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The Capacity Region of a Product of Two Unmatched
Physically Degraded Gaussian Broadcast
Channels With Three Individual Messages

and a Common Message
Ramy H. Gohary, Member, IEEE, and Timothy N. Davidson, Member, IEEE

Abstract—This paper considers a Gaussian broadcast channel
with two unmatched degraded components, three individual mes-
sages, and a common message that is intended for all three re-
ceivers. It is shown that for this channel, superposition coding with
Gaussian signalling is sufficient to achieve every point in the ca-
pacity region.

Index Terms—Broadcast channels with physically degraded
components, entropy power inequality, geometric programming,
Karush–Kuhn–Tucker (KKT) conditions, relaxation, superposi-
tion coding (SPC).

I. INTRODUCTION

I N a broadcast channel (BC), a single transmitter sends mes-
sages to multiple receivers [1]. These messages may be

common to all receivers or particular to an individual receiver
or a subset of receivers. The vector containing the rates of these
messages is said to be achievable if each receiver is able to reli-
ably decode its intended messages. The closure of all such vec-
tors is usually referred to as the capacity region [2].
A special class of BCs is the one in which the received signals

form aMarkov chain. In this case, the received signals are said to
be physically degraded versions of each other, and the degrada-
tion level of each signal is given by its order in theMarkov chain.
For the class of physically degraded channels, superposition
coding (SPC) [3] is known to attain every point on the boundary
of the capacity region in the general unrestricted case [4], and
in the case of Gaussian channels with a power constraint [5].
Although degraded channels are useful in modelling single-

input single-output BC systems, many practical systems give
rise to nondegraded channels, including those that employ mul-
ticarrier transmission [6], and the class of multiple-input mul-
tiple-output (MIMO) systems [7], [8]. In those channels, the
received signals do not form a Markov chain, and the coding
scheme developed in [3] cannot be applied directly to achieve
every point in their capacity regions [7].
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Most of the studies on nondegraded BCs have focused on the
case in which only independent individual messages are sent to
the receivers (see, e.g., [7]–[16]). For example, the sum capacity
for the case in which individual messages are broadcast over
Gaussian MIMO channels was studied in [15] and [16] and was
shown in [8], [12], and [13] tobe achievable bydirty paper coding
(DPC) [17] with Gaussian signalling. Later, it was shown in [7]
that DPC with Gaussian signalling is sufficient to attain every
point in the achievable rate region. That is, DPC with Gaussian
signalling is sufficient for achieving every point in the capacity
region of the Gaussian MIMO BC with individual messages.
In contrast to the case of individual messages only, there

has been less progress in characterizing the capacity region of
general nondegraded BCs when common or partially common
messages are to be transmitted along with individual messages.
However, some partial results are available. For instance, for
the case in which common messages may be transmitted over
general nondegraded BCs, characterizations of achievable inner
boundswere obtained in [18]–[20] and [21]. An inner bound that
includes the bounds in [20] and [21] was developed in [22]. In
[23], the bounds in [21] and [22] were carefully analyzed and
their equivalence was established. In a complementary fashion,
characterizations of outer bounds were obtained in [24] and
[25]. Another outer bound and a review of previously known
ones are presented in [26]. Further results on inner and outer
bounds of the capacity region of the general BC are reported in
[27]. In addition to inner and outer bounds, in the presence of
two receivers, a common message intended for both receivers
and an individual message intended for each receiver, charac-
terizations of the capacity region were provided in [28] for BCs
with two unmatched parallel physically degraded components
and in [29] for deterministic BCs.
For a BC with three receivers, a common message and one

individual message, a single-letter characterization of the ca-
pacity region was provided in [30] and this region was shown
to be strictly larger than the one conjectured in [31]. For general
BCs in which common, partially common and individual mes-
sages are intended for the receivers, fundamental constraints on
the geometry of the capacity region were provided in [32].
In this paper, we consider a different class of BCs with three

receivers. In contrast to [30], in which there is only one indi-
vidual message, in the class considered herein, an individual
message is sent to each of the three receivers, in addition to the
common message. The channel is assumed to be Gaussian and
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memoryless with two unmatched physically degraded compo-
nents. It will be shown that for the degradation orders considered
in this paper, SPC with Gaussian signalling is sufficient to attain
any point on the boundary of the capacity region. Note that, in
the scenario that we consider, the individual messages are not
constrained to be confidential; cf. [33] and [34].
The methodology for obtaining this result involves four

stages. First, we characterize a set of rate vectors that can be
achieved by SPC with Gaussian signalling. Second, we extract
insight from the structure of the signalling scheme that enables
this set of rate vectors to be achieved and use this insight to
provide an ostensibly relaxed characterization of that set. Using
the Karush–Kuhn–Tucker (KKT) optimality conditions, this
relaxation is shown to be tight. Third, we use information-the-
oretic analysis to obtain bounds on any achievable rate vector.
Finally, by combining the tight relaxation and the informa-
tion-theoretic bounds, we establish the desired converse, i.e.,
that every achievable rate vector can be attained by SPC with
Gaussian signalling.
This paper is organized as follows. In Section II, the system

model considered in this paper is described along with basic
definitions. In Section III, a set of rates that can be achieved by
SPC with Gaussian signalling is characterized. In Section IV,
each rate vector in that set is associated with the vectors of
power partitions that enable it to be achieved. The resulting set of
partition-rate vectors is then expressed as the intersection of two
regions. Points on the boundaries of these regions are then ex-
pressed as solution of optimization problems, and relaxations of
those problems are considered. A key result in our development
concerns the tightness of the relaxations. This result is estab-
lished in Sections V-C and V-D by examining the relationships
between the solutions of the KKT systems (see Sections V-A
and V-B). In Section V-E, the relationships between the relaxed
optimization problems and the original region described in
Section IV are established. In Section VI, information-theoretic
bounds on all achievable rates are obtained and in Section VII,
the entropy power inequality is applied to those bounds. The
resulting inequalities along with the results pertaining to the
tightness of the relaxations of the regions described in Section IV
are then used in Section VII to establish the main result of this
paper, i.e., the optimality of SPC with Gaussian signalling.
Section VIII concludes this paper. For clarity of exposition,
most of the proofs are placed in the appendix.

Notation

This paper uses conventional notation throughout. Vectors
and matrices of deterministic variables are denoted by bold-
face symbols and their scalar entries are denoted by regular
weight symbols. Subscripts of these symbols are used to refer
to receivers or subchannels and superscripts are used to refer to
degradation levels.

II. SYSTEM MODEL

We consider a discrete-time BC system in which a transmitter
sends messages to three receivers over two parallel unmatched
Gaussian memoryless physically degraded subchannels. Using
a common model [2], [10] for physically degraded channels,
the considered BC system can be represented by Fig. 1. The
transmitter sends an individual message of rate bits per

Fig. 1. BC with two unmatched Gaussian memoryless physically degraded
components and three receivers. The signal observed by receivers 1, 2, and 3
on the th subchannel is represented by , , and , respectively.

channel use to receiver , , and sends a common
message of rate to all three receivers. The messages

, , are transmitted over channel
uses of this system. Hence, in Fig. 1, is used to denote the
length- vector of the transmitted signal on the th subchannel.
Its power is denoted by , .
The receivers in the considered system observe and

in zero-mean additive white Gaussian noise. The variance of
the noise at degradation level on subchannel is denoted by
, where , . In Fig. 1, the length-

signal observed by receivers 1, 2, and 3 on the th subchannel,
is represented by , , and , respectively, where
, , , , ,

and , and represents the additional noise at
degradation level on subchannel , which is of variance

, for , ; cf. [2, p. 428].
For decoding, receiver , , maps a length- block

of the signal received on each subchannel to the set of its in-
tended messages. In particular, using to denote the decoder
of receiver , for receiver 1, , where

, . An error event for receiver oc-
curs if and its average probability is de-
noted by . The error events for receivers 2 and 3 are defined
similarly and their average error probabilities are denoted by

and , respectively. A rate vector
is said to be achievable if for every , there exists a sequence
of codes (indexed by ) such that for all sufficiently large the
probability of error , where .
The main result of this paper is that for the system in Fig. 1

with given positive1 subchannel transmission powers and
, the set of rate vectors that are achievable using SPC with

Gaussian signalling is the set of all achievable rates; i.e., the ca-
pacity region. Since the capacity region for the system in Fig. 1
with a total power constraint is simply the convex
hull of the union of the capacity regions for each power allo-
cation that satisfies the constraint, our result extends directly to
that case.

III. A SET OF RATE VECTORS ACHIEVED BY SPC WITH
GAUSSIAN SIGNALLING

In this section, we will characterize a set of rate vectors that
are achievable using SPC with Gaussian signalling over the BC
in Fig. 1. The bounds on the partial sums of the rates achieved
by these schemes are parametrized by the transmission power on

1Note that the case in which either or is zero corresponds to a physi-
cally degraded channel case for which the capacity region has already been fully
characterized [2].
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each subchannel, and , and by a set of power partitions,
which specify the fraction of power used to transmit each of
the superimposed components of the signal transmitted on each
subchannel (see, e.g., [28]). The power partition corresponding
to degradation level on subchannel will be denoted by ,

, . Since power partitions on each subchannel lie
in the unit simplex in only two of them on each subchannel
have to be specified. These partitions are collected in the vector

, where

(1)

The following functions of will simplify our descriptions:

(2a)

(2b)

(2c)

(2d)

(2e)

(2f)

(2g)

(2h)

(2i)

(2j)

(2k)

(2l)

(2m)

A. Initial Characterization

With the transmit powers and fixed, we consider a class
of coding schemes based on superposition principles [1], [3]. In
this class, 1) the common message is encoded jointly over the
subchannels [28] and is the first message decoded at each re-
ceiver; and 2) the components of the individual messages that
are transmitted on each subchannel are encoded separately. The
position of each receiver in the degradation order on each sub-
channel enables the receiver to cancel the interference induced
by signalling to more degraded receivers on that subchannel.
The residual signal-to-noise ratio observed by the receivers after
using SPC with a power partition vector and interference
cancellation places the following constraints on the rates that
can be achieved by this scheme:

(3a)

(3b)

(3c)

(3d)

(3e)

(3f)

(3g)

with . In fact, the bounds in (3) are tight, in the sense that
rate vectors that attain these bounds can be achieved using SPC
with Gaussian signalling. Before specific signalling schemes
that attain the bounds are described, we point out that in the
derivation of the constraints in (3), we have used the fact that
for the BC shown in Fig. 1, the constraints

(4a)

(4b)

are redundant. To show that (4a) is redundant, observe that

(5)

(6)

where in (5) we have used the fact that is

monotonically decreasing in , and that . On the
other hand, from (3g)

(7)



GOHARY AND DAVIDSON: CAPACITY REGION OF A PRODUCT OF TWO UNMATCHED PHYSICALLY DEGRADED GAUSSIAN BROADCAST CHANNELS 79

Now, for any , the left-hand side of (4a) is strictly less
than the left-hand side of the inequality in (7) and the right-
hand side of (4a) is strictly greater than the right-hand side of
the inequality in (7). Hence, we conclude that the inequality in
(7) is strictly tighter than the inequality in (4a), and hence the
redundancy of (4a). A similar argument involving the constraint

can be used to show that (4b) is also
redundant.
The bounds in (3) are tight in the sense that for an arbitrary

vector of power partitions a rate vector that attains the
bounds in (3) can be achieved using one of the three SPC with
Gaussian signalling modes described below. In all three modes,
the common message is encoded jointly over the subchan-
nels using a conventional Gaussian codebook containing
codewords of length . The first entries of the chosen code-
word are scaled by and are transmitted over
the first subchannel, while the other entries are scaled by

and transmitted over the second subchannel.
The transmitter selects the signalling mode based on which of
the arguments of the minimization operator on the right-hand
side of (3a) constrains the rate of the common message. In all
three modes, the first action undertaken by each receiver is to
decode the common message by jointly processing the signals
that it observes on both subchannels.
1) Mode 1: The transmitter operates in this mode if, for
the given , . In this case,
a rate vector that attains a subset of the bounds in (3) is

, , ,
and . To achieve this
rate vector, the system operates as follows: The codeword
corresponding to the individual message for receiver 1 is
superimposed on the component of the codeword corre-
sponding to the common message carried on subchannel
1, and the codewords corresponding to the individual
messages for receivers 2 and 3 are superimposed on the
component of the codeword corresponding to the common
message carried on subchannel 2. More specifically, for

, the messages are encoded using separate
conventional Gaussian codebooks of codewords
of length , and the selected codewords are scaled by

, and , respectively. After
decoding the common message, receiver 1 decodes
from its residual signal on subchannel 1 and receiver 2
decodes from its residual signal on subchannel 2.
After decoding the common message, receiver 3 decodes

from its residual signal on subchannel 2 and subse-
quently decodes from the remaining residual signal
on subchannel 2.

2) Mode 2: The transmitter operates in this mode if,
for the given , . In
this case, a rate vector that attains a subset of the
bounds in (3) is , ,

, and
. To achieve

this rate vector, the individual message for Receiver 2
is split into two submessages, and of rates

, respectively. Each sub-

message is encoded separately using its own conventional
Gaussian codebook. The codewords for these submessages
are then superimposed on the component of the codeword
corresponding to the common message that is transmitted
on the respective subchannel, with the codeword for
being scaled by and that for being scaled by

. The individual messages for receivers 1 and 3 are
encoded using separate conventional Gaussian codebooks.
The codeword corresponding to is scaled by
and superimposed on the appropriately scaled codeword
corresponding to and the first component of the
codeword corresponding to . The codeword corre-
sponding to is scaled by and superimposed
on the appropriately scaled codeword corresponding to

and the second component of the codeword corre-
sponding to . After decoding , receiver 2 decodes

from its residual signal on subchannel 1 and
from its residual signal on subchannel 2. After decoding
, receiver 1 decodes and subsequently using

its observations on subchannel 1. After decoding ,
receiver 3 decodes and subsequently using its
observations on subchannel 2.

3) Mode 3: The transmitter operates in this mode if, for the
given , . In this case, a rate
vector that attains a subset of the bounds in (3) is

, , , and
. This mode is symmetric

with mode 1 in the sense that is carried on subchannel
2, and and are carried on subchannel 1.

Since the bounds in (3) can be attained using the three modes
described above, those bounds characterize the rates that are
achievable using the considered class of SPC with Gaussian sig-
nalling schemes with power partitions and subchannel power
allocation and . Although the bounds in (3) are arranged
in a natural way, the signalling modes suggest an alternate ar-
rangement, which will be shown to facilitate the development
of the main result. To simplify the expressions, we define

(8a)

(8b)

(8c)

(8d)

(8e)

(8f)

(8g)

(8h)

(8i)

(8j)

(8k)

(8l)

(8m)
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Using these definitions, we can state that for given values of
and , a rate vector can be achieved using SPC with

Gaussian signalling with power partitions if the following in-
equalities are satisfied:

(9a)

(9b)

(9c)

(9d)

(9e)

(9f)

(9g)

where the inequality in (9f) is to be interpreted element-wise
and was defined in (1). In this statement, the constraints that
hold with equality in mode 2 are treated differently from those
that hold with equality in modes 1 and 3. This will facilitate
subsequent analysis.
Having characterized this set of achievable rate vectors, it

might seem natural to proceed to a direct proof of the converse;
that is, a proof that all achievable rates can be characterized
using (9). However, such a direct proof has proven to be elusive.
Instead, in the following sections, we will develop an alternative
characterization of rate vectors that can be achieved by SPC
with Gaussian signalling, before proceeding with the converse
in Sections VI and VII.

IV. SPC REGION

The development of an alternative characterization of the rate
vectors in (9) will be facilitated by pairing each rate vector with
the power partition vectors that enable that rate vector to be
achieved. In particular, define the SPC region corresponding to
subchannel power allocations and to be the region of
all (partition-rate vectors such that the rate vector is
achievable using SPC with the power partitions specified by .
That is

(10)

Let us also define two other rate-partition regions

(11a)

(11b)

where denotes the removal of a constraint. The intersection of
and is the set of all pairs with such

that the constraints in (9) (9d) are satisfied and the constraints
in (9) (9c) are satisfied. Therefore

(12)

A. Boundary Points

In the subsequent development, partition-rate vectors that lie
on the boundary of the SPC region will be of particular interest,
as will those that lie on the boundaries of or .
More specifically, we will be interested in elements of these par-
tition-rate regions that maximize a weighted sum of the rates of

the individual messages for a given rate of the common mes-
sage. In order to construct an initial characterization of these
points, observe from (3a) that any achievable common infor-
mation rate lies in , where [28], [35]

(13)

The arguments of the minimization in (13) are the maximum
rates than can be communicated to receivers 1, 2, and 3, re-
spectively. Using that expression, the points on the boundary
of that maximize a weighted sum of the rates of the in-
dividual messages can be written as

(14)

and those for can be written as

(15)

For future reference, we point out that if a pair in (14)
also satisfies (9d), then this pair lies on the boundary of the SPC
region. Similarly, if a pair in (15) also satisfies (9c), then
this pair lies on the boundary of the SPC region.
Unfortunately, neither the optimization problem in (14) nor

that in (15) is convex. Tomake progress in their analysis, we will
consider relaxations of these problems. These relaxation are in-
spired by the various roles played by the power partitions in each
of the three modes that enable the set of rates on the boundary
of the SPC region to be achieved; cf. Section III-A. First, con-
sider the problem in (14), which is for . The relaxation
is constructed by replacing in (14) by three vectors , and
, and employing in the constraints involving , in the

constraints involving , and in the constraints involving
, . The resulting optimization problem is

(16a)

(16b)

(16c)

(16d)

(16e)

(16f)
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Although it is not convex, this problem can be transformed into
a convex optimization problem, cf. Appendix A, and we will
exploit this fact in the following sections.
The optimization problem in (16) is a relaxation of that in (14)

because (16) can be made equivalent to the problem in (14) by
adding the constraint . Hence, for a given set of
weights, the weighted sum-rate generated by (16) is greater than
or equal to that generated by (14). This suggests that the rates
generated by (16) might lie outside . However, in the
next section, we will show that, for all weights , the
optimal rate vector in (16) can be paired with one of the optimal
vectors , , to construct a partition-rate vector that lies on
the boundary of , i.e., lies in the set in (14).
Now, consider the case of and the set of boundary

points in (15). An analogous discussion can be used to show
that, for all weights , the rate vector generated by the
corresponding relaxation of the problem in (15) can be paired
with one of the optimal vectors , , to construct a partition-
rate vector that lies on the boundary of , i.e., lies in the
set in (15).

V. ORIGINAL AND RELAXED BOUNDARIES OF
AND

In this section, we will determine relationships between the
boundary points generated by the optimization problem in (14)
and its relaxed counterpart in (16). By exploiting the symmetry
between receivers 1 and 3 in Fig. 1, an analogous analysis can
used to establish the relationship between the boundary points
generated by the optimization problem in (15) and its relaxed
counterpart. We will allude to the key results for that case in
Sections V-D and V-E.
To determine the relationship between the solutions to the

optimization problems in (14) and (16), which correspond to
, we will construct an explicit characterization of solu-

tions of the KKT optimality conditions, cf. [36], for the opti-
mization problem in (14) that also solve the KKT system for
the relaxed version of that problem, (16). This characterization
is of considerable interest because it is shown in Appendix B
that, for regular feasible points, the KKT conditions for the re-
laxed problem are both necessary and sufficient for optimality,
whereas for the problem in (14), the KKT conditions are only
necessary for optimality [36]. Therefore, the explicit character-
ization of solutions to both KKT systems characterizes the op-
timal solutions of the problem in (14), i.e., points that are on the
boundary of .

A. KKT Conditions of the Optimization Problems
Corresponding to the Original and Relaxed Boundaries of

One way to analyze the KKT conditions for (14) and (16) is
to partition the set of feasible rates and power partitions into
nonoverlapping regions, as in [36, Example 3.3.1]. In each re-
gion, particular entries of the vector of rates and power parti-
tions are set to zero and the remaining entries are assumed to
be strictly positive. Since the functions , ,

in (8) are all continuous, we will focus on the case

in which all the rates and power partitions are strictly positive.
Continuity of these functions implies that infinitesimal changes
in the power partitions result in infinitesimal changes in the data
rates. Indeed, continuity implies that the cases in which some
rates and partitions vanish are limiting cases of the case that we
consider as those rates and partitions approach zero.
In the forthcoming analysis, we will show that for all distinct

weights , the rate vector, , and the power partition,
, generated by (14) are identical to the rate vector, , and one
of , , or generated by (16). To do so, we will begin with
the region in which the rate vectors and partitions generated by
(14) and (16) satisfy and , where

denotes the interior of , which is given by

For some weight orderings, it will be seen that this assumption
does not incur loss of generality, simplifies the analysis and en-
ables insight to be drawn from the KKT systems corresponding
to (14) and (16). However, for other weight orderings, it will be
observed that particular rates and partitions must be set to zero
for the corresponding KKT systems to be solved.
First, consider the problem in (14). Let denote the La-

grangian corresponding to (14) when and .
Using the definitions in (8), we have

Using this Lagrangian, the KKT conditions for (14) can be
written as

(17a)

(17b)

(17c)

(17d)

(17e)

(17f)

where is the vector of nonnegative Lagrange
multipliers.
Now, let denote the Lagrangian of the problem in (16) when

and . Then
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Using this Lagrangian, the KKT conditions for (16) are

(18a)

(18b)

(18c)

(18d)

(18e)

(18f)

(18g)

(18h)

where is the vector of nonnegative Lagrange
multipliers. Because of the (partial) decoupling of constraints, it
is significantly easier to gain insight into the system of equations
in (18) than it is to draw insight into the KKT system for (14);
cf. (17). In particular, some results concerning the nature of the
Lagrange multipliers are collected in Appendix C. Those results
will be employed in the proofs of the results in the following
sections.

B. Common Solutions for the KKT Conditions of the
Optimization Problems Corresponding to the Original and
Relaxed Boundaries of

In this section, we provide an explicit characterization of so-
lutions of the KKT system in (17) that also solve the KKT
system in (18). There are six ways in which the weights ,
, and can be ordered and we will construct the common

solutions for each case separately. We will restrict the discus-
sion to strict weight orderings; cases involving equal weights
can be analyzed similarly. The following theorem characterizes
the common solutions in the cases of three of the possible weight
orderings. The other cases will be considered in Theorems 2 and
3, and Corollaries 1 and 2. A key step in the proof of these re-
sults is the identification of which Lagrange multipliers must be
strictly positive.

Theorem 1: Consider a given satisfying (13) and a weight
vector with , , or
. For every solution of the optimization problem in (14) that

satisfies and , the solution of (16) satisfies
and . Furthermore, for every solution

of the KKT system in (18) that satisfies and
, the solution of the KKT system in (17) satisfies

and . In both cases, (17) and (18) yield identical rate
vectors, , identical Lagrange multipliers, , and when
a) ,

b) , ,

(19a)

(19b)

(19c)

c) , ,

Proof: Part (a) is proved in Appendix D, part (b) in
Appendix F, and part (c) in Appendix G.

The results in the cases of ,
and have a somewhat different structure, as we
show in Theorems 2 and 3, and Corollaries 1 and 2 below.

Theorem 2: Given satisfying (13) and a weight vector
with either or , any locally
optimal solution of (14) must have . Furthermore, for
these weight orderings the optimal solution of (16) must have

.
Proof: See Appendix H.

Corollary 1: Consider a given satisfying (13) and a
weight vector with either or .
For every solution of the optimization problem in (14) that
satisfies , and , the
solution of (16) satisfies , and

, . Furthermore, for every solution of the KKT
system in (18), that satisfies , ,
and , the solution of the KKT system in (17)
satisfies , and , . In both
cases, (17) and (18) yield identical rate vectors, , identical
Lagrange multipliers, , and when
a) , , ,

(20)

b) , , ,

Proof: See Appendix I.

Theorem 3: Given satisfying (13) and a weight vector
with , the optimal solution of (14) must have

. Furthermore, for this weight ordering, the optimal so-
lution of (16) must have .

Proof: See Appendix J.

Corollary 2: Consider a given satisfying (13) and a
weight vector with . For every solution of the
optimization problem in (14) that satisfies ,
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and , the solution of (16) satisfies ,
and . Furthermore, for every solution of
the KKT system in (18) that satisfies , and

, the solution of the KKT system in (17)
satisfies , and . In both cases, (17)
and (18) yield identical rates vectors, , identical Lagrange
multipliers, , power partitions , and rates that
satisfy .

Proof: See Appendix K.

An observation regarding Theorems 1–3 and Corollaries 1
and 2 is that for any given weight ordering, each rate vector
on the relaxed boundary of can be achieved by using
only one of , , or as the power partition vector. Since
these rate vectors are identical to the rates generated by the orig-
inal problem in (14), it can be seen that to attain each point that
maximizes a weighted sum of the rates of the individual mes-
sages, it suffices to operate in one of the three modes described
in Section III.

C. Tightness of the Relaxed Characterization of

A consequence of the above analysis is that, for any strict
weight ordering, the solution of the relaxed problem in (16)
can be used to construct a partition-rate vector that lies on the
boundary of , i.e., lies in the set in (14). For future ref-
erence, we state this result formally, and outline the proof.

Theorem 4: For any and any strict weight
ordering, pairing the optimal rates , , generated
by (16) with one of the optimal yields a partition-rate
vector that lies in the set in (14).

Proof: Recall that the solutions provided in Theorems 1–3
and Corollaries 1 and 2 satisfy both the KKT conditions corre-
sponding to the problem in (14) and those corresponding to the
problem in (16). Since it has been shown that the KKT condi-
tions corresponding to (16) are both necessary and sufficient for
optimality (see Appendix B), the provided solutions are suffi-
cient for the optimality of the weighted sum-rate generated in
(16). Now, (16) is a relaxation of (14), and hence, the weighted
sum-rate generated by (16) is an upper bound on that generated
by the problem in (14). Since the solutions provided in Theo-
rems 1–3 and Corollaries 1 and 2 yield identical rates for both
(14) and (16), we conclude that these solutions yield the max-
imum weighted sum-rate in (14). The matching of with one of

in Theorems 1–3 and Corollaries 1 and 2 completes
the proof.

D. Tightness of Relaxed Characterization for

In the above sections, we have focused on . Analo-
gous results can be derived for by following a similar
procedure and exploiting the symmetry between receivers 1 and
3 in Fig. 1.
Although we will not formally prove those results, we will

briefly state the result corresponding to Theorem 4. In particular,
we have

Theorem 5: For any and any strict weight
ordering, pairing the optimal rates , , generated

by the relaxed problem corresponding to (15) with one of the
optimal yields a partition-rate vector that lies in the
set in (15).

E. Where Does the Boundary of the SPC Region Coincide
With the Boundaries of and ?

In the previous section, it was shown that, for all weight order-
ings, the partition-rate vectors in can be obtained from
the relaxed optimization problem in (16). By analogy, using the
symmetry between receivers 1 and 3, it can be argued that, for
all weight orderings, the partition-rate vectors in can be
obtained by a similar procedure from the corresponding relaxed
optimization problem. Before proceeding with the proof of the
converse, in this section, we will argue that

1. the partition-rate vectors generated by the relaxed opti-
mization problem in (16) with any strict weight ordering
except lie in the SPC region.

In a complementary fashion, using the symmetry between re-
ceivers 1 and 3, the argument that we provide can be applied to
show that

2. the partition-rate vectors generated by the relaxed opti-
mization problem corresponding to with any strict
weight ordering except lie in the SPC re-
gion.

To prove the first statement, we consider each weight ordering
separately.
1) When , for any given , the
entries of the optimal partition-rate vector for are
obtained by using (51) in Appendix D to substitute ,

, in the KKT conditions in (17). The power
partitions and are obtained by solving (17b) and
the rates are obtained by substituting these partitions in
(52). To show that the resulting partition-rate vector lies
in the SPC region, we need to show that this vector lies in

; cf. (12). One way to do so is to repeat the proce-
dure used in for with the same weight or-
dering and verify that the same partition-rate vector is gen-
erated by the corresponding optimization problem; i.e., the
problem in (15). However, by invoking the symmetry be-
tween receivers 1 and 3, this tedious task can be avoided. In
particular, this symmetry implies that the weight ordering

from the perspective of corre-
sponds to the weight ordering from the
perspective of . Now, by considering this weight
ordering, swapping with , swapping , ,
with , , respectively, and replacing the func-
tions , and with ,
and , respectively, it can be seen that the parti-
tion-rate vector generated by (15) when
is the same as that generated by (14) for the same weights.
Hence, the partition-rate vector generated by (14) when

lies in , and therefore also in the
SPC region.

2) When , the above argument appliesmutatis
mutandis to show that the optimal partition-rate vector gen-
erated by (14) for the lies in , and hence in
the SPC region.
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3) When , for any given , the
optimal partition-rate vector generated by (14) for
must have and . The rates and are
given by (20), and the optimal is obtained by solving the
KKT conditions in (17) with the constraints
, and removed, the corre-
sponding Lagrange multipliers, , , removed,
and with for . To show that
the resulting partition-rate vector lies in the SPC region,
we need to show that this vector lies in ; cf. (12).
As in the case of the above weight orderings, we exploit
the symmetry between receivers 1 and 3. In particular, the
weight ordering from the perspective of

corresponds to the weight ordering
from the perspective of . Now, by considering

this weight ordering, swapping with , swapping ,
, with , , respectively, and replacing the

functions and with and ,
respectively, it can be seen that the partition-rate vector
generated by (15) when is the same as that
generated by (14) for the same weights. Hence, the parti-
tion-rate vector generated by (14) when
lies in , and therefore also in the SPC region.

4) When , the above argument appliesmutatis
mutandis to show that the optimal partition-rate vector gen-
erated by (14) for the lies in , and hence in
the SPC region.

5) When , for any given , the
entries of the optimal partition-rate vector for the
are obtained by using (63) in Appendix F to substitute

, , in the KKT conditions
in (17). The power partitions are obtained by solving (17b)
and the rates are obtained by substituting these partitions in
(64). To show that the resulting partition-rate vector lies in
the SPC region, we note that the fact that the rates are deter-
mined by the equalities in (19) implies that

. Hence, the partition-rate vector generated by (14)
when lies in , and therefore also
in the SPC region. Notice that the symmetry between re-
ceivers 1 and 3 implies that the partition-rate vector gen-
erated by (15) when lies in , and
therefore also in the SPC region.

6) When , it is shown in Appendix K that there
is no solution of the system of equations in (17) that lies in
the feasible set of (15), i.e., no solution that lies in .
The symmetry between receivers 1 and 3 implies that, for
this weight ordering, partition-rate vectors that lie on the
boundary of the SPC region can be obtained by solving the
KKT conditions corresponding to (15) in a way analogous
to that used for when .

We summarize the above points in the following remark.

Remark 1:
1) For all weight orderings other than , solving
(16) yields partition-rate vectors that lie on the boundary of
the SPC region. When , solving (16) yields
partition-rate vectors that satisfy the constraints in (9) (9d)
and violate the constraint in (9d), i.e., for this weight or-

dering . For this weight ordering,
partition-rate vectors that lie on the boundary of the SPC
region can be obtained by solving (15) or, equivalently, its
corresponding relaxation.

2) For all weight orderings other than ,
solving the counterpart of (16) for yields parti-
tion-rate vectors that lie on the boundary of the SPC region.
When , solving the counterpart of (16) for

yields partition-rate vectors that satisfy the con-
straints in (9) (9c) and violate the constraint in (9c), i.e.,
for this weight ordering . For
this weight ordering, partition-rate vectors that lie on the
boundary of the SPC region can be obtained by solving
(14) or, equivalently, its corresponding relaxation.

Our goal now is to show that for any achievable rate vector ,
there exists a power partition such that ,

. Toward that end, in the next section, wewill provide in-
formation-theoretic bounds on achievable rates. In Section VII,
these bounds will be used together with Theorems 1–3, Corol-
laries 1 and 2 and Remark 1 to establish the main result of this
paper.

VI. INFORMATION-THEORETIC BOUNDS ON
ACHIEVABLE RATES

In this section, we provide information-theoretic bounds on
the achievable rates. These bounds will be used in Section VII
to show that and contain all achievable rate
vectors.
To obtain the desired information-theoretic bounds on

achievable rate vectors, let , be a small positive
number and let

(21)

In Appendix L, Fano’s inequality is used to show that

(22a)

(22b)

(22c)

(22d)

(22e)

(22f)

(22g)

(22h)

where is the length- vector transmitted on subchannel ; cf.
Fig. 1.
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In Appendix M, it is shown that

(23a)

(23b)

(23c)

(23d)

In Appendix M, it is also shown that

(24a)

(24b)

(24c)

(24d)

The inequalities in (22a)–(22h) and (23) will be used to show
that is an outer bound on the capacity region, whereas
for , we will use (22a)–(22h) and (24).

VII. CAPACITY REGION OF THE BC IN FIG. 1

In this section, we will use the information-theoretic bounds
derived in Section VI to show that for every achievable rate
vector , there exists a power partition such that the parti-
tion-rate vector , . We will then use
this result together with Theorems 1–3, Corollaries 1 and 2 and
Remark 1 to show that the SPC region contains the set of all
achievable rates.
For , we have

Theorem 6: For every achievable rate vector, , there exists
a power partition such that the partition-rate vector lies
in .

Proof: In Appendix N, the entropy power inequality and
the fact that conditioning reduces entropy are used to show that
for every achievable rate vector, , there exist
such that the inequalities in (16b)–(16f) are satisfied, i.e., every
achievable rate vector lies in the feasible set for (16). From the
reformulation of (16) in (40) in Appendix A, it can be seen that
the set of rate vectors that are feasible for (16) is convex.
Hence, it suffices to consider the achievable rate vectors that
lie on the boundary of this set. This boundary can be generated
by solving (16) for all possible weights that belong to
the unit simplex

. Now, using Theorem 4 for every rate vector that lies
on the boundary of the feasible set of (16), there exists a par-
tition-rate vector that lies on the boundary of ,
whence the statement of the theorem.

For we have

Theorem 7: For every achievable rate vector, , there exists
a power partition, , such that the partition-rate vector
lies in .

Proof: The proof of this theorem parallels that of Theorem
6 but with defined as in Appendix O.

We are now ready to present the main result of the paper.

Theorem 8: The capacity region of the BC in Fig. 1 with
given subchannel transmission powers and is the closure
of the region of rates achieved by SPCwith Gaussian signalling.

Proof:
1) Achievability: By construction, all rate vectors satisfying
(9) can be achieved using SPC with Gaussian signalling. In
particular, given a power partition vector, , rate vec-
tors that lie on the boundary of the region in (9) can be
achieved by operating in one of the three modes described
in Section III-A.

2) Converse: From Theorem 6, we have that for every achiev-
able rate vector, , there exists a such that lies in

. Since the set of rates in is convex (see
(40) in Appendix A), we have that for every achievable rate
vector, , there exist weights , and satisfying

, , such that ,
and

(25)

In the forthcoming proof, we will consider strict weight
orderings of . The convexity of the set of rates
in and implies that restricting the proof
to these orderings suffices to prove the theorem for every
point arbitrarily close to the boundary of the set of achiev-
able rates. Hence, as before, to avoid redundancy, the proof
for cases involving equal weights is omitted.
Consider an arbitrary achievable rate vector, . If there
exists a weight triple that satisfies one of the following five
strict weight orderings , ,

, , or ,
and generates , then, from Remark 1 we have
that , where the SPC region was
defined in (10). In that case, is achievable by SPC with
Gaussian signalling.
Now, consider the case in which the only weights that yield
such that are those that satisfy .

This case can be partially resolved by using Theorem 7 and
the convexity of the set of rate vectors in , which
can be verified by applying the technique in Appendix A
to the relaxed version of (15). In particular, using this the-
orem along with the convexity result, we have that, for the
considered achievable rate , there exist weights ,
and satisfying , , such
that , and

(26)

If there exists such a weight triple that satisfies one of the
following five weight orderings ,

, , , or
, then, from Remark 1, we have that
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. In that case, is achievable by SPC with
Gaussian signalling.
The only case that remains to be considered is the one in
which the only weights that generate an satisfying
satisfy and the only weights that gen-

erate an satisfying satisfy .
In the case of with , Theorem 3 in-
dicates that and hence . The corresponding
result for with shows that
and hence that . Therefore, the achievable rate vec-
tors that cannot yet be shown to be achievable by SPC with
Gaussian signalling have . In this case, it is
immediate from (14), (15), and (10) that both and

collapse to the SPC region; when ,
the constraints , , become redun-
dant. This implies that in this last case is also achiev-
able by SPC with Gaussian signalling, which completes
the proof of the theorem.

As mentioned in Section II, since the capacity region for the
system in Fig. 1 with a total power constraint
is the convex hull of the union of the capacity regions for each
power allocation that satisfies the constraint, Theorem 8 implies
that, for the system in Fig. 1 with a total power constraint, the
set of rate vectors achieved by SPC with Gaussian signalling is
the capacity region.

VIII. CONCLUSION

This paper considered the class of BCs depicted in Fig. 1,
wherein each receiver receives an individual message along
with a common message that is intended to all receivers. It was
shown that, for this scenario, every achievable rate vector can
be attained by SPC with Gaussian signalling. Our approach
to establishing this result is based on an ostensibly relaxed
characterization of the region of rates that can be achieved
by SPC with Gaussian signalling and on showing that this
relaxation is tight. Although the focus of this paper has been
restricted to the scenario depicted in Fig. 1, we suspect that the
same methodology can be applied to systems with some other
degradation orders and possibly with more receivers.

APPENDIX A
CONVEX TRANSFORMATION OF (16)

In this section, we will transform the relaxed problem in
(16) into a convex form. In particular, we will show that this
problem can be a cast as a geometric program. As mentioned
in Section II, in the analysis the power allocations, and
, are assumed to be fixed. However, the methodology used

in this appendix can be extended to the case in which the
powers are not fixed a priori. In order to perform the required
transformation, we use the following change of variables:

(27)

Now, using the monotonicity of the log function, the optimiza-
tion problem in (16) can be cast as

(28a)

(28b)

(28c)

(28d)

(28e)

(28f)

(28g)

(28h)

(28i)

(28j)

(28k)

(28l)

(28m)

(28n)

(28o)

(28p)

(28q)

Let
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Hence

(29a)

(29b)

(29c)

(29d)

(29e)

(29f)

Using these new variables, we can rewrite (28n) as

(30)

The constraints in (28o) can be rewritten as

(31)

and the constraints in (28p) can be rewritten as

(32)

We now consider the conditions in (28q). First, we note that
by replacing the equalities in (28n)–(28p) by the inequalities in
(30)–(32), , , and are eliminated from the formula-
tion. (These variables do not appear in any other constraint.) For
the first set of constraints in (28q), we have

For the second set, we have

(33)

For the last set, we have

(34)

Before showing how the remaining constraints can be cast as
a geometric program, we recall that the degradedness condition

, for . Hence, one can see that all the

transformed constraints in (30)–(34) are in the form of posyno-
mials that can be readily incorporated in a (convex) geometric
program. Using the transformation in (29), we can write the con-
straints in (28b)–(28e) as

(35a)

(35b)

(35c)

(35d)

Note that because , all the constraints in
(35a)–(35d) are in the standard posynomial form. Consider
now the constraints in (28f)–(28i). Using the transformations
in (29), these constraints can be written as

(36a)

(36b)

(36c)

(36d)

One can also see that (36a)–(36d) are in the form of posynomial
constraints. Finally, we express the constraints in (28j)–(28m)
as

(37a)

(37b)

(37c)

(37d)

Seeing as (37a)–(37d) are in the form of posynomial constraints,
we can now write (28) as

(38a)

(38b)

(38c)

(38d)

(38e)
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Since the objective is in the form of a monomial and all the
constraints are in the form of posynomials, the problem in (38)
is readily seen to be a geometric program.
We now transform this geometric program into a convex

form. In order to do that, we take the logarithm of the objective
and the constraints in (38), and we use the transformations

(39)

We will also use (27) to write .
Using these transformations, the problem in (38) can be written
as

(40a)

(40b)

(40c)

(40d)

(40e)

(40f)

(40g)

(40h)

(40i)

(40j)

(40k)

(40l)

(40m)

(40n)

(40o)

(40p)

(40q)

(40r)

(40s)

(40t)

This problem is identical to (16), but with the power partitions
parametrized by the exponential function.

APPENDIX B
SUFFICIENCY OF THE KKT CONDITIONS FOR THE RELAXED
OPTIMIZATION PROBLEM CORRESPONDING TO

First, we note that for any and greater than zero, the
problem in (16) is strictly feasible. From Section V-B, it is seen
that for each weight ordering, the active constraints at the pro-
vided solutions are linearly independent. (For each weight or-
dering, each constraint that is active at the provided solution
involves a distinct partial sum of .) Hence, using [36,
Proposition 3.3.1], it is seen that the KKT conditions are neces-
sary for optimality. We now show that these conditions are also
sufficient. In order to do that, we use [36, Proposition 5.1.5]. Let

denote the Lagrangian function at the vector of primal
variables, , and the Lagrange multipliers, . Then, from [36,
Proposition 5.1.5] it is seen that it is sufficient to show that, for

any vector , if the vector satisfies
, then it maximizes for all fea-

sible vectors . In order to show this, recall that in Appendix A
we showed that (16) can be transformed into the convex form in
(40). Let be the Lagrangian function that corresponds to this
convex problem, and let be the vector of transformed vari-
ables in (39). Now

(41)

where is the Jacobian matrix of the transformation in (39),
i.e., the th entry of is given by . First, notice that this
transformation is continuous, one-to-one and invertible. Now,
one can easily check that

(42)
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where denotes the direct sum [37, p. 24], denotes the 3 3
identity matrix, and

It is clear from (42) that for any , the matrix is nonsin-
gular. Together with (41), this implies that if
and only if . The convexity of the problem in
(28) implies that only at the global maximum
of . Hence, from the continuity and the one-to-one
correspondence of the transformation in (39), it can be seen
that equals zero only at the global maximum of

, for any given vector , and hence for the optimal
Lagrange multipliers .

APPENDIX C
ANALYSIS OF THE LAGRANGE MULTIPLIERS OF THE RELAXED

PROBLEM CORRESPONDING TO

In this appendix, we collect some results regarding the La-
grange multipliers in the KKT conditions in (18) for the relaxed
problem in (16).

Lemma 1: Any solution of the KKT system in (18) must
satisfy

Proof: In order to find , we use the fact that ,
and are not functions of , and hence from

(18b), we have

Therefore, for any , . For , we apply the obser-
vation that and are not functions of

to (18c) to write

which yields for any . Similarly, by differenti-
ating the Lagrangian with respect to , and using (18d), one
can show that for any , .

Lemma 2: For any solution of the KKT system in (18),
either or , and .

Proof: In order to draw some insight into the relationship
between these multipliers, we use (18b) and the definitions in
Section III to write

(43)

(44)

Since and , and are nonnegative, (43) and (44)
are satisfied if and only if or

(45)

Furthermore, substituting from (44) into (43), we have

Since , this implies that

(46)

unless .

Lemma 3: For any solution of the KKT system in (18),
either or and .

Proof: Using (18c), we have

(47)

(48)

Since and are strictly greater than zero, from (47) and
(48) and the nonnegativity of , and , we have either

, or

Lemma 4: For any solution of the KKT system in (18),
either or , and .

Proof: Using the definitions in Section II, we differentiate
the Lagrangian with respect to and . Substituting into
(18d), we conclude that either , or

(49)

APPENDIX D
PROOF OF THEOREM 1—ITEM (A)

To prove this theorem for , we will consider
the KKT system of the original problem corresponding to
and , which is given in (17), and the KKT system of
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the relaxed problem corresponding to and
, which is given in (18).

A) Solution of the KKT System of the Original Problem
Corresponding to for : For
, (17a) yields

(50)

From the first inequality in (50), it is seen that . Using
this fact in (17b) with and , it can be seen that

. For the moment, we will assume that and
and we will show later that this assumption is without

loss of generality.
In Appendix E, we show that one solution of the KKT condi-

tions can be obtained by setting

(51)

Using (51), we have , , and
. The complementarity slackness conditions for this

choice of Lagrange multipliers yield

(52a)

(52b)

(52c)

We now show that because , we can assume that
and , without loss of generality. Toward that end,

we observe that:
1) If and , then is determined by the
second equality in (52). Now, in this case, it may not be
immediately clear that is determined by the last equality
in (52). Substituting from (17b) with and ,
into (17b) with and , we have that ,
which implies that . Now,
suppose that is not determined by the last equality in
(52). In that case, we would have .

Since , it would follow
that , which contradicts the left
inequality in (17d) with . Hence, in this case, must
be determined by the equalities in (52).

2) If and , then is determined by the
third equality in (52). Furthermore, from the last two terms
of the left-hand side of the equality in (17b) with and

we have that . We will use contradiction
to show that .
Suppose that . In that case, .
From the left inequality in (17c) with , we have

, because leads to
being determined by the first equality in (52). Now

which contradicts the left inequality in (17d) with .
Hence, we conclude that .
Now, assume that and consider the last two terms
of the left-hand side of the equality in (17b) with and

. Since , it is seen that . In that case,
the complementarity slackness condition in (17e) with
implies that , but since

and , we have

. Hence, in this case, we have

which violates the left inequality in (17e) with .
Hence, we conclude that , , , and
that the rates , and are determined by (52).
B) Solution of the KKT System of the Relaxed Problem

Corresponding to for : Using (18a)
with and yields

(53)

and using (18a) with and yields
From (53), we have . Hence, from Lemma 2,

we have
(54)

Using (18e), we have

(55a)

(55b)

(55c)

Now, we set
(56)

Notice that the setting of in (56) is the only possible
one. In particular, , must be zero by Lemma 1.
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Furthermore, Lemmas 3 and 4 imply that any other setting of
would yield a number of linearly indepen-

dent equations that exceeds the number of unknowns.
Using (55) it can be seen that the setting in (56) solves the

KKT system of equations in (18), for any , and that satisfy
(18f) and (18g).

C) Identifying Solutions for the KKT Systems of the
Original and Relaxed Optimization Problems Corresponding
to for : For , we now
compare the solution of the KKT system of the relaxed problem
in the previous section with that of the KKT system of the orig-
inal problem (14) in Appendix D-A. In particular, let
Since a solution of (17) exists with ,
it is seen that, for this solution, (17b) with and
becomes identical to (43) and (44), respectively, when
To complete the proof of the first statement of the theorem

when , we note that if the optimal solution of
(14) in this case satisfies , then and can be
arbitrarily chosen so that (18f) and (18g) are satisfied. In par-
ticular, since belongs to the feasible set of (14), then set-
ting and setting is guaranteed to satisfy
(18f) and (18g). To complete the proof of the second statement
of the theorem, we note from the previous section, that for this
weight ordering, the solution of the KKT system in (18) when

must have the entries of the vector deter-
mined by (55), which implies that there exist and that sat-
isfy (18f) and (18g). Finally, it is seen that with identified with
, the rates generated by (55) are identical to those generated by
(52), which completes the proof of item (a) of Theorem 1.

APPENDIX E
PROVING THAT FOR ,

When , we have , and ;
see Appendix D-A. First, let us assume that . We
will use contradiction to show that .
For this weight ordering, , , and , and

hence, the rates are determined by (17c). Therefore, from the
second equality in (17c) with , we have

(57)
Let us assume that and . In that case, using
(17e) with and , we have

(58)

Substituting from (58) into (57) yields

which contradicts the first constraint in (17c) with . Hence,
it is seen that the case of and can be eliminated.
A similar argument can be used to eliminate the possibility

that either or is greater than zero. If and
, then from (17b) with and , . Using the
complementarity slackness condition associated with and the
fact that is determined by the equality in (17c) with ,
one can show that violates the left constraint in (17d) with

. Hence, the possibility of and can also
be eliminated.
Now, let us consider the possibility that and
. In this case, . Using this expression
in the first equality in (52) yields an that violates the first
constraint in (17c) with . Hence, the possibility that
and can be eliminated.
In the argument above, we have shown that .

Since the last term on the left-hand side of (17b) with
and is the only nonnegative term, we conclude that

. Substituting for
into (17b) with and we have,

(59)

Now, we will use contradiction to show that . To do that,
we note that if then from the last equality in (17d) with

(60)

However, because , we have

(61)

Substituting from (61) into (60) and simplifying yields

which violates (17d) with for any . Hence, we must
have which, using (59) and the fact that , leads
to .We have thus shown that when ,

, as desired.

APPENDIX F
PROOF OF THEOREM 1—ITEM (B)

A) Solution of the KKT System of the Original Problem
Corresponding to for : For
, the equalities in (17a) yield

(62)

In Appendix E, it was shown that if then ,
which contradicts the first inequality in (62). Hence, it is seen
that in this case . A similar argument can be used to show
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that . We will show below that a solution of the KKT
conditions in this case can be obtained by setting .
For , we have from (17b) with and

that . Applying this fact and the fact that
to (17b) with and yields .

Using

(63)

in (17a) and (17b) with the current weight ordering yields
, and , from which we have

(64a)

(64b)

(64c)

It remains to show that the rates generated in (64) are fea-
sible, i.e., that setting yields a solution of the
KKT system of equations. Suppose that , then
from (17b) with and we have that at least one

is greater than zero. Using this fact in (17b) with
and yields . Now, suppose that

. (This assumption results in fewer constraints
being active.) In this case, we have
and . The complementarity slackness now implies that
at least one of the constraints on is active, and for each rate
, , one can find two active constraints. Equating

these expressions, it is seen that in this case, we have four equa-
tions in the four unknowns, . Solving for these un-
knowns and substituting into (17b), we have four equations in
five unknowns, and one of , in ad-
dition to the three equations in (17a). That is, in total we have
seven linearly independent linear equations in five unknowns.
Since these equations cannot be consistent we conclude that one
must have for the problem to be feasible.

B) Solution of the KKT System of the Relaxed Problem
Corresponding to for : For this weight
ordering, the KKT conditions of the relaxed problem yield

(65)

Now, set Notice that this setting
of is the only possible one. In particular, ,
must be zero by Lemma 1 in Appendix C. Furthermore, Lemmas
2 and 4 imply that any other setting of would
yield a number of linearly independent equations that exceeds
the number of unknowns. Using this setting in (18a), along with
Lemma 3 and the fact that , we have that

Now, and can be arbitrarily chosen so that (18e) and (18g)
are satisfied, respectively.

C) Identifying Solutions of the KKT Systems of the Original
and Relaxed Optimization Problems Corresponding to
for : For , the solution of the
KKT system of the relaxed problem obtained in the previous

section is now compared with that of the KKT system of the
original problem in (14). Since a solution of (17) exists with

, it is seen that, for this solution,
(17b) with and , and (17b) with and
become identical to (43) and (44), respectively, when
Now, we choose and arbitrarily so that (18e) and (18g) are
satisfied. Similar to the case considered in Appendix D, it can be
seen that such and exist when the solution of (14) satisfies

and , or conversely, when the solution of the
system in (18) satisfies and . Finally,
it is seen that with identified with , the rates generated by
(55) are identical to those generated by (52), which completes
the proof of item (b) of Theorem 1.

APPENDIX G
PROOF OF THEOREM 1—ITEM (C)

A) Solution of the KKT System of the Original Problem
Corresponding to for : The ordering

(17a) implies that

(66)

Using in (17b) with and implies that
. We will show that in this case and

. Hence, the rates in this case are given by

(67a)

(67b)

(67c)

Toward that end, we will show that both the case and
and the case of and yield rates

that violate the KKT conditions. First, we consider the case of
and . In this case, (66) implies that .

Thus

(68)

Using (17e) with implies that

(69)

Substituting from (69) in (68) implies that

which violates the condition in (17d) with for any .
Hence, we conclude that must be greater than zero.
Now we consider the case of and . In this

case
(70)

Substituting in (17b) with , and and
simplifying, it can be shown that

(71)
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We will use contradiction to show that , which
contradicts (71).
Suppose that . In this case

(72)

Since and , we know that

(73)

Substituting from (73), (70) into (72) yields

which violates the condition in (17d) with for any .
Hence, we conclude that if and , must be
equal to zero.
We now consider the other possibility for (71) to be satisfied;

i.e., that . Using the fact that and substituting in
(17b) with , and and simplifying yields

(74)

We will show that both and must be zero, which yields a
contradiction.
1) If , is given by (68). However, since
and , is given by (70), which implies that

which violates the condition in (17d) with for any
. Hence, we conclude that if , and
, then .

2) If , the condition (17c) with implies that

Now, because (17c) with must be satisfied, we know
that

(75)

Using the fact that implies that

and substituting from (75) yields

which violates the condition in (17e) with for any
. Hence, we conclude that if , and
, then .

Hence, if , and , wemust have
, which violates (74). Therefore, must be equal to zero and

and , which imply (67).
B) Solution of the KKT System of the Relaxed Problem

Corresponding to for : The analysis
of the KKT system of the relaxed problem in (18) and the iden-
tification of the solution uses a technique similar to the one used
for the case of and is omitted for brevity.

APPENDIX H
PROOF OF THEOREM 2

We proceed by contradiction. In particular, we will show that
assuming that and , will yield a
contradiction. This contradiction is resolved by setting to
zero.

A) Original Problem With and
: In this section, we show that, given satisfying

(13) and a weight vector with , any locally
optimal solution of (14) must have . First, assume that

, for . We will show in this section that
for the considered weight settings this assumption leads to a
contradiction.
We begin by noting that under the assumption that ,

using and in (17a) yields

(76)

We will now show that and cannot be strictly greater than
zero simultaneously, and we will use this to conclude that
. If , we have from (17b) with and that

. Similarly, if , we have from (17b) with
and that . Also, since , we

have that

(77)

and since

(78)

2) Showing That : Suppose that .
In this case, using (78) and the equality in (17e) with , we
have

(79)
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From (77) and (79), we have

(80)

(81)

which contradicts the inequality constraint in (17c) with .
Hence, we conclude that . Notice that the contradiction
here is resolved if . Using a similar argument, we con-
clude that . The contradiction for the latter case is also
resolved if .

3) Showing That : In order to show that
cannot be strictly greater than zero for all , we have
to show that (or alternatively that ). This will
contradict (17b) with and for .
If , then from the equality in (17c) with we have

Using this in the inequality constraint

in (17c) with , we have . Using
that in (78) yields

This inequality contradicts the inequality constraint in (17e)
with for any . The argument that can
be made analogously.

D) Relaxed ProblemWith and
: In this section, we show that, when ,

the optimal solution of (16) must have . To show this,
we will assume that , for , and then proceed
by contradiction. If , for , then from (18a)
with and we have that

(82)

and from (18a) with and , we have that

(83)

Now, using (83) and (82), we have from (45), (46), (49), (18e)
and (18g) that

(84a)

(84b)

(84c)

and

(85a)

(85b)

(85c)

We will now show that and that . Con-
sider the value of the objective that corresponds to the equalities
in (84), namely

(86)

Observe that, for a given , the value of the objective does not
depend on the partitions and . Consider now the value of
the objective that corresponds to power partitions
and . In this case, the value of the objective is given by

(87)

Subtracting (86) from (87) yields

where the inequality follows from the fact that and
. Hence, it is seen that, for this weight ordering, the

rates in (84) are not optimal unless and . Using
a similar argument, we can show that the rates in (85) are not
optimal unless and .

APPENDIX I
PROOF OF COROLLARY 1

In Theorem 2, we have shown that for these weight orderings
both the original problem in (14) and its relaxed counterpart in
(16) yield .
We now consider the optimization problems corresponding

to the ones in (14) and (16) but with . In this case, it
is straightforward to see that for these problems the constraints
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and are redun-
dant. Using this observation, the KKT systems corresponding
to can be obtained from (17) and (18) by removing the
constraints and
and their corresponding Lagrange multipliers, namely, and
, .
For the original problem corresponding to (14), following an

analysis similar to the one used for other weight orderings, it
can be seen that no solution of the KKT system exists if both
and are greater than zero. For the case in which and

, it can be shown from the analysis of the KKT system
that the solution of (14) must have . Now, assuming that

and yields . This implies that
. A solution of the KKT system in this

case is found with and .
For the case in which , a similar analysis for the

original problem reveals that , which can be shown to
yield and .
For the relaxed problem corresponding to (16), the condition

that implies that , which, using Lemma 2,
implies that and . Analogously, the condition
that implies that , which, using Lemma 4,
implies that and .
The statement of the corollary follows from noting that iden-

tifying with , and identifying with for , and
with for , the relaxed problem corresponding to (16)
yields the same rates as the original problem corresponding to
(14).

APPENDIX J
PROOF OF THEOREM 3

A) Original Problem With : To prove this
theorem, we will first assume that there exists a solution of the
KKT system with , for . Then, we will show
that this assumption yields an objective that is monotonically
decreasing in , which leads us to conclude that the optimal
is equal to zero.
To analyze the KKT conditions for , we

invoke this ordering in (18a), which yields

(88)

from which we have

(89)

As argued in Appendix F, if then which
contradicts the second inequality in (89). Similarly, if
then , which contradicts the first inequality
in (88). Hence, we conclude that . Since ,
we have from the second inequality in (88) that

(90)

Using the first inequality in (88) in (17b) with and
yields Using (90) in (17b) with and
yields For the number of linearly independent

equations not to exceed the number of unknowns in the KKT
system, we will show that and . To do so, we
will consider all possible assumptions for , and .
1) , , , ,

and , : These as-
sumptions can be eliminated by using an argument similar
to the one in Appendix F-A to show that they result in a
number of independent linear equations that exceeds the
number of unknowns;

2) , : For this assumption, the first in-

equality in (88) yields . If ,
which is possible because we have no conditions on , the
fact that implies that ,
which violates the inequality constraint in (17d) with

. Now, if , we will have a number
of independent equations that exceeds the number of un-
knowns. Hence, this assumption can be eliminated;

3) , : This assumption yields

. If , which is possible because
under this assumption , the fact that
implies that , which violat-
esthe inequality constraint in (17c) with . Now, if

, we will have a number of inde-
pendent linear equations that exceeds the number of un-
knowns. Hence, this assumption can be eliminated;

4) , : For this assumption,

and . If

, we have , which vi-
olates the inequality constraint in (17d) with , and if

, the number of independent linear
equations exceeds the number of unknowns. Hence, this
assumption can be eliminated;

5) , : For this assumption, we have

(91)

(92)

Counting the number of linearly independent equations
in this case, it can be seen that it is equal to the number
of unknowns. Now, the partition-rate vector gener-
ated by (14) for this ordering must satisfy
. Using the fact that , cf. (90), we can write

. Subtracting (91) from (92) yields

Using this equality, the ob-
jective in (14) can be expressed as

Now, for any and , because
, it can be seen that the objective is monotoni-

cally decreasing in . In particular
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where equality holds if and only if , which estab-
lishes the first statement of the theorem.
B) Relaxed Problem With : In analogous

manner to the analysis of the original problem, we begin by
assuming that , . In this case, the weight
ordering yields

(93)

Using the second inequality and invoking Lemma 4 in
Appendix C implies that . From the first
inequality and Lemmas 2 and 3 it can be seen that either

, or . In either case, it can be verified
that the number of linearly independent equations exceeds the
number of unknowns. Hence, we conclude that at least one of

must be zero. However, since (14) is strictly feasible,
it is straightforward to see that the current weight ordering
implies that if or are zero, then must be zero, which
proves the second statement of the theorem.

APPENDIX K
PROOF OF COROLLARY 2

From Theorem 3, we have that for , the op-
timal partition-rate vector, , must have . Consid-
ering the optimization problems corresponding to the ones in
(14) and (16) but with , it can be seen that for these
problems the constraints , and

are redundant. Using this observation, the KKT
systems corresponding to can be obtained from (17) and
(18) by removing the constraints ,
and and their corresponding Lagrange multi-
pliers, namely, and , .
For the original problem corresponding to (14), the KKT sta-

tionarity conditions yield

(94)

(95)

(96)

(97)

Now, the condition that implies that

(98)

We will use contradiction to show that is not equal to zero. To
do so, assume that . Using this in (97) yields that either

, or and . We will show that both
cases yield a contradiction, which shows that .

First, consider the case of . In this case, (96)
yields . Using this in (94) yields

. However, this contradicts (98) because of the
assumption that . Hence, we conclude that, if ,
we must have and .
Next, we consider the case of and with the

current assumption of . The fact that implies that
and that

(99)

Now, because , we have

(100)

Substituting from (99) into (100) yields
, for any . Hence, we conclude that when ,

and cannot be greater than zero. Combining this result
with the result obtained for the case of
yields the desired contradiction.
Using in (97) yields , which implies that

We now consider the KKT system of the relaxed problem
corresponding to (16). In this problem, the condition that
implies that , which, using Lemma 2 in Appendix C,

implies that .
The statement of the corollary follows from noting that iden-

tifying with , with yields the same rates as the original
problem corresponding to (14).
Noting that for any , with , , it

is seen that the partition-rate vector generated by (14) for
does not belong to the feasible set of (15), and hence

does not belong to the intersection of the two regions, which is
the SPC region.

APPENDIX L
PROOF OF THE INFORMATION-THEORETIC BOUNDS IN

SECTION VI

Given some small positive reals , for every
achievable rate, there is a sufficiently large such that .
It follows from Fano’s inequality that

(101a)

(101b)

(101c)

In order to obtain (22a), we have from Fano’s inequality that

(102)
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where and are defined in (21). Due to the symmetry be-
tween receivers 1 and 3, (22e) can be proved in a similar manner.
We now show how to obtain the bound in (22b). Using Fano’s

inequality

(103)

Invoking the symmetry between receivers 1 and 3, one can
prove (22f) in a similar fashion.
In order to obtain the bound in (22c), we write

By adding and subtracting the term in
the above expression, we obtain

(104)

Further bounding of the right-hand side yields

In a similar manner, one can prove the bound in (22g).

In order to obtain a bound on the sum rate in (22d), we have

One can use the same technique to obtain the bound in (22h).

APPENDIX M
PROOF OF THE INEQUALITIES IN (23) AND (24)

Inequalities (23a) for and (24a) for are iden-
tical, and to prove them, observe that

To prove (23b), we use Fano’s inequality to write
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Similarly, to prove (24b), we have

We now prove (23c). Using Fano’s inequality

(105)

(106)

(107)

where in (105) we used the independence of and ,
and in (106) we used the fact that is less degraded than .
Using the symmetry between the received signals and

, an analogous argument can be used to prove (24c).
In order to prove (23d), we use Fano’s inequality to write

(108)

From (108)

(109)

(110)

(111)

(112)

where in (110) we have used the fact that is less degraded
than , and is less degraded than . In (111) we used the
observation that and are independent of and ,
and that and are independent of each other. The term

is added and subtracted in (112) in order to
introduce in the conditioning of the second term in (112).
Using the symmetry between the received signals and

, an analogous argument can be used to prove (24d).

APPENDIX N
APPLICATION TO THE GAUSSIAN CHANNEL—

In this section, we will take the first step towards showing that
contains the set of all achievable rate vectors. We will

show that for every achievable rate vector there exist vectors
such that the inequalities in (16b)–(16f) are satisfied.

The argument will be based on invoking the inequalities in (22)
and (23) in the case in which each subchannel is Gaussian. (The
corresponding argument for is almost identical, and will
be briefly discussed in Appendix O.) We begin by observing
that [2]

(113a)

(113b)

(113c)

(113d)

In the following sections, we will specify the vectors , and
and we will employ those vectors and the entropy power

inequality to provide the desired bounds.
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A) Specifying the Vectors , and :
1) Specifying : Since conditioning reduces entropy, we

conclude that there exist two nonnegative reals and sat-
isfying such that

(114)

(115)

Similarly, there exist and satisfying such
that

(116)

(117)

In (115), we have used the fact that contains more informa-
tion about than , and that contains more information
about than . This fact is immediately apparent from the
definitions in (21).

2) Specifying : Because conditioning reduces entropy,
there also exist nonnegative reals and such that

, , and

(118)

(119)

(120)

(121)

where (121) follows from the fact that is a less degraded
version of .

3) Specifying : Using, once again, the fact that con-
ditioning reduces entropy, one can find nonnegative reals ,

, , such that , , and

(122)

(123)

(124)

(125)

B) Applying the Entropy Power Inequality
1) Applying the Entropy Power Inequality With : Using

a technique similar to the one used in [5], the entropy power
inequality can be shown to yield

(126)

(127)

(128)

(129)

Similarly

(130)

(131)

where in (130) and (131), we have used the entropy power in-
equality in the reverse direction. Using the entropy power in-
equality on (116) and (117), we obtain

(132)

(133)

2) Applying the Entropy Power Inequality With :

(134)

(135)

(136)

(137)

3) Applying the Entropy Power Inequality With :

(138)

(139)

(140)

(141)

(142)

(143)

(144)

(145)

Using (113)–(145), we now prove our target inequalities.
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C) Proving the Converse of the Inequalities in (16b): For
this set of inequalities, we will apply the inequalities in (113),
(114)–(117) and (126)–(133) to (22a)–(22d).

1) Proving the Converse of the Inequality in (16b) Corre-
sponding to : From (22a)

2) Proving the Converse of the Inequality in (16b) Corre-
sponding to : From (22b)

3) Proving the Converse of the Inequality in (16b) Corre-
sponding to : Using (22c)

4) Proving the Converse of the Inequality in (16b) Corre-
sponding to : To prove the converse of this inequality, we
use (22d) to write

(146)

where in (146), we have used the upper bound on in
(131) and the fact that .

D) Proving the Converse of the Inequalities in (16c): For
this set of inequalities, we will apply the inequalities in (113),
(118)–(119) and (134)–(137) to (23a)–(23d).

1) Proving the Converse of the Inequality in (16c) Corre-
sponding to : Expressing (23a) in terms of the conditional
entropy and using (134) and (135), it can be shown that

2) Proving the Converse of the Inequality in (16c) Corre-
sponding to : Expressing (23b) in terms of the conditional
entropy and using (113), (136), and (137)

3) Proving the Converse of the Inequality in (16c) Corre-
sponding to : Using (23c)
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4) Proving the Converse of Inequality in (16c) Corre-
sponding to : Using (23d)

(147)

where in (147), we have used the fact that

and

E) Proving the Converse of the Inequalities in (16d):
For this set of inequalities, we will apply (113), (122)–(125),
(138)–(145) to (22e)–(22h).

1) Proving the Converse of the Inequality in (16d) Corre-
sponding to :

2) Proving the Converse of the Inequality in (16d) Corre-
sponding to : Using (22f)

3) Proving the Converse of the Inequality in (16d) Corre-
sponding to : In order to prove this inequality, (22g) is
used to show that

4) Proving the Converse of the Inequality in (16d) Corre-
sponding to : Using (22h)
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APPENDIX O
APPLICATION TO THE GAUSSIAN CHANNEL—

The application of the entropy power inequality to show that
contains the set of all achievable rate vector uses es-

sentially the same methodology as that used in Appendix N for
, but with the partitions chosen so as to satisfy the

following equalities:

(148)

(149)

(150)

(151)

Using these partitions along with the inequalities in (24a)–(24d)
yields

which is the desired converse.
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