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F inite impulse response (FIR) filters have played a central role in dig-
ital signal processing since its inception. As befits that role, a 
myriad of design techniques is available, ranging from the 
quite straightforward windowing and frequency-sampling 
techniques to some rather sophisticated optimization-

based techniques; e.g., [1]–[7]. Among the most prominent 
optimization-based techniques is the Parks-McClellan algo-
rithm [8] for the design of “equiripple” linear phase FIR fil-
ters. One of the key features of that technique is the 
efficiency of the underlying Remez exchange algorithm. 
However, computing resources have grown more plenti-
ful since the Parks-McClellan algorithm was developed  
[9], and this has spawned the development of more flex-
ible design methodologies. Of particular note are 
METEOR [10] and the peak-constrained least-squares 
(PCLS) approach [11], [12]. METEOR is a flexible plat-
form for FIR filter design problems that can be formu-
lated as the optimization of a linear objective subject to 
linear constraints; i.e., as a linear program. One such 
problem is the design of a linear-phase low-pass filter 
with a “ripple” constraint in the pass-band, a constraint 
on the stop-band level, and the constraint that the pass-
band response be a concave function of frequency. The 
PCLS approach provides efficient constraint exchange 
algorithms for finding filters that minimize a “least squares” 
approximation error subject to linear constraints; i.e., solve a 
quadratic program. One example is the design of a low-pass fil-
ter that minimizes the stop-band energy subject to a bound on 
the stop-band level. 

Linear and quadratic programs are two of the simpler forms of 
convex optimization problem, and effective algorithms for solving 
them have been available for some time. Around the time that METEOR 
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and the PCLS approach were developed, breakthroughs 
were being made in the development of algorithms for solv-
ing more general convex optimization problems, and the 
subsequent developments have expanded the class of opti-
mization problems that can be efficiently solved [13]. 
Furthermore, general-purpose implementations of those 
algorithms are readily available [14], [15], and some of the 
recently developed interfaces to those implementations are 
remarkably easy to use [16], [17]. 

An outcome of that development is that there is a rich 
class of filter design problems that can be optimally solved 
in a manner that is reliable, efficient, and requires little 
programming effort. Indeed, as also observed in [18]–[20], 
these convex optimization tools constitute a flexible plat-
form for FIR filter design that captures the spirit of 
METEOR, but encapsulates a richer class of design prob-
lems. However, the impact of convexity extends beyond the 
solution of individual design problems to the interactive 
procedure that typifies the art of filter design. Effective FIR 
filter design requires judicious compromises to be made 
between competing properties of the filter; e.g., [11]. Convex 
optimization enriches that design process by enabling effi-
cient computation of some of the inherent tradeoffs in FIR 
filter design; that is, fundamental tradeoffs that cannot be 
exceeded by any design method. The resulting tradeoff 
curves enable designers to quantify the extent to which cer-
tain desirable properties of a filter must be compromised to 
improve other aspects of the filter. As an example, insight 
from convex-optimization-based tradeoffs underlies the 
somewhat simpler tradeoff that was employed in the design 
of a spectral shaping filter in the HomePlug AV standard for 
home networking over power lines [21]. 

Of course, there is a significant number of filter design 
problems that are not convex; perhaps most notably those 
involving quantized filter coefficients. For these problems, 
finding a globally optimal filter is often a computationally 
overwhelming task, and hence the designer’s judgment typi-
cally plays an even greater role in the design process. Convex 
optimization can also enhance that design process, through 
the generation of useful starting points for local optimization 
techniques, the ability to evaluate locally optimal solutions 
against inherent tradeoffs or bounds thereon, and the develop-
ment of bounds for use in branch-and-bound algorithms [22] 
for globally optimal filters. 

FIR FILTERS
An FIR filter of length L can be represented by its impulse 
response, h 3n 4, 0 # n # L2 1, or by its frequency response 

 H 1e 
jv 2 5 aL21

n50
h 3n 4e2jvn. (1)

We will find it convenient to represent the impulse response 
using the vector h, the elements of which we will index from 
zero so that the nth element, 3h 4 n, is h 3n 4, 0 # n # L2 1. 
This enables us to write the frequency response as 

 H 1e  
jv 2 5 v 1v 2H h,  (2)

where 3v 1v 2 4 n5 e 
jvn, and the superscript 1 # 2H denotes the con-

jugate transpose. For simplicity, we will focus on filters with 
real-valued coefficients, h [ RL,  but much of our discussion 
extends to filters with complex coefficients. 

A popular class of FIR filters is the class of linear-phase fil-
ters. Phase linearity can be achieved by ensuring that the 
impulse response is either symmetric or antisymmetric about 
its midpoint. Linear-phase filters can be represented in a generic 
way [1], [3], with h| denoting one half of the impulse response, 
and with the frequency response taking the form 
H 1e 

jv 2 5 e 
jU1v2H| 1e 

jv 2 , where the amplitude response 

 H| 1e jv 2 5 v| 1v 2T h| (3)

is real valued, U 1v 2 5 u01mv with u0 and m depending only 
on the filter length and symmetry, and v| 1v 2  is defined implicit-
ly. The superscript 1 # 2T denotes the transpose. For odd-length 
filters with even symmetry, which are often called Type I linear-
phase filters, u05 0, m52 1L2 1 2 /2, 3 v| 1v 2 405 1, and for 
n . 0, 3 v| 1v 2 4n5 2cos 1nv 2 . 

In addition to the frequency and amplitude responses, the 
power spectrum of the filter, |H 1e  

jv 2 |2, also arises naturally in a 
number of design contexts. Using (2) we can write 

 |H 1e jv 2 |25 hTv 1v 2v 1v 2H h,  (4)

and hence for each frequency the power spectrum is a convex 
quadratic function of h. The power spectrum can also be written 
as a linear function of the autocorrelation of h 3n 4, 
 rh 3k 45 a

n
h 3n 4 h 3n1 k 4. (5)

In particular, since Rh 1e jv 2 5 |H 1e jv 2 |2, and rh 3k 4 is a Type I 
linear-phase filter, 

 |H 1e jv 2 |25 v| 1v 2T r|h. (6)

GENERIC FORMULATION OF FILTER DESIGN PROBLEMS
The design of an FIR filter is often formulated as a constrained 
optimization problem. Typically, that problem is constructed in 
two stages. First, the characteristics of desirable filters are 
described in terms of constraints. Then a performance metric is 
selected and we seek the best of the desirable filters according to 
that metric. For example, the set of desirable filters might be 
those for which the magnitude response lies within the spectral 
mask in Figure 1 and the performance metric might be the 
“least-squares” error between the obtained frequency response 
and a desired response.

The description of the characteristics of desirable filters may 
include both inequality and equality constraints. We will write 
each of the inequality constraints in the form fm(x) # jm, where 
m is the index of the constraint, x represents the vector of 
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design variables, which will 
include one of h, h

|
 and r|h, 

fm 1 # 2  describes the characteris-
tic of the filter, and jm is the 
value below which fm 1 # 2  must 
lie for the filter to be deemed 
desirable. (Lower-bound con-
straints can be written in this form by multiplying both sides by 
21.) Each of the equality constraints will be written in the form 
gq(x) 5 zq.

The set of vectors x that satisfy the constructed constraints 
represents the set of filters that are desirable in the sense that 
they satisfy the characteristics specified by the values of jm and 
zq. Often there is a primary characteristic, say fm0

1x 2 , that is to 
be optimized over the set of desirable filters, and in that case the 
generic design problem can be written as 

 min
x,g

 g (7a)

 subject to  fm0
1x 2 # g,  (7b)

  fm 1x 2 # jm,  m 2 m0 (7c)

 gq 1x 2 5zq,  (7d)

where we have left the ranges of the integers m and q 
implicit. Although the objective, fm0

1x 2 , is also left implicit, 
a useful interpretation of (7) is that it seeks the tightest ver-
sion of the m0th inequality such that there exists a filter that 
satisfies the constraints. This interpretation will allow us to 
handle some mild variations of (7) in a straightforward way; 
see the section “Variations on the Theme of (7).” One natu-
ral variant is the problem of optimizing a weighted sum of 
several  characteristics. 

In general, problems of the form in (7) can be quite difficult 
to solve. Globally optimal solutions can be obtained using 
branch-and-bound methods [22], but those methods are typical-
ly rather time consuming. An alternative is to seek locally opti-
mal solutions by applying a sequential algorithm to 
appropriately selected starting points [23]. 

The situation is quite differ-
ent in the case that each fm 1x 2  
in (7) is a convex function of x 
and each gq 1x 2  is linear. In that 
case, the problem in (7) is con-
vex  [13], and any locally opti-
mal solution is  globally 

optimal. For a large class of such problems there are some ana-
lytical results that provide insight into the nature of the opti-
mal solution [13], and recently developed general-purpose 
software tools [14]–[17] enable globally optimal solutions to be 
efficiently obtained with little programming effort. These tools 
also provide reliable detection of infeasibility; i.e., when there is 
no filter of the chosen length that satisfies all the constraints. 
That enables us to accommodate performance metrics that are 
only quasi convex  [13]; see the section “Variations on the 
Theme of (7).” Many filter design problems have rather sparse 
constraints, and some of these general-purpose tools are able 
to exploit that sparsity for  computational and numerical advan-
tage. Although some filter design problems possess additional 
structure that can be exploited by custom designed software, 
with contemporary computing technology the approach that 
we will highlight typically enables interactive design of filters 
with several hundred taps. 

When the problem in (7) is convex, it also provides an effi-
cient, flexible framework for examining inherent tradeoffs in 
FIR filter design; that is, fundamental tradeoffs that cannot be 
exceeded by any design method. As an example, consider the 
simple case in which there are just two inequality constraints. 
As illustrated in Figure 2, there is a curve that partitions the 1j1, j2 2  plane into a region containing pairs for which there 
exists a filter that satisfies both constraints, and pairs for which 
there is no feasible filter. As is implicit in the notation gw 1j1 2 , 
each point on this curve can be obtained by solving the problem 
in (7) with f2 1x 2  chosen as the objective (i.e., m05 2) and j1 

+

×

ξ2

ξ1

γ *(ξ1)

[FIG2]  The inherent tradeoff between j1 and j2 for a generic 
convex problem. All pairs 1j1, j2 2 on or above the curve can be 
achieved using a filter of the given length, and no pairs below 
the curve can be achieved.

[FIG1] A low-pass filter mask (solid) and a desired response 
(dash-dot).
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fixed at the desired value. When 
(7) is convex, each of those 
problems can be efficiently 
solved. In contrast, when the 
problem in (7) is not convex, 
the potential for multiple local-
ly optimal solutions typically 
means that the tradeoff curve 
that can be obtained with rea-
sonable computational effort is the tradeoff curve achieved by 
the chosen design method, rather than the inherent tradeoff. 

The potential for multiple locally optimal solutions means 
that the design of filters subject to nonconvex constraints typi-
cally involves considerable judgment on behalf of the designer. 
For example, if the optimization approach involves the applica-
tion of a sequential algorithm to a number of starting points, 
the designer must eventually decide when the best of the local 
solutions that has been obtained so far is “good enough.” As 
illustrated in “Using an Inherent Tradeoff in a Nonconvex De-
sign,” in some cases insight from inherent tradeoffs generated 
by convex design problems can enhance that decision process. 

Now that we have identified some of the advantages of filter 
design problems in which each constraint yields a convex feasi-
ble set, a natural question to ask is how rich is the correspond-
ing class of filter design criteria. We will provide some examples 
in the following two sections, but at this point it is worth point-
ing out that bounds on linear functions of x yield convex feasible 
sets, as do upper bounds on convex quadratic functions of x, but 
lower bounds on convex quadratic functions of x, upper bounds 
on nonconvex quadratic constraints, and quadratic equality 
constraints do not. 

Although many filter design criteria can be written as linear 
or convex quadratic constraints, the class of convex criteria is 
far more diverse; e.g., [13] and [17]. In some cases, that 

 convexity is not immediately 
apparent from the natural 
parameterization of the design 
problem in terms of the 
impulse response, h. Indeed, 
there are several interesting 
problems in which the desirable 
characteristics of the filter 
result in nonconvex constraints 

on h that can be rewritten as convex constraints on the autocor-
relation vector, r|h. Examples include filter design problems with 
constraints on the magnitude response [24], [25], root-Nyquist 
filters (e.g., [26] and [27]), and wavelets and multirate filter 
banks [28]–[31]. However, before we solve the corresponding 
version of the problem in (7), we must ensure that r|h corre-
sponds to a valid autocorrelation. Since Rh 1e jv 2 5 |H 1e jv 2 |2, 
this can be ensured by requiring that 

 v| 1v 2T r|h $ 0 for all v [ 30, p 4. (8)

Although this constraint is linear in r|h, it is semi-infinite, in the 
sense that there is one constraint for each v [ 30, p 4. Some 
techniques for tackling such constraints are discussed in “Finite 
Representations of Spectral Mask Constraints.” Once the opti-
mal autocorrelation has been found, a filter that generates that 
autocorrelation can be extracted using standard spectral factor-
ization techniques [25], [32]. Although the minimum phase 
spectral factor is often a reasonable choice, if a secondary objec-
tive is available, it can be used to select the most appropriate 
spectral factor [33]. 

In the following two sections we will provide some examples 
of common filter design criteria that yield convex constraints 
on at least one of h, h|, and r|h. These examples illustrate the 
flexibility provided by the convex design platform: For any col-
lection of constraints that are convex in the chosen design vari-
able, the problem in (7) is convex and is amenable to the 
powerful algorithms and analytical tools discussed above. In a 
later section, we will provide a design example in which we 
take advantage of that flexibility, and we will provide a simple 
implementation using MATLAB and CVX  [17]. 

FREQUENCY-DOMAIN CRITERIA
We now provide some examples of frequency-domain design cri-
teria that yield convex constraints on h, h

|
, or r|h. 

SPECTRAL MASKS
In many applications it is desirable that the filter satisfy a “spec-
tral mask” of the form 

 L 1e jv 2 # |H 1e jv 2 | # U 1e jv 2   for all v [ 30, p 4,  (9)

for some given (nonnegative) bounds L 1e jv 2  and U 1e jv 2 , 
respectively. Although the semi-infinite nature of this constraint 
can be tackled using the techniques described in “Finite 
Representations of Spectral Mask Constraints,” this constraint is 

USING AN INHERENT TRADEOFF IN A NONCONVEX DESIGN
Consider a generic design problem in which the goal is to 
find a filter that achieves small values of the functions f1 1x 2  
and f2 1x 2 , which are convex, and also satisfies a third, non-
convex, constraint. This problem is somewhat representative 
of the problem of designing a low-pass filter with small stop-
band energy, a low stop-band level, and quantized coeffi-
cients. Although the corresponding version of the problem in 
(7) is not convex, if that problem is “relaxed” by removing 
the nonconvex constraint, the resulting problem becomes 
convex and the inherent tradeoff between j1 and j2 can be 
efficiently obtained, as illustrated in Figure 2. If the chosen 
algorithm for the original nonconvex problem achieves the 
point in Figure 2 marked by the 1  then it might be deemed 
to be “good enough,” because it lies close to the “knee” 
point of the inherent tradeoff for filters that are not required 
to satisfy the nonconvex constraint. This would enable the 
design process to be terminated at that point. In contrast, a 
filter that achieves the 3  in Figure 2 is less likely to be 
deemed good enough, at least in the early phases of the 
design process.

THE POTENTIAL FOR MULTIPLE LOCALLY 
OPTIMAL SOLUTIONS MEANS THAT 
THE DESIGN OF FILTERS SUBJECT TO 

NONCONVEX CONSTRAINTS TYPICALLY 
INVOLVES CONSIDERABLE JUDGMENT ON 

BEHALF OF THE DESIGNER.
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awkward to deal with because the feasible set for the lower 
bound is not convex, unless L 1e jv 2  is identically zero. To make 
that more apparent, we can rewrite (9) as 

 L 1e  
jv2 2 # hTv 1v 2v 1v 2Hh# U 1e  

jv2 2   for all v [ 30, p4. (10)

At each frequency, this corresponds to upper and lower bounds 
on a convex quadratic function of h. The upper bound yields a 
convex feasible set, whereas the lower bound does not; cf. [13]. 

In the case of linear-phase filters, the mask is usually applied 
to the amplitude response: L| 1e  

jv 2 # H| 1e  
jv 2 # U| 1e  

jv 2  for all 
v [ 30, p 4, where L| 1e  

jv 2  and U| 1e 
jv 2  are not restricted to being 

nonnegative. Since H| 1ejv 2 5 v| 1v 2T h|, this mask generates two 
semi-infinite linear constraints on h

|
; e.g., [10].

In the case of autocorrelation-based designs, we can use the 
fact that |H 1e  

jv 2 |25 R 1e  
jv 2  to rewrite (10) as two semi-infinite 

linear constraints on r|h, namely,

 L 1e  
jv 2 2 # v| 1v 2T r|h # U 1e  

jv 2 2   for all v [ 30, p 4. (11)

The spectral mask in (9) is absolute, and hence it imposes 
implicit scaling constraints on the filter. In some applications, 
different scalings, such as energy normalization, are required. 
In those cases, it is often more appropriate to impose a relative 
mask of the form L 1e  

jv 2 5 bL 1e  
jv 2  and U 1e  

jv 2 5 bU 1e  
jv 2  for 

given bounds L 1e  
jv 2  and U 1e  

jv 2 , where b . 0 is a design vari-
able that will be incorporated into x along with one of h, h|, or 
r|h. These relative masks can be handled in an analogous way, 
and they facilitate some interesting variants of some conven-
tional design problems; e.g., [34, Ex. 1].

SPECTRAL FLATNESS
The optimization of filters subject to spectral mask constraints 
often leads to “ripples” in the response. Less oscillatory spectra can 
be obtained by constraining the curvature of the response with 
respect to frequency. 

For linear-phase filters, we can consider the amplitude res-
ponse H| 1ejv 2 .  Since d 

pH| 1e jv 2 /dvp5 v|1 p2 1v 2T h|,  where 
v|1p2 1v 2 5 d 

pv| 1v 2 /dvp, bounds on the derivatives of H| 1e  
jv 2  

result in semi-infinite linear constraints on h|. For example, the 
constraint that H| 1e  

jv 2  is concave in frequency over a pass-band P 
corresponds to v 122| 1v 2T h 

|
# 0 for all v [ P, [10]. In autocorre-

lation-based designs one can impose curvature constraints on the 
power spectrum |H 1e  

jv 2 |25 v| 1v 2T r|h in an analogous way. 
Furthermore, in certain cases, bounds on the derivatives of 
|H 1e  

jv 2 | can be handled directly [25]. 
The behavior of a filter’s response can also be modified by forc-

ing the derivatives of the response to be zero at certain frequen-
cies. These “flatness” constraints correspond to linear equality 
constraints on h

|
 or r|h; e.g., [4], [20], [30], and [31]. 

By their very nature, spectral masks, such as that in (9), yield 
semi-infinite constraints, in the sense that each value of v gen-
erates different constraints. To incorporate these constraints 
into a conventional optimization framework, they must be 
represented in a finite manner. Although some rather sophisti-
cated discretization techniques available [35], a popular 
approach is to approximate each semi-infinite constraint by 
sampling it uniformly in frequency. The sampled constraints 
can also be “tightened” in a number of ways to account for 
the behavior of the response in between the sample points. In 
the case of sampling (11) at N 1 1 uniformly spaced values of 
v and uniform tightening of the mask in an additive sense, 
this approximation results in the 2N 1 2 linear constraints 

 L 1e jvi 221 P # v| 1vi 2T r|h # U 1e jvi 222 P (12)

for vi5 ip/N, i5 0, 1, 2, c, N, where P $ 0 tightens the 
mask. Although there are cases in which the pair 1N, P 2  can be 
chosen so that satisfaction of (12) guarantees satisfaction of 
(11) (e.g., [25]), a popular rule of thumb is to choose N < 15L 
and to allow P to be quite small. If, as is often the case, there 
are discontinuities in L 1e jv 2  and U 1e jv 2  that do not lie on the 
uniform sampling grid and then imposing additional con-
straints corresponding to those points of discontinuity can sig-
nificantly improve the quality of the sampled approximation.

The uniform sampling approach in (12) is convenient because 
it yields constraints that can be handled directly by general-
purpose convex optimization solvers. A popular alternative is to 
employ a constraint-exchange approach; e.g., [1], [8], [11], and 

[12]. In each iteration of such algorithms, a set of active con-
straints is postulated based on information regarding the cur-
rent iterate, and the next iterate is generated by solving the 
simpler optimization problem obtained by considering only 
those active constraints. Although the selection of a subset of 
the constraints usually means that each iteration of an 
exchange algorithm incurs a relatively low computational cost, 
considerable effort may be required to guarantee convergence.

The discussion here raises a more general question of 
whether it is possible to precisely represent the mask con-
straints for linear-phase or autocorrelation-based designs in a 
finite convex manner. Dual parameterization methods [36] 
yield precise finite representations, but they do not necessar-
ily yield convex problems. In contrast, by developing general-
izations of the Positive-Real Lemma and Bounded-Real 
Lemma of system theory, for a large class of functions L 1e jv 2  
and U 1e jv 2  the two semi-infinite constraints in (11) (or the 
corresponding constraints for the linear-phase case) can be 
precisely represented in a finite and convex way using linear 
matrix inequalities; e.g., [34]–[39]. Perhaps the simplest 
example of this approach concerns the nonnegativity con-
straint in (8). That semi-infinite linear constraint is equivalent 
to the existence of an L 3 L positive semidefinite symmetric 
matrix X for which trace 1X 2 5 3 r|h 40 and the sum of the ele-
ments of the kth off-diagonal of X  equals 3 r|h 4k, 
k5 1, 2, c, L2 1; e.g., [26], [29], and [40]. Since the set of 
positive semidefinite matrices is convex [13] and the equality 
constraints are linear, we have a finite convex representation. 

FINITE REPRESENTATIONS OF SPECTRAL MASK CONSTRAINTS
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The above constraints allow 
us to control the slope of the 
response on a linear-linear plot. 
However, we may also wish to 
constrain it on a log-linear (deci-
bel) plot or on a log-log plot (i.e., 
the Bode diagram). For linear 
phase filters and for autocorrela-
tion-based designs, such con-
straints also yield semi-infinite linear constraints on h

|
 and r|h, 

respectively, [25]. 

BOUNDS ON THE PHASE RESPONSE
In the direct design of a general FIR filter, one may wish to 
impose bounds on the phase response of H 1e  

jv 2  that are analo-
gous to those for the magnitude response;  i .e. , 
F 1e jv 2 # /H 1e jv 2 # G 1e jv 2 . Bounds of this form can be writ-
ten as semi-infinite linear constraints on h [41], [42].

WEIGHTED INTEGRAL SQUARED 
APPROXIMATION ERROR
One of the classical approaches to FIR filter design is to pose the 
design problem as the approximation of a desired frequency 
response D 1e  

jv 2 , and to minimize a measure of the approxima-
tion error; see “Approximation Errors and Induced Norms.” In this 
section, we will consider the “least-squares” approximation error, 
and in the following section we will consider the peak error. 

For a given real-valued weighing function W 1v 2 $ 0, the con-
straint that the weighted integral of the squared approximation 
error be less than j is 

 3
p

2p

W 1v 2 |D 1e  
jv 2 2H 1e 

jv 2 |2 dv # j. (13)

This constraint can be written as 

 hTQh2 2bTh1 c # j,  (14)

where Q5 ep2pW 1v 2v 1v 2v 1v 2Hdv, b 5 ep2pW 1v 2Re 1D 1e jv 2*
v 1v 2 * 2dv, c5 ep2pW 1v 2 |D 1e  

jv 2 |2dv, and Re 1 # 2  denotes the real 
part. (In some cases, these integrals can be found in closed form.) 
The matrix Q is positive semidefinite and hence the constraint in 
(14) is convex.

For linear phase filters, we can consider the error between the 
amplitude response H| 1e  

jv 2  and a real-valued desired response, say 
D| 1e  

jv 2 . The weighted integral squared error between these 
responses can be written as a convex quadratic function of h| that 
is analogous to that in (14). 

In (13), the approximation error is measured in the “complex 
domain” [1], and hence the magnitude error and the phase error 
are intertwined. However, in some cases it might be appropriate to 
impose a corresponding constraint on the error between the 
power spectra of D 1e  

jv 2  and H 1e  
jv 2 ; i.e., 

 3
p

2p

W 1v 2 0 0D 1e  
jv 2 |22 |H 1e  

jv 2 |2 0 2 dv # j.  (15)

The expression on the left-hand 
side is a quartic function of h 
and hence is not necessarily con-
vex. However, by recalling that 
|H 1e  

jv 2 |25 Rh 1e  
jv 2 , we can re -

parameterize this constraint as a 
convex quadratic constraint on 
r|h analogous to (14).

WEIGHTED PEAK APPROXIMATION ERROR
A constraint on the weighted peak error takes the form 

 max
v

 W 1v 2 |D 1e  
jv 2 2H 1e  

jv 2 | # j. (16)

This “Chebyshev” constraint is equivalent to the semi-infinite con-
vex quadratic constraint [6], [18]–[20], [46]

W 1v 2 1hTv 1v 2v 1v 2Hh2 2Re 1D 1e jv 2 *v 1v 2H 2h1 |D 1e jv 2 |2 2 # j 
  for all v [ 30, p 4. (17)

(An alternative formulation appears in [47].) In the linear-phase 
case, a constraint on the weighted peak error between H| 1e  

jv 2  and 
a real-valued desired response D| 1e  

jv 2  (cf. [8]) can be written as 
the following pair of semi-infinite linear constraints, e.g., [10] 

 W 1v 2D| 1e  
jv 2 2j # W 1v 2 v| 1v 2Th| # W 1v 2D| 1e  

jv 2 1j. (18)

A constraint on the weighted peak error of the power spectra, 

 max
v

 W 1v 2 0 0 D 1e  
jv 2 |22 |H 1e  

jv 2 |2 0 # j,   (19)

yields nonconvex quadratic constraints on h but semi-infinite lin-
ear constraints on r|h, analogous to those in (18). 

As an alternative to (19) one can consider the weighted peak 
error in decibels. Given a set of frequencies W for which 
W 1v 2 . 0 and D 1e  

jv 2 2 0, that error can be written as 

  max
v[W

W 1v 2 |20 log
10
1 |D 1e jv2 | 2 2 20 log

10
1 |H 1e jv 2 | 2 |. (20)

In the case of autocorrelation-based designs, the constraint that 
this error is bounded by j is equivalent to the following pair of 
semi-infinite linear constraints on r|h, [25], 

 |D 1e  
jv 2 |2/h 1v 2 # v| 1v 2T r|g # h 1v 2 |D 1e  

jv 2 |2 (21)

for all v [W, where h 1v 2 5 10j/110W 1v22. 

WEIGHTED L1 APPROXIMATION ERROR
In addition to the weighted L2 and L` norms of the error E 1e  

jv 2  
that were considered above, other weighted Lp errors may be of 
interest [48]. In particular, we may be interested in a bound on 
the weighted L1 norm of the error

SOME FILTER DESIGN PROBLEMS 
REQUIRE THE USE OF A 

NORMALIZATION CRITERION, 
TYPICALLY WITH RESPECT TO THE 

ENERGY OF THE IMPULSE RESPONSE 
OR THE DC GAIN.
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 ep2pW 1v 2 |D 1e  
jv 2 2H 1e  

jv 2 | dv # j. 

In the linear-phase case, a convex formulation of the version of 
this constraint for the amplitude response can be obtained (e.g., 
[18] and [49]), and a specialized algorithm was developed in [50]. 

TIME-DOMAIN CRITERIA
Now we provide some examples of time-domain design criteria 
that yield convex constraints on h or r|h. For linear phase filters, h 
is a (simple) linear function of h|, and hence the discussion below 
regarding h also applies to h|. 

SIMPLE NORMALIZATION CRITERIA
Some filter design problems require the use of a normalization 
criterion, typically with respect to the energy of the impulse 
response or the DC gain. Setting the DC gain to K corresponds 
to the linear equality constraint gL21

n50
h 3n 45K, but specifying 

the filter energy results in a quadratic equality constraint on h, 
which is not convex. In contrast, for autocorrelation-based 
designs, setting the filter energy to E corresponds to rh 30 45 E, 
which is linear, and hence convex. Setting the DC gain to K in 
such designs corresponds to rh 30 41 2aL21

k51
rh 3k 45K 

2, which is 
also linear. 

ENVELOPE CONSTRAINTS
In some applications, the filter design problem may include a con-
straint that the time-domain response to a particular input lies 
within a prescribed envelope [51]. For a “sampled-data” imple-
mentation using an FIR filter, this envelope constraint leads to two 
semi-infinite linear constraints on h; one pair of constraints for 
each instant of time [51]. 

INTERPOLATION
In the conversion of a signal of a given sampling rate to a corre-
sponding signal at a higher sampling rate, it may be desirable to 
impose an interpolation constraint that ensures that the samples 
from the original signal appear unchanged in the “up-converted” 
signal. For sampling rate changes by an integer factor M, this 

 constraint corresponds to the linear equality constraints h 30 45 1 
and h 3iM 45 0, i5 1, 2, c, : 1L2 1 2 /M;. 
,1 APPROXIMATION ERROR
As discussed in “Approximation Errors and Induced Norms,” the 
,1 norm of d 3n 42 h 3n 4, where d 3n 4  is the desired impulse 
response, is an induced norm of the error system. A bound on this 
approximation error, aL21

n50
 |d 3n 42h 3n 4 0  # j, can be written as 

the following 2L1 1 linear constraints on h and the additional 
variable t [ R 

L [13], d 3n 42 t 3n 4 # h 3n 4 # d 3n 41 t 3n 4 , and 

aL21

n50
 t 3n 4 # j. When d 3n 45 0, this corresponds to the con-

straint ||h||1 # j, which is a popular proxy for a sparsity constraint 
on h; e.g.,  [52]. 

SELF-ORTHOGONALITY
In a number of applications, including the design of pulse shapes 
for communications and the design of wavelets and multirate filter 
banks, it is desirable that the impulse response be orthogonal, or 
almost orthogonal, to translated versions of itself at integer multi-
ples of, say, M. That is, we would like to have an

h 3n 4 h 3n1 iM 4 
to be zero, or small, for nonzero integers i. Unfortunately, this 
leads to nonconvex quadratic constraints on h; e.g., [53]. However, 
the orthogonality constraint yields linear equality constraints on 
r|h, namely rh 3iM 45 0. If small deviations from self-orthogonality 
are permissible, we can collect the terms rh 3iM 4, 
i5 1, 2, c, : 1L2 1 2 /M;, in a vector r

?
h and impose ||r

?
h||1 # j, 

||r
?
h||2 # j, or ||r

?
h||` # j, all of which can be written as convex 

constraints on r|h and perhaps some additional variables; e.g., [27] 
and [54]. 

VARIATIONS ON THE THEME OF (7)
As mentioned in the section “Generic Formulation of Filter Design 
Problems,” the problem in (7) can be interpreted as finding the 
tightest version of the m0th constraint such that there is a filter 
that satisfies all the constraints. As we now illustrate, variations on 
this interpretation yield a number of interesting efficiently solvable 
design problems that do not quite fit into the framework of (7) but 
are very closely related. 

APPROXIMATION ERRORS AND INDUCED NORMS
A useful interpretation of some of the common measures 
used in approximation-based filter design can be obtained by 
asking how different the outputs of the desired and designed 
systems can be for a given class of bounded inputs; e.g., [43]. 
This corresponds to considering the approximation error 
E 1e jv 2 5D 1e jv 2 2H 1e jv 2  as the frequency response of a stable 
system and asking how large the output of that system can be 
for the given class of inputs. Different choices for the notions 
of size of the inputs and outputs yield different “induced 
norms” (e.g., [44, Ch. 5] and [45, Ch. 2]) on the error system 
and hence different measures of the approximation error. 

When the input class is the set of bounded energy signals and 
the output is measured in terms of its energy, the induced norm 
is the peak value of |E 1e jv 2 |; i.e., the L` norm of E 1e jv 2 . For cases 

in which D 1e jv 2 has an inverse discrete-time Fourier transform (of 
possibly infinite length), denoted by d 3n 4, the induced norm 
from the energy of the input to the peak absolute value of the 
time-domain output is the square-root of the unweighted inte-
gral squared error; i.e., the L2 norm of E 1e jv 2  on 32p, p 2 .  
Similarly, the induced norm from the peak absolute value of the 
input to the peak absolute value of the output is the ,1 norm of 
e 3n 4 5 d 3n 4 2 h 3n 4, namely an

|d 3n 4 2 e 3n 4|; e.g., [45, Ch. 2]. 
In the main text we consider weighted approximation errors, 

which correspond to the induced norms of appropriately pre-fil-
tered error systems. The weighted integral squared error is also 
2p times the mean square value of the output of the error sys-
tem when the input is a stationary random process with power 
spectral density  W 1v 2 ; e.g., [44, Ch. 5]. 
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MINIMUM LENGTH DESIGN
Consider the problem of finding the shortest filter that satisfies 
the constraints; i.e., minx[RL , L[Z1

 L, subject to fm 1x 2 # jm and 
gq 1x 2 5zq. Since L is an integer, the objective is not convex. 
However, when the feasible sets of all the constraints are convex, 
this problem is quasi convex (cf. [13]) and can be efficiently 
solved. In particular, given lengths LF and LI for which the prob-
lem is known to be feasible and infeasible, respectively, we can 
perform a bisection-based search on 3LI, LF 4 for the minimum 
feasible length. At each step, the question of whether there 
exists a filter of the given length that satisfies all the constraints 
is resolved. When the feasible set is convex, infeasibility can be 
reliably detected and that feasibility problem can be efficiently 
solved. Since the bisection search algorithm is also efficient, a 
filter of minimum length can be efficiently found. In the absence 
of other information, the initial value of LI can be set to zero, 
and one can obtain an initial value for LF by iteratively doubling 
a postulated value until a feasible problem is found; see, e.g., 
[26] and [54]. 

TIGHTEST SPECTRAL MASK DESIGN
Another variation is to find the tightest spectral mask such that a 
feasible filter of a given length exists, subject to other convex con-
straints; e.g., [25] and [27]. For simplicity, let us consider linear 
phase filters and the low-pass spectral mask in Figure 1. The prob-
lem of minimizing the stop-band level of this mask can be written 
as: minh

|,g g subject to 

 v| 1v 2T h| # Up   for all v [ 30, vs 2 ,  (22a)

  v| 1v 2T h| $ Lp     for all v [ 30, vp 4,  (22b)

  v| 1v 2T h| $ Up     for all v [ 3vp, vs, 4,  
 2g # v| 1v 2T h| # g   for all v [ 3vs, p 4. (22c)

This problem is convex (e.g., [10]), as is the problem of minimiz-
ing the pass-band ripple (on a linear scale), which takes a similar 
form, but with the constraints 

 Cp2g # v| 1v 2Th| # Cp1g    for all v [ 30, vp 4,  (23a)

 Cp1g # v| 1v 2T h| # Cp1g     for all v [ 1vp, vs 2 ,  (23b)

 2 Us # v| 1v 2T h| # Us  for all v [ 3vs, p 4,  (23c)

where Cp5 1Lp1 Up 2 /2. To minimize the ripple on a decibel 
scale, we define C̆p5"LpUp and replace (23a) by 

 C̆p/g # v| 1v 2T h| # C̆pg   for all v [ 30, vp 4, (24)

and (23b) by C̆p/g # v| 1v 2T h| # C̆pg, for all v [ 1vp, vs 2 . In 
(24) the upper bound is linear, but the lower bound is not. 
However, the lower bound can be rewritten as C̆p # gv| 1v 2T h|, 
and, at each frequency, this constraint can be transformed [25] 
into a (convex) second-order cone constraint; cf. [13, p. 197]. 

In addition to tightening the stop-band level and pass-band 
ripple constraints, we may also be interested in increasing 
their extent; that is, finding the smallest stop-band edge, or 
the largest pass-band edge such that there is a feasible filter of 
the given length. For the stop-band edge case, we have 
minh

|,g g subject to 

 v| 1v 2T h| # Up   for all v [ 30, g 2 ,  (25a)

 v| 1v 2T h| $ Lp     for all v [ 30, vp 4,  (25b)

 v| 1v 2T h| $ Up     for all v [ 3vp, vs 4, 
 2 Us # v| 1v 2T h| # Us     for all v [ 3g, p 4. (25c)

Here, g enters the constraints in a somewhat different manner 
from that in (7), and the above tightest mask problems. However, 
for each value of g the feasible set is convex, and if g1 . g2 then 
the feasible set for g5 g1 contains that for g5 g2. Therefore, the 
problem is quasi convex and can be efficiently solved using a bisec-
tion-based search analogous to that for the minimum length 
design; see, e.g., [27]. 

DESIGN EXAMPLE
We now pursue a simple design example that encapsulates some of 
the principles outlined above. We consider the design of the proto-
type filter for an over-sampled near-perfect reconstruction general-
ized discrete Fourier transform (NPR-GDFT) filter bank (e.g., [54]) 
with M subchannels and down-sampling factor K , M. (This 
design also has an application in filtered multitone modulation 
[55].) The prototype filter is a low-pass filter, and its desirable prop-
erties include a small energy in the stop band 3p/K, p 4, a low 
stop-band level, a bounded response in the pass band 30, p/M 4 and 
the transition band, and that it comes close to satisfying a self-or-
thogonality constraint [54]. With the energy normalization 

an
|h 3n 4|25K/M, these constraints become 

 hTQsh # j1,  (26a)

 |v 1v 2H h| # j2  for all v [ 3p/K, p 4,  (26b)

 |v 1v 2H h| # j3  for all v [ 30, p/K 2 ,  (26c)

 a
i20

|a
n

h 3n 4h 3n1 iM 4|2 # j4
2,  (26d)

respectively. In (26a), Qs5 11/p 2 epp/K  v 1v 2v 1v 2Hdv and can be 
found analytically. Although (26a) is convex and (26b) and (26c) 
can be made convex [cf. (10)], (26d) is a quartic constraint on h 
and the energy normalization is a quadratic equality constraint, 
neither of which is convex. Fortunately, all four constraints and 
the normalization can be written as convex constraints on the 
autocorrelation rh 3k 4, and the problem of minimizing the stop-
band energy in (26a) subject to the other constraints can be writ-
ten as 

 min
r|h

 gT r|h (27a)

 subject to v| 1v 2T r|h # j2
2     for all v [ 3p/K, p 4,  (27b)

  v| 1v 2T r|h # j3
2     for all v [ 30, p/K 2 ,  (27c)
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  ||Sr|h||2 # j4/"2,  (27d)
  3 r|h 405K/M,  (27e)

  v| 1v 2T r|h $ 0   for all v [ 30, p 4,  (27f)

where the last constraint ensures that r|h represents a valid 
autocorrelation. The elements of g are 3g 405 12 1/K  and 3g 4 k5 22sin 1pk/K 2 / 1pk 2 , k $ 1. The constraint in (27d) rep-
resents a i.0

rh 3iM 42 # j4
2/2, and hence S consists of rows 

iM1 1, i . 0, of the L 3 L identity matrix. The problem in (27) 
has a linear objective, three semi-infinite linear constraints, 
(27b), (27c), and (27f), a convex quadratic constraint (27d), and 
a linear equality constraint (27e). Hence, it is convex. A simple 
MATLAB implementation using CVX  [17] is provided in “A 
Simple MATLAB/CVX Implementation of (27).” In that imple-
mentation, (27b) and (27c) have been approximated by sampling 
and uniform additive tightening, and (27f) has been precisely 
transformed into linear equality constraints on a positive semi-
definite symmetric matrix; see “Finite Representations of 
Spectral Mask Constraints.” Once the optimal autocorrelation 
has been found, an optimal prototype filter can be obtained by 
spectral factorization. In this particular application, a factor that 
is close to having linear phase will often be preferred. 

STOP-BAND TRADEOFFS
Now that we have a convex formulation, we can efficiently 
explore some of the inherent design tradeoffs. To complement 
the tradeoffs considered in [54], in Figure 3 we provide the 
inherent tradeoff between the stop-band energy gT r|h and the 
relative stop-band level j2

2/j3
2 for different values of the self- 

orthogonality bound  j45aK/M, for an NPR-GDFT filter bank 
with M5 8, K5 6, and L5 48. As in [54], we set j3

25 100.1K. 
For each curve, all points on or above the curve are achievable 
with a length 48 filter that satisfies the corresponding self-or-
thogonality bound, and no point below the curve can be 

achieved. The spectra of two filters that achieve the inherent 
tradeoff for a5 1023 are plotted in Figure 4(a) and (b). 

In the absence of a constraint on the self-orthogonality 
metric, the stop-band tradeoff is a conventional peak-con-
strained least squares tradeoff [11], but in GDFT filter banks 
the self-orthogonality constraint captures the important per-
formance criterion of distortion. Figure 3 shows that  relatively 

A SIMPLE MATLAB/CVX IMPLEMENTATION OF (27)

L=48;M=8;K=6;rel_sb_level_dB=-33;

alpha=10^(-3);  

xi_3_sqr=10^(0.1)*K; xi_4=alpha*K/M; 

  xi_2_sqr=xi_3_sqr*10^(rel_sb_level_ 

  dB/10);

sf=15; eps_sf=1e-6;

omega_s=pi/K; k_vecT=1:(L-1);  

Ns_pt=ceil(L*sf*omega_s/pi);  

Ns_s=ceil(L*sf*(1-omega_s/pi));  

omega_ptb=linspace(0,omega_s,Ns_pt+1)’;  

omega_ptb=omega_ptb(1:end-1);  

omega_sb=linspace(omega_s,pi,Ns_s)’;  

VtT_ptb=[ones(Ns_pt,1),

  2*cos(omega_ptb*k_vecT)];  

VtT_sb=[ones(Ns_s,1),2*cos(omega_sb*k_

  vecT)]; 

N_isi=floor((L-1)/M); k_isi_vec

  =M*(1:N_isi)’;  

S=eye(L); S=S(k_isi_vec+1,:);

gT=[1-1/K, -2*sin(pi*k_vecT/K)./

  (pi*k_vecT)];  

cvx_begin 

    cvx_solver sedumi; cvx_precision 

       high;  

    variable rtilde_h(L);  

    variable X(L,L) symmetric;  

    minimize (gT*rtilde_h)  

    subject to 

       VtT_sb*rtilde_h <= xi_2_

         sqr-eps_sf; 

       VtT_ptb*rtilde_h <= xi_3_sqr-

         eps_sf; 

       norm(S*rtilde_h) <= xi_4/sqrt(2); 

       [1,zeros(1,L-1)]*rtilde_h == K/M;  

       X==semidefinite(L); 

       trace(X)==rtilde_h(1);  

       for n=1:L-1, 

       sum(diag(X,n))==rtilde_h(n+1); 

       end;  

cvx_end
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r h
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[FIG3] Tradeoff between the stop-band energy and the stop-
band level for length-48 filters with different self-orthogonality 
bounds j45a K/M; from outer to inner: no self-orthogonality 
constraint, a5 1021, 1022, 5.34 3 1023, 1023.
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mild constraints on the self-orthogonality have a considerable 
impact on the inherent tradeoff; the achievable region for 
a5 1021 is significantly smaller than that in the absence of 
the self-orthogonality constraint. The impact of the self-or-
thogonality constraint on the pass-band spectrum of the filter 
is illustrated in Figure 5. As is implicit in Figure 3, the gross 
spectral features of these filters are similar to those in 
Figure 4(a), but they satisfy different self-orthogonality 
bounds. Figure 5 shows that the filters that are closer to being 

self-orthogonal have substantially flatter 
pass-band spectra; see also  [27]. 

To illustrate the role that the 
tradeoffs in Figure 3 can play in evaluat-
ing filters designed using other tech-
niques, consider the filter with the 
spectrum in Figure 4(c). This filter was 
obtained by interpolating the length-12 
symlet filter to length 48; see [54]. The 
self-orthogonality metric for this filter is 
5.34 3 1023K/M. Even though its side-
lobes decay quite rapidly, this filter has a 
rather large response at the stop-band 
edge and this is reflected in the position 
of the stop-band tradeoff achieved 
by this filter (the 3 in Figure 3) with 
respect to the corresponding inherent 
tradeoff (the red dashed curve). In par-
ticular, Figure 3 shows that for the 
attained self-orthogonality bound, sig-
nificantly lower stop-band levels and 
stop-band energies can be achieved.

Another approach to prototype design 
for NPR-GDFT filter banks is to consider 
linear-phase prototypes and to minimize a 
weighted sum of the stop-band energy and 
a self-orthogonality metric analogous to 

(26d), [56]. That problem is not convex, but good locally optimal 
filters can often be found using an iterative reweighted least-
squares technique; cf. [48]. The stop-band tradeoff achieved by 
the filter designed using that method that has a self-orthogonali-
ty metric of 1023 K/M  is marked with the 1  in Figure 3, and its 
power spectrum is provided in Figure 4(d). The gap between the 
1  and the corresponding inherent tradeoff (the blue solid curve 
in Figure 3) is due to the linear phase constraint and, possibly, to 
the fact that the algorithm only generates locally optimal solu-
tions. That said, phase linearity is sometimes highly desirable, 
and linear-phase filters are easier to implement; see also [57]. 

To close this example, we find the shortest filter that can 
achieve the point marked with the * in Figure 3, in the absence 
of the self-orthogonality constraint and for self-orthogonality 
bounds j45aK/M, with a5 1021, 1022, and 1023. Using the 
approach in the section “Minimum Length Design,” these 
lengths were found to be 36, 47, 55, and 59, respectively. As 
 predicted by Figure 3, when a5 1022 and 1023 filters longer 
than 48 are required. 

NONCONVEX DESIGN PROBLEMS
Our focus so far has been on FIR filter design problems that are, 
or can be transformed into, convex or quasi-convex optimiza-
tion problems. Of course, there are many interesting design 
problems that are not convex, including the design of filters 
with lower bounds on the magnitude response and bounds on 
the phase response; the design of linear phase filters with self-
orthogonality constraints; the design of filters with quantized 

[FIG5] Pass-band spectra of filters achieving the indicated points 
in Figure 3.
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[FIG4] (a)–(d) Power spectra of filters achieving the points a) s: stop-band 33 dB down; 
b) ,: stop-band 30 dB down; c) 3: Interpolated symlet; d) 1: Harteneck et al. [56] in 
Figure 3. The stop-band edge is indicated by the mask (dashed) or a dotted line.
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coefficients; and a variant of the 
design example that involves 
two prototype filters and group 
delay specifications [58]. There 
is a plethora of approaches to 
generating “good,” or even opti-
mal, solutions to such problems, 
but the effectiveness of a given 
approach depends quite strongly 
on the nature of the problem at hand. In lieu of a comprehen-
sive review of such approaches, in this section we will try to 
place a few of the more prominent general-purpose approaches 
in the context of our earlier  discussion. 

For nonconvex design problems with continuously valued 
coefficients, one reasonable approach is to adopt a sequential 
approximation algorithm [23]. In each step of such algorithms, 
we first construct a local approximation of the nonconvex 
design problem around the current iterate. Often that approxi-
mation is chosen so that the resulting local subproblem is con-
vex, and sometimes the subproblem has a closed-form solution. 
The next iterate is generated by (coarsely) solving the local sub-
problem problem, and the algorithm continues until appropri-
ate convergence criteria are satisfied. The sequential quadratic 
programming algorithm [23], which underlies MATLAB’s 
fmincon function, is an example of this approach, and related 
approaches were applied to some FIR filter design problems in 
[59] and [60]. (Although it is somewhat different, the iterative 
reweighted least squares approach [48] also involves sequential 
approximation.) Sequential algorithms require a starting point, 
and given the potential for a locally optimal solution to be sig-
nificantly suboptimal in a global sense, these algorithms are 
typically run from several starting points. As is implicit in 
“Using an Inherent Tradeoff in a Nonconvex Design,” there is 
considerable value in choosing “good” starting points. One 
approach to that task is to globally approximate the nonconvex 
problem by a convex one, and to use the solution of that convex 
problem, or a modified version thereof, as one of the start-
ing points. 

Two classes of global approximations that can also assist 
the designer in the evaluation of locally optimal solutions 
are relaxation and restriction. Simply put, relaxation 
involves loosening or removing some of the constraints in 
the generic design problem in (7), and hence the feasible set 
expands. When that expanded feasible set is convex, the 
relaxed problem can be efficiently solved. Although the 
resulting solution might not satisfy the constraints of the 
original problem, it does provide a lower bound on the glob-
ally optimal value of the original problem. (Relaxation can 
also be used to generate lower bounds for branch-and-bound 
approaches [22] to globally solving the original problem.) 
The lower bounds provided by relaxation can be used to con-
struct an outer bound on the region of tradeoff points that 
can be achieved; i.e., points below a tradeoff curve for the 
relaxed problem cannot be achieved. This was implicit in 
“Using an Inherent Tradeoff in a Nonconvex Design.” 

Although points  on the 
tradeoff curve for the relaxed 
problem might not be achiev-
able while satisfying the non-
convex constraints, if we 
obtain a solution to the origi-
nal problem that is “close” to 
that curve, it is likely to be 
deemed a “good” solution. 

That judgment can be enhanced by using restriction, in 
which some of the constraints are tightened, or new con-
straints are added, and the feasible set shrinks. When that 
shrunk  feasible set is convex, the restricted problem can be 
efficiently solved. The restricted problem provides an upper 
bound on the globally optimal value of the original problem 
and an inner bound on the region of achievable tradeoff points; 
i.e., points on or above the tradeoff curve for the restricted 
problem are achievable. An example of restriction arises in 
problems with a lower bound constraint on the magnitude 
response. This is a nonconvex constraint, but if the constraint 
that the filter have linear phase is added, the feasible set 
becomes convex. 

The design of filters with quantized coefficients has long 
been associated with the field of discrete optimization; e.g., [61] 
and [62]. A conventional approach to finding optimal discrete 
coefficient filters is to perform a branch-and-bound search [22] 
in which the lower bounds are generated by solving a relaxed 
problem in which the free variables no longer required to take 
on discrete values. If the coefficient quantization constraint is 
the only nonconvex constraint in the design problem, then the 
relaxed problem can be efficiently solved and a lower bound 
efficiently obtained. In that case, it might be tempting to 
remove the coefficient quantization constraint all together, 
solve the convex relaxed problem, and then round that solution 
to the nearest quantized point. Although that approach is 
known to perform quite poorly in some cases, the quantized 
solution of the completely relaxed problem is a candidate for 
the starting point of a local search algorithm for a “good” quan-
tized solution. Furthermore, that point can also be used to 
specify a randomized rounding procedure that can often be 
quite effective; e.g., [63]. 

OTHER FILTER ARCHITECTURES
Although the focus of this article is on the design of FIR filters 
with real-valued coefficients, many of the principles are quite 
generic and can be extended to other filter architectures. 
Perhaps the most straightforward extension is to FIR filters 
with complex-valued coefficients. In that case, the frequency 
response and power spectrum remain linear functions of the 
impulse response and autocorrelation, respectively, and most 
of the convex design criteria that we have considered remain 
convex. This extension enables the application of some of our 
discussion to the design of narrow-band antenna arrays; e.g., 
[34] and [64]. Another extension is to filters with “FIR-like” 
architectures, in which each delay element in the FIR filter is 

TWO CLASSES OF GLOBAL 
APPROXIMATIONS THAT CAN 

ALSO ASSIST THE DESIGNER IN THE 
EVALUATION OF LOCALLY OPTIMAL 

SOLUTIONS ARE RELAXATION 
AND RESTRICTION.
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replaced by a  transfer function; e.g., [65]. These include dis-
crete-time Laguerre networks (e.g., [66]) and “variable” filters 
with Farrow structure; e.g., [5, p. 45]. 

Convex optimization also has an important role to play 
in the design of infinite impulse response (IIR) filters. 
For design problems based on a spectral mask, convex 
design formulations can be obtained [37]. However, 
design criteria that involve both the magnitude and phase 
responses, and the requirement that the filter be stable, 
generally lead to nonconvex constraints; e.g., [67]. When 
a sequential approximation approach is applied to such 
problems, there are several techniques for obtaining a 
convex local approximation (e.g., [4], [19], [67]–[71]), 
and the stability constraint can be tackled by restricting 
the denominator coefficients to a set that is guaranteed 
to yield stable filters and has a convex description [68], 
[70]. Convex optimization can also play a role in the 
selection of the starting points. One candidate starting 
point is an FIR filter of the same order as the numerator, 
and an IIR starting point can be generated by first design-
ing an FIR filter of higher order than the IIR filter and 
then employing a model reduction procedure; e.g., [4]. In 
the multistage approach to IIR filter design [70], different 
IIR design methods are applied in sequence, with the 
starting points being the local solutions obtained by the 
previous method. 

The design of multidimensional filters is somewhat more 
involved than that of one-dimensional filters, but some 
aspects of our discussion extend to that case, too; e.g., [19]. 

CONCLUSION
The effective design of FIR filters requires judicious com-
promises to be made between competing properties of the 
filter. As we have argued herein, when those properties lie 
in a rich class of design criteria that are convex in the 
design variables, the inherent tradeoffs between these prop-
erties, and filters that attain these tradeoffs, can be reliably 
obtained. Furthermore, some recently developed software 
[16], [17] provides a platform that enables these tradeoffs to 
be obtained with little programming effort. In our examples 
we only considered pair-wise tradeoffs, but the extension to 
tradeoff surfaces in higher dimensions is straightforward, 
even though they tend to be more difficult to visualize. As 
we illustrated, many common FIR filter design criteria are 
convex, but the class of convex design criteria is much rich-
er than these examples indicate; cf. [13] and [17]. Moreover, 
the general-purpose convex design platform provides the 
flexibility to combine convex design criteria in a variety of 
ways. This platform also offers the opportunity to develop 
customized algorithms that exploit the structure of particu-
lar classes of FIR filter design problems. 

Making judicious design compromises is substantially 
more difficult when one or more of the criteria is not con-
vex. However, as we have argued that convex optimization 
can enhance the design process for such filters in several 

ways, including: the provision of inner and outer bounds 
on the design tradeoffs, which can be used to evaluate 
locally optimal filters; the development of convex local 
approximations of the design problem for use in sequen-
tial approximation algorithms; the provision of starting 
points for such algorithms; and the development of bounds 
for use in branch-and-bound algorithms for globally opti-
mal filters. 

Although our focus has been on highlighting ways in which 
convex optimization enriches the established art of FIR filter 
design, the reliability and efficiency of convex optimization 
techniques also gives rise to new opportunities, including the 
embedding [13] of flexible FIR filter design algorithms into 
autonomous, or semiautonomous, systems. 
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