ∈

⋂
j L(Y,Qref,j)}.

B. List Augmentation for the List-based Demapper

A weakness of the above list-based (soft) demapping
scheme is that membership of the list is determined entirely
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by the channel output, and hence a constellation point whose
binary index is deemed by the decoder to have a large
likelihood might not be on the demapper’s list. To mitigate
this effect, we will modify the list-based demapper to enable
the decoder to augment the list of candidate constellation
points. In particular, using Figure 1, let L

[i]
A1

denote the vector
of a priori information used by the demapper in the ith

iteration. Before performing the list-based demapping for a
given channel use at the ith iteration, the demapper makes
an (auxiliary) hard decision on the corresponding length-n
block of L

[i]
A1

and checks whether the constellation point that
corresponds to that hard decision is on the demapper’s current
list. If not already on the list, this constellation point is added;
i.e,

L[i] = L[i−1]
⋃{

M
(
sgn

((
L

[i]
A1

(xk)
)n

k=1

))}
, (7)

and the list-based demapper approximates the LLRs by com-
puting (5) with the ranges of the summations being X̃ [i]

k,±1 =
{QX ∈ L[i]|xk =

[
M−1(QX)

]
k

= ±1}. Since we add at
most one constellation point to the demapper’s list at each
iteration, the increase in complexity is typically negligible.
While more elaborate list augmentation strategies can be
conceived, in the example in Figure 4 our simple augmentation
scheme appears to extract much of the potential gain.

V. SIMULATION RESULTS

We consider a system with M = N = 2 and a co-
herence time T = 4. The outer codes in Figure 1 were
chosen to be systematic parallel concatenated turbo codes
with identical recursive convolutional constituent codes, and
the BICM and “turbo” interleavers were selected from sets of
pseudo-randomly generated candidates. At the receiver, four
demapping-decoding iterations were performed for each block,
with eight BCJR-based “turbo” iterations being performed
within the outer decoder for each demapping-decoding iter-
ation. In the list-based demapping schemes, the LLRs were
clipped at ±10. Since no convenient expression is available
for the ergodic capacity of a non-coherent MIMO block-
fading channel, the high-SNR capacity approximation derived
in [3] is used to provide an approximate SNR threshold
for the rates considered in each of the following examples.
These approximate thresholds are given in the caption of the
respective figures.

In order to illustrate the impact of the list augmentation
procedure in Section IV-B, in Figure 4 we have plotted the
performance of our Grassmannian BICM-IDD scheme using
full demapping and using the proposed list-based demapping
technique, with and without list augmentation. For this exper-
iment we used a 256-point Grassmannian constellation with a
randomly chosen mapping and a standard rate-1/2 punctured
turbo code with constituent codes of memory 4 and an input
block length 8000. The resulting overall data rate was 1 bit per
channel use (bpcu). Figure 4 shows that in the absence of list
augmentation the performance of the list-demapper degrades
with increasing SNR. For instance, at a BER of 10−4 the SNR
gap to the full demapper is about 1.75 dB. By incorporating
list augmentation, this gap is reduced to less than 0.25 dB.
In Figure 4 we have also plotted the performance of a BICM
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Fig. 4. Bit error rate performance of the proposed Grassmannian BICM-IDD
scheme using full demapping (dash-dot), and using list-based demapping with
(solid) and without (dashed) list augmentation. A comparison with a scheme
that uses the constellation proposed in [7] and full demapping is also provided.
The approximate SNR threshold for a rate of 1 bpcu is about 7.3 dB.

scheme that uses the orthogonal design proposed in [7] with
full demapping. It can be seen that the stringent algebraic
structure of those constellations results in an SNR gap of
about 6.2 dB with respect to our constellations when random
mapping is employed. Figure 4 also shows that by using the
Gray labelling technique provided in [9], the performance gap
between the scheme based on the orthogonal design and that
based on our randomly mapped constellation can be reduced
to 0.5 dB. We believe that the remaining gap is due to the
difference between the distance properties of our constellation
and those of the orthogonal design.

In Figure 5 we compare the performance of our proposed
scheme with several training-based schemes. (Comparisons
with training-based schemes at low data rates are available
in [21].) For these simulations, the outer code was a rate-4/5
punctured turbo code with input block length 32,016. Using
the notation in [22], the partition of each constituent convo-
lutional code was (2, 1, 1, 1), and its octal generators were
z{i1} = (6, 0, 2, 3), h{1i} = (0, 6, 0, 5), h{2i} = (0, 3, 0, 1),
h{3i} = (1, 2, 0, 3), and h{4i} = (2, 3, 3, 2). For the proposed
scheme, a 4096-point Grassmannian constellation was gener-
ated using the rotation-based technique described in Section III
and the associated quasi-set-partitioning labelling, yielding an
overall data rate of 2.4 bpcu.

In the training-based schemes, the coherence time, T , was
split into a training interval of length Tp = M = 2 and a
coherent communication interval of length Td = T − Tp = 2,
with transmitted symbols Xp and Xd, respectively. (Choosing
Tp = M is optimal at high SNRs [10].) We employed
the optimal training symbol Xp ∝ IM , [10], and since
Td = M we allocated power equally to the training and data
phases [10]. The scalar constellations used to construct Xd

were chosen so that the overall data rate was 2.4 bpcu. For
comparison with our quasi-set-partitioning labelling technique,
these constellations were labelled using full set-partitioning.
Two demappers were considered for each of the training-
based schemes. The “mismatched” demapper (e.g., [13]) uses
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demapping metrics. The approximate SNR threshold for a rate of 2.4 bpcu is
about 11.7 dB.

Xp and Yp to generate an estimate of the channel matrix,
Ĥ, and then uses Ĥ to perform coherent demapping as if
it were the actual channel matrix. That is, the mismatched
demapper computes the LLRs using a formula akin to (5),
but with P (Y|QX) replaced by exp(− ρT

M ‖Yd − XdĤ‖2
F ),

where ‖ · ‖F is the Frobenius norm. While this demapper
has a simple structure, better performance can be achieved
using a receiver that uses the “optimal” demapping metric
(e.g., [13]), which does not involve explicit estimation of
the channel; that is, by using P (Yp,Yd|Xp,Xd) in place of
exp(− ρT

M ‖Yd − XdĤ‖2
F ).

In Figure 5 we compare the performance of the pro-
posed Grassmannian-signalling scheme using both full and list
demapping (with augmentation), with that of several training-
based schemes that use mismatched or optimal demapping,
with full lists. (In all systems the outer encoder and decoder
are the same.) In the first training-based scheme the data
matrices were generated using the Alamouti scheme [23] with
64–QAM symbols. If the “mismatched” demapper is used,
our proposed scheme has an SNR advantage of about 3.75 dB
over this training-based scheme, and even if the “optimal”
demapper is used, the gap remains about 3.3 dB. A more
sophisticated training-based scheme can be constructed using
the Golden code [24], with scalar symbols drawn from a
rectangular 8-QAM constellation (so that the overall data rate
is 2.4 bpcu). The performance of the resulting scheme with
both mismatched and optimal demapping is also plotted in
Figure 5. Although the use of the “optimal” demapper provides
a considerable performance gain over the mismatched receiver
for the Golden code scheme, the proposed Grassmannian
signalling scheme provides even better performance. In par-
ticular, our scheme has an SNR advantage of about 2 dB and
1.4 dB over the Golden code schemes with mismatched and

optimal demapping, respectively.2 An additional advantage of
the proposed approach is that it can be adapted to different
antenna configurations and target rates in a straightforward
way. This is not always the case with sophisticated coherent
codes.

VI. CONCLUSION

We have developed a BICM-IDD scheme for a Grassman-
nian signalling approach to non-coherent MIMO communi-
cation, and we have demonstrated that for high data rate
transmission over channels with short coherence times, the
proposed scheme can provide significantly better performance
than several training-based schemes.
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