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Design of Linear Dispersion Codes: Asymptotic
Guidelines and Their Implementation

Ramy H. Gohary and Timothy N. Davidson, Member, IEEE

Abstract—In this paper, a design method is developed for the
class of linear-dispersion (LD) codes—a diverse set of space-time
codes that subsumes several standard designs. The development
begins by showing that for systems that employ a large number
of transmit antennas, LD codes constructed from unitary cod-
ing matrices are asymptotically optimum from different design
perspectives, viz., minimum mean square error (MMSE), mutual
information, and average pairwise error probability (PEP). Those
measures have a direct impact on the detection complexity, data
rate, and error performance that a space–time code can achieve.
Using the insight generated by the asymptotic result, a structured
design technique for the LD coding matrices, that suits a broad
class of configurations is provided. The resulting codes can support
high data rates and provide performance advantages over current
designs when decoded with a standard detector. Based on the
asymptotic results, a row interleaving scheme is proposed, and it
is shown to result in significant performance enhancement.

Index Terms—Efficient detection, ergodic capacity, multiple-
input–multiple-output (MIMO) communication systems, space-
time coding, Stiefel manifold.

I. INTRODUCTION

W IRELESS communication systems with multiple an-
tennas at both the transmitter and receiver have the

potential to provide reliable transmission at high data rates [1].
In particular, for a sufficiently rich scattering environment, the
capacity of a coherent communication channel employing M
transmit and N receive antennas grows linearly as min(M,N),
[1]–[3]. The design of coding schemes for multiple-antenna
systems operating at high signal-to-noise ratios (SNRs) in-
volves a tradeoff between the achievable rate (normalized by
log(SNR)) at which the system capacity grows and the nor-
malized rate at which the error probability decays [3]. This
inherent tradeoff provides a distinction between schemes like
the orthogonal space–time block codes (OSTBCs) [4] that
sacrifice achievable rate for maximum reliability, and the Bell
Labs layered space-time (BLAST) schemes (e.g., [5]) that can
support rates close to channel capacity, but do so without
benefiting from the diversity of the channel. Since OSTBCs
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and BLAST achieve the extremes of the tradeoff, there is
considerable interest in developing design methods for schemes
that provide intermediate performance in terms of achievable
rate and error probability, and are applicable for a broad range
of antenna configurations. The set of linear-dispersion (LD)
codes [6] is a diverse class of space-time codes that subsumes
many existing schemes, including the OSTBC and BLAST
schemes, and hence, is a natural framework in which such
design problems can be posed. While some recently developed
codes, such as the threaded algebraic space time (TAST) codes
[7] and those in [8], possess many desirable performance fea-
tures, they remain proper subsets of the LD framework. Given
the generality of the LD coding framework and the abundance
of degrees of design freedom it possesses, the focus of this
paper is on the development and implementation of guidelines
for the design of LD codes through the study of their asymptotic
properties.

The original LD codes in [6] were designed to maximize
the ergodic capacity of the system. However, it has recently
been pointed out that such capacity-optimal LD codes do not
necessarily perform well in practice [9]. Moreover, the maxi-
mization of the ergodic capacity is performed under an implicit
assumption that maximum-likelihood (ML) detection will be
performed at the receiver—a task that requires an exhaustive
search that is often computationally infeasible. These obser-
vations prompt the search for codes that jointly achieve high
data rates and perform well when only a suboptimal detector is
available at the receiver. In the present paper, we identify a class
of LD codes that approach optimality from both performance
and rate perspectives as the number of transmit antennas M
grows. In particular, the class of codes presented herein asymp-
totically ensures minimum output mean-square error (MSE)
without incurring any information loss. Minimizing the MSE is
a desirable feature for the class of suboptimum sphere detectors
that employ a linear front end [10]. In addition to this property,
we show that this class of codes asymptotically minimizes the
high-SNR average pairwise error probability (PEP).

Since we consider both capacity and performance in our
designs, the underlying philosophy of our approach is similar
to that followed in the concurrent development of frame-based
LD codes [9]. However, our methodology is substantially dif-
ferent. In particular, we derive a different objective function
for the code-design problem, and the set of feasible codes in
[9] intersects that of the codes proposed herein, but neither is
a proper subset of the other. As we will show in Section VI,
our design method can generate codes that provide slightly
better performance than those in [9]. Furthermore, our codes
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possess a structure that enables us to search the space of feasible
codes efficiently without the need to perform the random search
techniques employed in [9].

The design criteria for our LD codes are based on several
observations. First, we show that LD codes with a certain
unitary structure simultaneously: 1) minimize a lower bound
on the MSE at the output of a linear preprocessing stage in
the receiver; 2) minimize a lower bound on the high-SNR
average PEP; and 3) maximize an upper bound on the mutual
information that an LD code can achieve. We then show that as
the number of transmit antennas grows, these optimized bounds
are achieved. Guided by this asymptotic result, we impose this
unitary structure on finite-sized LD codes and show how the
resulting equivalent channel matrix can be optimized. Imposing
this unitary structure dramatically reduces the number of design
parameters, which subsequently reduces the computational cost
of determining the codes. In particular, our design procedure is
substantially simpler than that in [6] and does not require the ad-
ditional manipulations employed therein. We will demonstrate
via simulation that even for systems with a small number of
antennas, our codes perform better than many existing codes,
including the standard LD codes [6], the TAST codes [7] and
the codes in [8].

The high-SNR performance of a communication system is
dominated by the outage probability [3], which is the prob-
ability that a specific channel realization fails to support the
required data rate. In order to reduce the outage probability,
we propose a row interleaving procedure that improves the
high SNR performance of the code by transmitting the rows of
the code matrix over different channel realizations. Asymptotic
analysis and supporting simulations demonstrate how our uni-
tarily structured LD codes can benefit from row interleaving.
In fact, we provide simulation results that demonstrate that
row interleaving can substantially increase the performance
advantage of our codes over the original LD codes.

II. LD CODES

We consider a system with M transmit and N receive
antennas by which one wishes to transmit Q data symbols,
s1, . . . , sQ, from a given constellation C over T time slots. If
we represent the channel symbols transmitted from the anten-
nas at each time slot as the rows of a T × M matrix S, then
each LD codeword can be written in the form [6]

S =
Q∑

q=1

(αqA2q−1 + jβqA2q) (1)

where αq and βq are the real and imaginary parts of sq,
respectively. The matrices Aq are T × M fixed coding matrices
that define the code. Typically, they are normalized so that the
average power transmitted by each antenna is unity; i.e.,

Es

{
Tr(SSH)

}
= TM (2)

where (·)H denotes the Hermitian transpose. If r denotes the
constellation size of the data symbols sq, then the transmission
rate of the code is R = (Q/T ) log2 r bits/channel use.

We will adopt the standard frequency-flat block-fading
model of the channel [4], [6] in which the slow fading of
the propagation coefficients is approximated by coefficients
that are constant over a given block of T time slots and then
fade independently in the next block. This can be a model
for many transmission strategies including frequency hopping,
ideally interleaved time-division multiple access (TDMA), or
packet-based transmission in which each frame of data sees
an independent realization of the channel but the channel is
constant within each frame [11]. Under the assumed model, the
received symbol matrix Y can be written as

Y =
√

ρ

M
SH + V (3)

where ρ is the SNR per receive antenna, and H is the M × N
channel matrix whose (m,n)th element is the complex gain
between the mth transmit and the nth receive antennas. We will
assume that the scattering is rich enough for the channel coef-
ficients [H]mn to be modeled as independent complex circular
Gaussian random variables of unit variance. The matrix V in (3)
denotes the additive white Gaussian noise. Its elements are also
independent complex circular Gaussian random variables of
unit variance. Since we have assumed that the channel changes
slowly, we will assume that the receiver has been able to acquire
an accurate model of the channel. By rearranging the elements
in the matrices in (3), we can rewrite that equation as [6]





yR,1

yI,1

...
yR,N

yI,N





︸ ︷︷ ︸
y

=
√

ρ

M
H





α1

β1
...

αQ

βQ





︸ ︷︷ ︸
s

+





vR,1

vI,1

...
vR,N

vI,N





︸ ︷︷ ︸
v

(4)

where, the subscripts (·)R,i and (·)I,i denote the real and
imaginary parts of the ith column, respectively. The 2NT × 2Q
equivalent-channel matrix H is given by

H = [IN ⊗A1 IN ⊗A2 · · · IN ⊗A2Q][I2Q ⊗ h] (5)

where ⊗ denotes the Kronecker product, and

A2q−1 =
[

AR,2q−1 −AI,2q−1

AI,2q−1 AR,2q−1

]

A2q =
[
−AI,2q −AR,2q

AR,2q −AI,2q

]
. (6)

In (5), h = [hT
1 , . . . , hT

N ]T, where hn = [hT
R,n, hT

I,n]T, and
hR,n and hI,n are, respectively, the real and imaginary com-
ponent vectors of the nth column of the physical channel
matrix H .

It can be seen from (5) that the columns of H are linearly
transformed versions of each other. Therefore, unless the cod-
ing matrices Aq are carefully chosen, it may be quite likely that
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the resulting H is “close” to being degenerate. In that event,
the performance of most detectors deteriorates substantially.
Hence, an effective design technique for the coding matrices
ought to guard against these occurrences, in addition to opti-
mizing other design criteria. A candidate technique for doing
so is provided in Section IV.

III. PERFORMANCE BOUNDS AND

ASYMPTOTIC OPTIMALITY

In this section, we derive the design criteria for our LD
codes, and demonstrate the asymptotic optimality of codes with
a certain unitary structure. It was shown in the previous section
that the structure of LD codes allows us to explicitly manipulate
the equivalent-channel matrix (5). A question that arises is
how to choose the coding matrices Aq so that the equivalent-
channel matrix ensures good average receiver performance at a
given data rate. Obviously, this design problem depends on the
receiver structure, the number of available antennas at each end
of the communication link, the block length T , and the choice
of the number of symbols Q in a block.

Optimum signal detection involves maximization of the like-
lihood function over the discrete set of the code alphabet—an
NP-hard integer least-squares problem; e.g., [12]. For an ML
receiver to detect the transmitted symbols reliably at high
SNR, it is sufficient for the singular values of the equivalent-
channel matrix to be bounded away from zero in order to
avoid ambiguity errors produced by system degeneracy [3].
However, it is not immediately clear what desirable conditions
the equivalent-channel matrix has to meet should we choose
to use a less computationally expensive receiver. For example,
consider the version of the sphere detector in [12] and [13].
For the vectorized model in (4), this detector performs the QR
decomposition of the equivalent-channel matrix H, rotates y,
and performs a tree-structured search over (a certain subset) of
the space of all possible transmitted vectors CQ to determine

ŝ = arg min
sq∈C′

q⊆C
‖ỹ −Rs‖ (7)

where H = QR and ỹ = QTy. An alternative to sphere de-
tection is the “nulling and cancellation” approach [2], [5],
[14] in which decisions on the elements of s in (7) are made
sequentially and are fed back to remove interference from
subsequent decisions. Some interesting insight into our design
approach (described below) can be gained by observing from
(7) that if the columns of H can be made orthogonal, both
the search in (7) and the “nulling and cancellation” approach
reduce to simple detection of the individual entries of ỹ, i.e., the
entries of ỹ are decoupled. Having such a column orthogonal H
dramatically reduces the search space of the sphere detector and
avoids the potential for error propagation in the nulling-and-
cancellation approach. While we do not deal with the column
orthogonality of H directly, our design approach (implicitly)
generates equivalent-channel matrices H with “increasingly”
orthogonal columns as the size of the system grows. More
precisely, HHT approaches a scaled identity for almost every
channel realization.

A. Linear Preprocessing and Mean Square Error

Another approach used in sphere detection linearly pro-
cesses y to form s̃ = Gy, and then performs an ML search
in the neighborhood of s̃ [10]. Typically, G is chosen as
the “zero-forcing” equalizer,1 GZF = H†, or the linear
minimum-mean-square-error (MMSE) equalizer, GMMSE =√

ρ/MHT((ρ/M)HHT + I2NT )−1
. To ensure good perfor-

mance at reasonable complexity from this type of sphere detec-
tor, one should design the coding matrices Aq in (1) to ensure
that s̃ is, on average, “close” to s. For a given channel H , the
distance between s̃ and s can be measured in terms of the MSE.
For the case where G = GMMSE

MSE =Es,v

{
Tr
(
(s − s̃)(s − s̃)T

)}

=Q − NT +
1
2
Tr
((

I2NT +
ρ

M
HHT

)−1
)

. (8)

We will show later (in Section III-D) that it is desirable to have
Q as large as possible (from both symbol-rate and asymptotic-
performance perspectives). However, the MSE expression (8)
reinforces the standard practice that Q should be chosen to be
no greater than NT [6].

Since we have assumed that the transmitter does not know
the channel matrix H , an appropriate design strategy would be
to choose the coding matrices Aq embedded in H in order to
minimize the expected MSE over the distribution of H . That is

min
Aq

EH

{
Tr
((

I2NT +
ρ

M
HHT

)−1
)}

(9a)

subject to Tr
(
AqA

H
q

)
≤ TM

Q
. (9b)

The constraint in (9b) not only ensures that the coding matrices
meet the overall power constraint in (2), it also guarantees that
each data symbol satisfies the same bound on its transmitted
power. The set of matrices {Aq} satisfying (9b) is smaller than
that satisfying (2), and hence, enforcing (2) rather than (9b) may
result in improved performance (e.g., [15]). However, we will
show in Section III-D and Appendix II that any performance
loss due to (9b) vanishes as M increases. In fact, the satisfaction
of (9b) is a necessary condition for the optimized bounds
derived below to be asymptotically achieved.

The problem in (9) can be quite awkward to solve directly
because the objective involves an expectation and the design
parameters enter H in a highly structured fashion. Rather than
attempting to solve (9) directly, we now develop bounds on the
objective function and show that, by exploiting the asymptotic
properties of the bounds, we can obtain “good” LD codes in a
relatively straightforward manner. The key to this development
is Jensen’s inequality [16].
Lemma 1: If f is a strictly convex function and X is a

random variable, then E{f(X)} ≥ f(E{X}) with equality
iff X = E{X} with probability 1.

1Here, (·)† denotes the Moore-Penrose pseudoinverse.
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The function Tr((I + X)−1) is strictly convex in X over
{X|X = XT ) 0}. Therefore, using Jensen’s inequality

EH

{
Tr
((

I2NT +
ρ

M
HHT

)−1
)}

≥ Tr
((

I2NT +
ρ

M
EH{HHT}

)−1
)

. (10)

We now attempt to find coding matrices Aq that minimize the
lower bound in (10). We will show in Section III-D that the
minimized lower bound is asymptotically achieved.

Observe that

1
M

HHT =
1
M

2Q∑

q=1

(IN ⊗Aq)h hT
(
IN ⊗AT

q

)
(11)

where Aq is defined in (6), and h in (5). Using (11), we have

EH{HHT} =
1
2

(
IN ⊗

∑

q

AqAT
q

)
(12)

and hence, the lower bound in (10) can be written as

Tr




(

I2NT +
ρ

2M

(
IN ⊗

∑

q

AqAT
q

))−1


 . (13)

For any positive definite matrix X , we have that [17]

Tr(X−1) ≥
∑

i

1
[X]ii

with equality holding if and only if X is diagonal. Therefore,
when minimizing the lower bound in (13) we can restrict our
attention to the case where

∑
q AqAT

q is diagonal. In order to
find the matrices Aq that minimize the right-hand side of (10),
we solve the following problem

min
Aq

∑

i

1

1 + ρ
2M

[∑
q AqAT

q

]

ii

(14a)

subject to Tr
(
AqAT

q

)
≤ 2TM

Q
. (14b)

By differentiating the Lagrangian function of (14) and setting it
to zero, we find that the optimal Aq’s satisfy

[
∑

q

AqAT
q

]

ii

= 2M ∀i. (15)

Hence, the optimal choice of {Aq} is one for which
∑

q

AqAT
q = 2MI2T . (16)

With this choice of Aq, the inequality in (10) becomes

EH

{
Tr
((

I2NT +
ρ

M
HHT

)−1
)}

≥ 2NT

(1 + ρ)
. (17)

In the case when we have M ≥ T , the matrices Aq are square
or “fat,” and a simple choice that satisfies (16) and the power
constraint on each transmitted symbol is given by

AqAT
q =

M

Q
I2T . (18)

In order to satisfy (18), the matrices Aq have to be unitary. That
is, AqAH

q = (M/Q)IT for 1 ≤ q ≤ Q. When we have M < T ,
we cannot satisfy the restricted optimality condition in (18),
but if T ≤ 2MQ, it is possible to satisfy the general optimality
condition in (16), as we will show in Example 2 in Section VI.

B. Mutual Information

In the previous section, we considered code design from a
performance perspective with a certain class of suboptimum
detectors in mind, and we argued that coding matrices with a
unitary structure minimize a lower bound on the MSE. In this
section, we discuss the status of these codes from a mutual
information perspective.

If s assumes the capacity achieving standard circular
Gaussian distribution, the model in (4) implies that the mutual
information between transmitted and received signals is given
by [1], [6]

I(s; y) =
1

2T
EH

{
log det

(
I2NT +

ρ

M
HHT

)}
. (19)

Since log det(I + X) is strictly concave in X over {X|X =
XT ) 0}, it follows from Jensen’s inequality (Lemma 1) that

1
2T

EH

{
log det

(
I2NT +

ρ

M
HHT

)}

≤ 1
2T

log det
(
I2NT +

ρ

M
EH{HHT}

)
. (20)

We will now show that the coding matrices Aq that maximize
this upper bound possess the same unitary structure as those
that minimized the lower bound on the MSE. In Section III-D,
we will show that such coding matrices asymptotically achieve
the maximized upper bound.2

Using the expression in (12), to maximize the upper bound
in (20) we need to solve the following optimization problem

max log det

(
I2NT +

ρ

2M

(
IN ⊗

∑

q

AqAT
q

))
(21a)

subject to Tr
(
AqAT

q

)
≤ 2TM

Q
. (21b)

Using Hadamard’s inequality, we have that for any positive
definite matrix X

det(X) ≤
∏

i

Xii (22)

2The upper bound in (20) and the observation that it is maximized by unitary
coding matrices appeared independently in [18]. In Section III-D, we will
enhance that result by showing that unitary coding matrices not only maximize
the upper bound, but also asymptotically achieve it.
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with equality if and only if X is diagonal. By restricting our
attention to the set of matrices {Aq} for which

∑
q AqAT

q is
diagonal, and setting the derivative of the Lagrangian of (21)
equal to zero, we find that the optimal Aq’s must satisfy

[
∑

q

AqAT
q

]

ii

= 2M.

Hence, the optimal choice of the set {Aq} is one for which
∑

q

AqAT
q = 2MI2T . (23)

It is clear from (23) that the coding matrices that minimize the
lower bound of the MSE also maximize the upper bound on the
mutual information that can be achieved by an LD code. Using
(23) and (20), we can write the maximized bound on the mutual
information as

I(s; y) ≤ N log(1 + ρ). (24)

In Appendix I, we show that the right-hand side of (24) is not
only a bound on the maximum mutual information that an LD
code can achieve, but is also an upper bound on the ergodic
channel capacity. Furthermore, we show that as the number
of transmit antennas grows, the ergodic channel capacity ap-
proaches the right-hand side of (24). In Section III-D, we will
show that as M (and T ) grows, the actual mutual information
achieved by an LD code that satisfies (23) also approaches the
bound in (24), and hence, it approaches the ergodic capacity of
the channel.

C. Pairwise Error Probability (PEP)

In this section, we point out that the codes that simultane-
ously optimize the bounds on the MSE and mutual information
derived in Sections III-A and B also have desirable properties
in terms of a measure of the PEP. The measure that we use is
the average PEP for the case where the symbol vectors s are
drawn from a Gaussian codebook (cf., [6]), where the average
is taken over the channel realizations and all possible codeword
pairs of the codebook. More specifically, if P (s → s′|H) de-
notes the probability that, conditioned on a specific equivalent
channel realization H, the receiver selects the codeword s′,
given that s was sent, then the average PEP is defined to
be [6]

PEPav = EH {Es,s′ {P (s → s′|H)}} (25)

where s and s′ are drawn from a Gaussian codebook.3 For the
model in Section II, it has been shown that [6]

Es,s′ {P (s → s′|H)}

=
1
4π

∞∫

−∞

dω

ω2 + 1
4

2Q∏

q=1

1√
1 + 2ρσq(ω2+ 1

4 )
M

(26)

3Although this average PEP measure [6] is significantly different from the
conventional PEP [4], it does provide similar insight, as we now show.

where σq ≥ σq+1 denote the eigenvalues of HHT. If we define
r = Rank(H), then when the SNR is sufficiently high, we
have ρσr/M . 2. In that case, the unity term under the square
root in (26) can be neglected and the integral can be evaluated
analytically to obtain

Es,s′{P (s → s′|H)} ≤ ηr

( ρ

M

)− r
2

r∏

q=1

σ
− 1

2
q (27)

where

ηr =
1
4π

∞∫

−∞

dω
(
ω2 + 1

4

)1+ r
2

=

{ (2r−1)(2r−3)···(1)
r! , r even

2− r
2

32π

∑r− 1
2

m=0

(
r−1

2
m

)
(−1)m

2m+1 , r odd
.

If r = Rank(H) = min{2Q, 2NT}, then the product term in
(27) can be expressed as

r∏

q=1

σ
− 1

2
q =

{
det(HHT)− 1

2 , Q ≥ NT
det(HTH)− 1

2 , Q ≤ NT
(28)

where we have used the fact that for 1 ≤ q ≤ r, σq(HHT) =
σq(HTH), and the fact that det(I2NT + HHT) = det(I2Q +
HTH). Combining (25), (27), and (28), we obtain

PEPav

≤





η2NT

( ρ
M

)−NT EH

{
det(HHT)− 1

2

}
, Q ≥ NT

η2Q

( ρ
M

)−QEH

{
det(HTH)− 1

2

}
, Q ≤ NT

. (29)

The bound in (29) is tight if r = Rank(H) = min{2Q, 2NT}
with probability 1, and is trivial otherwise.

Our goal in this section is to minimize PEPav or, alter-
natively, to minimize the upper bound in (29), provided that
the latter is tight. As in Sections III-A and III-B, we will
not minimize the upper bound in (29) directly, but we seek
a lower bound on EH{det (HHT)−1/2} when Q ≥ NT , and
a lower bound on EH{det (HTH)−1/2} when Q < NT . To
that end, we observe that the function f(X) = det(X)−1/2 is
strictly convex over {X|X = XT / 0}.4 Thus, we can employ
Jensen’s inequality (Lemma 1) to show that

E{det(X)−
1
2 } ≥ det(E{X})− 1

2 (30)

where X is defined as

X =
{
HHT, Q ≥ NT ,
HTH, Q ≤ NT .

As in the previous sections, this bound is optimized if
EH{HHT} → MI2NT for Q ≥ NT and EH{HTH} →
(MNT/Q)I2Q for Q < NT . In the next section, we will show
that when the number of symbols per block Q is appropriately

4In fact, f(X) is log convex over {X|X = XT ! 0}, and hence, convex
over this set.
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chosen, coding matrices Aq with a unitary structure asymp-
totically achieve the minimized lower bound of the high-SNR
average PEP in (29).

D. Asymptotic Optimality of Unitary Coding Matrices

In this section, we will show that unitary coding matrices Aq

not only minimize the lower bound on the MSE in (10) and the
PEP bound in (29), as well as maximize the upper bound on the
mutual information that can be achieved by an LD code in (20).
For any given N , they also asymptotically attain these bounds
as T , M , and Q grow, so long as the scattering environment
remains sufficiently rich to provide independence between the
entries of the channel matrix.

The justification of the claim of asymptotic optimality of the
unitary coding matrices, is based on the following lemma [19].
Lemma 2: Let C and D ∈ Rn×n be diagonal matrices

with C = Diag(c1, . . . , cn) and D = Diag(d1, . . . , dn), where
c1 ≥ c2 ≥ . . . ≥ cn ≥ 0, d1 ≥ d2 ≥ . . . ≥ dn ≥ 0, and ‖C‖ =
‖D‖ = n. Let ∆ = Γ + jΛ be a unitary matrix uniformly
distributed according to the Haar measure.5 Then, as n
increases, (Tr(CΓ), Tr(DΛ)) converges in distribution to
(1/

√
2)(Z1, Z2), where Z1 and Z2 are independent identically

distributed (i.i.d.) standard normal random variables. That is,
Tr(CΓ + jDΛ) converges to a complex standard circular nor-
mal distribution.

In order to enable the asymptotic analysis, we assume that
the coding matrices Aq are randomly chosen from the uniform
distribution (in the Haar measure) on the group of unitary
matrices. Using the result in Lemma 2, we prove the following
proposition in Appendix II.
Proposition 1: Let H ∈ R2NT×2Q [cf., (5)] be given by

H = [IN ⊗A1 IN ⊗A2 · · · IN ⊗A2Q] [I2Q ⊗ h]

where the entries of h ∈ R2MN are i.i.d. zero-mean Gaussian
random variables with a variance of one half, and ∀q ∈ [1, 2Q],
Aq is given by (6), where Aq are uniformly distributed with
respect to the Haar measure on the group of unitary matrices.
Then, for any N ≥ 1, Q ≥ M , and with the ratio T/M ≤ 2Q
held constant

HHT a.s.−→ EH{HHT} (31)

as M → ∞, where a.s.−→ denotes almost sure convergence.
The condition in (31) is sufficient for the bounds derived

in Sections III-A–C to be approached, and hence, randomly
selecting unitary coding matrices is asymptotically optimal as
M and T grow.

It is to be noted here that although we have considered
complex coding matrices Aq, the above asymptotic analysis

5The Haar measure [20] is the unique rotationally invariant measure (up to
scalars) associated with compact measurable sets of unitary matrices. Thus, if
S is a measurable subset of the set of unitary p × q matrices, then the Haar
measure associated with this subset, µ(S) = µ(PS) for any p × p unitary
matrix P . For example, in R2, the Haar measure µ(S) associated with a
measurable set of unit vectors S is given by the length of the arc of the unit
circle spanned by the unit vectors contained in S. A general M × N unitary
matrix is said to be isotropically distributed if it is uniformly distributed with
respect to the Haar measure [11].

is valid for real orthogonal matrices as well. An advantage of
constraining the coding matrices to be real is that it reduces
the number of parameters to be optimized in designing the
code. However, this reduction in design complexity comes at
the possible risk of a reduction in performance.

It is interesting to compare the result in Proposition 1 with
a related result that appeared recently in [21]. There, it was
shown that using orthogonal coding matrices is asymptoti-
cally information lossless as the SNR → 0. It was conjectured
therein that that result carries over to the high-SNR realm.
Using Proposition 1, we can obtain a complementary result that
states that for any SNR, unitary coding matrices are asymptot-
ically information lossless as the number of transmit antennas
grows.

IV. DESIGN PROCEDURE

In the previous section, it was argued that for large systems
(with T/M held constant), picking unitary coding matrices
Aq randomly is optimal in the sense that it enables HHT to
approach EH{HHT} as the dimensions of H grow, i.e., HHT

concentrates around its mean. However, when the dimension
of the coding matrices is not large enough to obtain statistical
independence between the entries, picking the coding matrices
at random may result in a nearly singular equivalent channel
matrix H for many channel realizations, and hence, poor per-
formance. In order to obtain “good” unitary coding matrices
for such practical systems, we need a selection criterion. In this
section, we exploit insight from the proof of Proposition 1 to
develop a candidate design procedure. In Section VI, we will
demonstrate that our design procedure can provide codes that
perform well in practice.

The first step in the design procedure is to determine the
number of symbols Q to be transmitted over the channel in
each block of T channel uses. The fact that H has dimen-
sions 2NT × 2Q immediately suggests choosing Q ≤ NT [6].
This choice of Q is also supported by the MSE expression
in (8). However, the proof of Proposition 1 suggests that in
order to approach the optimized bounds in Section III, one
should choose Q to be as large as possible in order to provide
averaging over the largest possible set of coding matrices.
Based on these observations, we do not restrict Q to be equal
to min{NT,MT} as in [6]. Instead, we propose choosing
Q = NT , which yields a square equivalent channel matrix H.

We also require a selection criterion for designing the unitary
coding matrices Aq. To develop an appropriate criterion, we
will use the analysis of Section III. The PEP bound in (27)
suggests that we need to ensure that the minimum eigenvalue
of HHT is bounded away from zero for “as many channel
realizations as possible.” In a complementary way, the MSE and
mutual information analyses show that lower and upper bounds
on these quantities, respectively, are achieved at their optimized
values when HHT approaches scaled identity for every channel
realization. Therefore, we expect good performance from the
coding scheme if the equivalent channel matrix H is “close”
to being orthogonal for as many realizations as possible. We
will use a statistical measure of the proximity of H to a scaled
identity so that a standard stochastic optimization technique
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can be employed. The measure is based on the observation that
for any n × n positive definite matrix X

arg max
Tr(X)≤cn

det(X) = cI. (32)

Hence, the expected determinant of HHT is an appropriate
measure of the proximity of HHT to a scaled identity. Although
it is possible to develop other measures that promote the same
goal, this measure is consistent with the performance criteria
discussed in Section III. Our proximity measure has the advan-
tage that it is a smooth continuous function of the parameters
that characterize the unitary coding matrices and, as we will
see in Section VI, it results in an effective design algorithm
for all configurations that satisfy6 T/M ≤ 2Q. Therefore, we
will design finite codes that come close to achieving the asymp-
totically achievable optimized bounds by solving the following
stochastic optimization problem:7

max
Aq

EH{det(HHT)} (33a)

subject to AqA
H
q =

M

Q
I. (33b)

The optimization problem (33) looks rather similar to a high-
SNR instance of the capacity maximization problem presented
in [6] with coding matrices restricted to the unitary group
(cf., (33b), [6, eq. 28]). However, the fact that we do not
have the offset provided by the identity matrix in the mutual
information expression (19) means that our formulation (33)
strongly penalizes bad equivalent channel events. That is, the
expression in (19) will be quite insensitive to slight variations
in the minimum eigenvalue of HHT when the latter approaches
zero, whereas our formulation explicitly incorporates these
variations. In Section III-C, we have discussed the impact of
the minimum eigenvalue on the PEP [cf., (27)].

In order to explore the relationship between our design
approach and the conventional diversity gain in more detail,
we recall that the diversity gain of a multiple antenna system
is quantified through the rank criterion defined in [22]. For an
LD code [cf., (1)], the transmitted codewords take the form
S =

∑
q αqA2q−1 + βqA2q, and the diversity gain is given by

min
α+jβ,α′+jβ′∈C

{
Rank

[
∑

q

(αq−α′
q)A2q−1+(βq−β′

q)A2q

]}
.

Now, consider our design problem (33). By maximizing
det(HHT), we implicitly attempt to reduce the linear de-
pendence of the different columns of H. Columns of H are
linearly independent if and only if γ1h̆j + γ2h̆k 1= 0 for all γ1,
γ2 1= 0, ‖h̆j‖, ‖h̆k‖ 1= 0, where h̆r denotes the rth column of
H. That is, if and only if

(γ1(IN ⊗Aj) + γ2(IN ⊗Ak))h 1= 0

∀h 1= 0, 1 ≤ j, k ≤ 2Q.

6Since we have chosen Q = NT , this condition is always satisfied.
7In relation to (32), the trace constraint in (32) is captured by the power

constraint on the coding matrices [cf., (33b)] and the norm of the given channel
realization.

However, if B = γ1(IN ⊗Aj) + γ2(IN ⊗Ak) is rank defi-
cient, then there is always an h that lies in the null space
of B for which the determinant will be zero, and hence, the
columns will be linearly dependent. Hence, by maximizing
EH{det(HHT)}, we penalize the rank deficiency of B and
indirectly attempt to maximize the diversity gain.

An advantage of our formulation is that the objective is
independent of the constellation C, and hence, we can apply
standard (stochastic) optimization techniques based on analytic
expressions for the gradient of the objective (see Section VI and
Appendix IV). This is in contrast to an alternative performance-
orientated design [9] that uses a constellation-dependent PEP
criterion, and hence, as the constellation size increases con-
siderable computational effort is required to merely compute
the objective. Actually, our constraint in (33b) that the code
matrices be unitary is also slightly different from the constraint
that was imposed in [9]. In our notation, the constraint in [9]
corresponds to

Tr(AH
q Ap) =

TM

Q
δpq (34)

where δpq is the Kronecker delta. The set of matrices that
satisfy (34) intersects the set of unitary matrices, but neither
is a proper subset of the other. Coding matrices that satisfy
(34) are capacity optimal when Q ≥ MT , but they do not
necessarily provide good performance. Moreover, if N < M ,
effective detection for systems with Q ≥ MT > NT may
incur considerable computational cost and performance degra-
dation [cf., (8)]. In contrast, by constraining Aq to be unitary,
we almost surely obtain optimality from both mutual informa-
tion and performance perspectives for any number of receive
antennas as the size of the system grows.

V. ROW INTERLEAVING

At high SNR, the error rate performance of a space-time code
is dominated by the outage probability—the probability that
the channel is unable to support the required data rate. Outage
is associated with the event of the channel matrix dropping
rank [3]. In order to reduce the probability of outage, one can
employ interleaving. The general philosophy of interleaving in
communication over fading channels is to first impose structure
on the data sequence to be transmitted, and then to interleave the
structured sequence so that related components are transmitted
over independent channel realizations. The standard implemen-
tation of this strategy in the space-time coding literature is
to impose the structure on the data sequence using an outer
(scalar) code, then interleave the coded stream and pass it to
a standard space-time mapper (e.g., BLAST or OSTBC). The
alternative approach that we propose in this section is to exploit
the structure imposed by the LD code itself. We will show
in Section VI that the structure of our codes enables them to
significantly outperform the standard LD codes [6] when the
interleaving scheme we describe below is employed.

A disadvantage of the standard LD coding framework that
we have considered in this paper is that each row of the
codeword S is transmitted over the same channel. While maxi-
mizing EH{det(HHT)} penalizes the occurrence of an outage,
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it may be insufficient to protect the transmitted codeword
if ‖h‖ drops below a certain level. However, by augmenting
the LD-code framework by grouping successive codeword
matrices together and interleaving their rows, we can ben-
efit from the temporal diversity provided by different chan-
nel realizations. This scheme allows us to reduce the outage
probability, and hence, improve the high-SNR performance.
(Recall that we have assumed an independent block-fading
model for the channel.) In particular, given the codewords
S1, S2, . . . , SJ , [cf., (1)] we construct the row-interleaved code-
words S̃1, S̃2, . . . , S̃J , such that




S̃1
...

S̃J



 = P




S1
...

SJ



 (35)

where J is called the interleaving depth and P is some
JT × JT permutation matrix. Since the channel is assumed to
change to an independent realization after a block of T channel
uses, the fact that each codeword constitutes T rows implies that
J should be chosen so that J ≤ T . Otherwise, row interleaving
will lead to further processing delay without extracting addi-
tional temporal diversity. In this paper, we will choose J = T .
This choice ensures that each codeword can be symmetrically
dispersed over the same number of channel realizations, i.e.,
there exists (at least) one permutation matrix P that shuffles the
T 2 rows in such a way that rows are interleaved across (rather
than within) blocks. In order to gain some insight into the
proposed interleaving scheme, we will choose such a P , namely
the one whose (i, j)th entry is given by P (i, j) = 1 for all
j = 2i/T 3 + T ((i − 1) mod T ), i ∈ [1, T 2], and zero other-
wise. The row-interleaved codewords S̃t are then transmitted
over the respective channel realizations H(t), t ∈ [1, T 2]. This
model can be considered as a special case of the general
block-fading model of [23]. However, unlike [23], our in-
terleaving scheme does not incur extra detection complexity
due to augmentation of the equivalent channel matrix. This
fact will become clear as we discuss our proposed scheme in
more detail. While we do not claim optimality of the proposed
interleaving scheme, we will discuss below the intuition that
led to its development, and in Section VI we will demonstrate
its effectiveness.

With the row-interleaving scheme in (35), the vectorized re-
ceived symbol matrix can be written in a form similar to (4) as

y =
√

ρ

M
H̃s + v

where

H̃ =
[
IN ⊗ Ã1 IN ⊗ Ã2 · · · IN ⊗ Ã2Q

] [
I2Q ⊗ h̃

]
.

If Aq(i, :) denotes the ith row of Aq, and if we define the matrix
Eij to be the all zero 2T × T matrix with unity in the (i, j)th
position [24], then our particular choice of the permutation
matrix P will result in

Ãq =
2T∑

i=1

Ei,κ(i) ⊗Aq(i, :)

where

κ(i) = 1 + (i − 1) mod (T ) (36)

and h̃ = [h(1)T

1 . . . h(T )T

1 . . . h(1)T

N . . . h(T )T

N ]
T

, where h(t)
n is

the vector hn in (5) at the tth realization of the channel matrix,
1 ≤ t ≤ T . Notice that the size of H̃ is the same as the size
of H. This fact guarantees that the complexity of the detector
used at the receiver remains the same as for the non-interleaved
codes. That is, while the proposed interleaving scheme incurs
the standard latency penalty of transmission schemes that code
over independent realizations, the complexity of the detection
problem is unchanged.

As we show in Appendix III, using unitary coding matrices
along with row interleaving enhances diagonal dominance of
H̃H̃T over that of HHT, and hence makes H̃ “closer” to
being orthogonal than H, even for systems of finite size. The
arguments that led to the design problem in (33) suggest that
row interleaving will improve the high SNR performance of
our LD codes. As we will show in the next section, these
performance improvements can be substantial.

VI. NUMERICAL RESULTS

In this section, we provide some numerical examples that
illustrate the potential of the proposed designs. We have chosen
scenarios from Hassibi and Hochwald’s work [6] in which
their codes (which will be referred to as HHLD codes) were
shown to outperform OSTBCs and BLAST. Given that the
LD codes framework subsumes other recent designs, we have
also chosen scenarios from [7]–[9]. Before we begin, a few
remarks regarding the practical implementation of our design
approach are provided below.

1) The optimization problem in (33) can be solved by
combining the principles of stochastic optimization [25]
to deal with the expectation in the objective, with the
principles of optimization over the Stiefel manifold
[26]–[28] to deal with the orthogonality constraints. In the
examples below, we have chosen to constrain the coding
matrices to the manifold in (33b) by parameterizing Aq

via Givens rotations [29]. We then applied stochastic
quasi-gradient methods [25] to solve (33). Note that by
parameterizing Aq via Givens rotations, the optimization
problem (33) becomes unconstrained, and hence more
straightforward to solve. Furthermore, the gradient (and
the Hessian matrix) of the stochastic optimization objec-
tive with respect to the Givens rotations can be found
analytically. For convenience, in Appendix IV we have
provided the expression for the gradient along with a brief
description of the Givens parameterization.

2) For the case where T = M , the restriction of our search
to the group of unitary matrices reduces the number of
parameters to be optimized from 4QM2 real parameters
to 2QM2 real parameters. This is a significant reduction
in complexity. Further reduction can be achieved by
restricting our attention to real orthonormal matrices. In
that case, the number of parameters is QM(M − 1).
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Fig. 1. Comparison between an LD code designed using (33), and the corresponding HHLD [6] and MG [8] codes when M = N = T = 2, Q = NT = 4,
and 16-QAM symbols are transmitted.

3) When T 1= M , we embed the matrices Aq in square uni-
tary matrices of dimension max(T,M) and parameterize
the square matrices. The resulting coding matrices will be
a subset of the columns or rows of the square matrices. In
the case when we choose M > T , this parameterization
guarantees that condition (18) holds, and in the case
where M < T ≤ 2MQ, we can structure the embedding
so that the unitarity of the square matrix implies that
(16) holds.

4) In each of the considered examples, row interleaving was
implemented using the permutation matrix P given in
Section V.

5) The coding matrices used in the following examples were
obtained using the procedure outlined in Section IV.8

Example 1: We begin with a comparison with the HHLD
codes [6] and the full-rate full-diversity layered code of
Ma and Giannakis [8] (denoted MG) in the simple case in
which M = N = T = 2, Q = NT = 4, and the symbols are
drawn from a Gray-coded 16-quadrature amplitude modulation
(QAM) constellation. The resulting transmission rate is R = 8
bits/channel use. Fig. 1 shows the bit-error-rate (BER) perfor-
mance for the HHLD code [6], the MG [8] code, and a code
we designed using (33). When no row interleaving is used, our
code provides a slight improvement in performance over the
HHLD and the MG codes. When row interleaving is employed,
our code provides substantially better performance than the
HHLD code. For example, the SNR gain of our code over the
HHLD code is about 8 dB at a BER of around 10−6. !
Example 2: In this example, we choose M = 3, N = 1,

T = 3, and T = 6. When T = 3, we provide comparisons with
the corresponding TAST code [7], and when T = 6, we provide

8Available at http://www.ece.mcmaster.ca/~davidson.

comparisons with the corresponding HHLD code [6]. In all
cases, the number of symbols per block Q was chosen to be
Q = NT . Therefore, the data rate is maintained the same for
all cases.

The mutual information achieved by each code is illustrated
in Fig. 2, along with the ergodic channel capacity and the
bound derived in Section III-B [cf., (24)]. We observe that for
T = 3, our code provides larger mutual information than the
TAST code (the SNR gap to the ergodic capacity is around
1.2 dB for our code, and around 1.6 dB for the TAST code).
However, unlike TAST codes, LD codes naturally allow the
exploitation of channel coherence intervals that are longer than
the number of transmit antennas. In particular, when T = 6,
the mutual information achieved by our code and the HHLD
code is substantially closer to the channel capacity (the SNR
gap has been reduced to 0.4 dB). This reduction in the SNR
gap is in agreement with the result in Proposition 1, where
it was shown that increasing the size of the (unitary) coding
matrices reduces the statistical dependence between the entries.
Moreover, since the number of symbols Q is chosen to be
equal to NT , by increasing T , we allow more averaging over
the coding matrices [cf., (23)], which also contributes to the
reduction of the SNR gap between the ergodic channel capacity
and the mutual information achieved by the code.

To examine the performance of these systems, we consider
the case in which the symbols are drawn from the QPSK
constellation, and hence, the rate is R = 2 bits/channel use. For
the case when T = 3, our design provides a considerable BER
performance gain over the TAST code, as can be seen from
Fig. 3. For the case of T = 6, our design provides appreciable
BER performance gain over the HHLD design at high SNR in
the absence of row interleaving, and substantial performance
gain when row interleaving is used (an SNR gain of around
5 dB is achieved at a BER of 10−6). There is a detectable
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Fig. 2. Actual channel capacity, the upper bound in (24) and the information rate achieved by our LD code, the HHLD code [6], and the TAST code [7] in
Example 2, the HPLD code [9] in Example 3, and the LCP code [30] in Example 4.

Fig. 3. Comparison between an LD code designed using (33) and codes presented in [6] (HHLD) and [7] (TAST) when M = 3, N = 1, T = 3 and T = 6,
Q = NT = 6, and QPSK symbols are transmitted.

deterioration in the performance of the interleaved scheme at
low SNRs. This is due to the fact that the proposed interleaving
scheme does not control the conditioning of H̃H̃T, and the
weaker dimensions are more vulnerable to noise. However, the
interleaved codes perform better than the noninterleaved codes
at typical operating SNRs. !

Example 3: In this example, we compare our codes with
the M = T = 3, N = 1, and Q = NT = 3 code presented in
[9], which we will denote by HPLD. The mutual information

achieved by this code is shown in Fig. 2. At a data rate of
3 bits/channel use, the SNR gap to the ergodic capacity of this
code is about 1.9 dB, which is larger than the SNR gaps of both
the proposed LD code and the TAST code. In order to examine
the performance of our codes in comparison with that of the
HPLD code, we consider the case in which the transmitted
symbols are drawn from a 16-QAM constellation, yielding a
transmission rate of R = 4 bits/channel use. We have designed
two LD codes in this case; one each for the schemes with and
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Fig. 4. Comparison between the new LD codes and the HPLD code [9] when M = T = 3, N = 1, Q = NT = 3, and 16-QAM symbols are transmitted.

without row interleaving. For the case when row interleaving
is employed, we restricted our attention, as in [9], to coding
matrices that satisfy A2q−1 = A2q for q = 1, . . . , Q. Notice
that this choice of Aq results in the (2q − 1)th and the (2q)th
columns of H to be orthogonal to each other. We observe from
Fig. 4 that, at high SNR, row interleaving provides a significant
improvement in the performance for both codes. However, our
codes perform slightly better than those designed in [9], and are
much easier to design. !

Example 4: As a final example, we compare our de-
signs with the full-rate full-diversity layered code of Ma and
Giannakis [8] (denoted MG) and the linear constellation pre-
coding scheme developed in [30] (denoted LCP). We will also
provide comparisons with the HPLD codes [9] and TAST [7]
codes. We choose T = M = 3 and N = 1. For our codes,
the number of transmitted symbols Q is chosen to be Q =
NT = 3, which is the same as the value of Q chosen for the
corresponding LCP, HPLD, and TAST codes. The MG codes
are a full symbol rate design, and hence, QMG = MT = 9.
One of the advantages of the MG codes in this scenario is that
they are “information lossless.” That is, the mutual information
achieved by the MG codes coincides with the dashed line
representing the ergodic capacity in Fig. 2. In addition, the MG,
LCP, and TAST codes generically achieve full diversity, and the
HPLD code for this scenario also achieves full diversity. There-
fore, there is considerable interest in comparing the block-error-
rate performance of these codes with that of our code (recall that
diversity is defined in terms of the rate of decay of the block
error rate with log(SNR) at high SNR). Since QMG = 9 and
T = 3, the smallest uncoded data rate that we can consider is
3 bits/channel use, which corresponds to using BPSK symbols
in the MG code. Since Q = 3 for the other codes, they must
employ an octal constellation to achieve the same data rate,
and we will choose Gray-coded 8-PSK. The block error rate
curves for these systems are provided in Fig. 5. At high SNRs,

the slopes of these curves are (essentially) the same, and hence
all five schemes (essentially) achieve full diversity. However,
our code has a significant performance advantage over the
HPLD, LCP, and TAST codes (approximately 1, 1.2, and 2 dB,
respectively, at a block error rate of 10−5), and a substantial
advantage over the MG codes (approximately 6 dB at a block
error rate of 10−5). The performance advantage of our codes
is due, in part, to the fact that our design (implicitly) considers
the overall average PEP (see Sections III and IV), rather than
just the diversity component. The slow rate of decay of the
block error rate of the MG code at moderate SNRs is worthy of
some discussion. We suspect that this is due to the fact that in
this example the MG code results in a “fat” equivalent channel
matrix (of dimension9 6 × 9), whereas the equivalent channel
matrices of the other codes are square (6 × 6). In addition to
this performance issue, the “fat” equivalent channel matrix of
the MG code requires the use of computationally expensive
detection techniques [31]. These difficulties are alleviated by
the flexibility of the LD framework, which allows the designer
to manipulate the signaling strategy so that the equivalent
channel matrix is square (or tall).

VII. CONCLUSION

In this paper, we demonstrated that coding matrices drawn
at random from the group of unitary matrices are asymp-
totically optimal from several design perspectives, including
MSE, mutual information, and average PEP. We then provided
a systematic, versatile, and efficient constellation-independent
design technique for finding “good” unitary coding matrices
for practical systems. In our examples, these codes performed
better than those currently available. The properties of a

9The equivalent channel matrix H is nominally 2NT × 2Q = 6 × 18, but
since BPSK signaling is employed, only Q columns of H are active.
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Fig. 5. Comparison between the new LD code and the codes presented in [8] (MG), [30] (LCP), [9] (HPLD), and [7] (TAST) when M = T = 3, N = 1. For
the MG code, Q = 9 and the underlying constellation is BPSK, and for the other codes, Q = 3 and the underlying constellation is 8-PSK.

unitary coded system prompted us to propose a row interleaving
scheme for LD codes that was shown to significantly improve
the system performance at high SNR without increasing the
complexity of the detector.

APPENDIX I
A BOUND ON THE ERGODIC CHANNEL CAPACITY

Let C(M,N, ρ) denote the ergodic channel capacity of a sys-
tem with M transmit and N receive antennas. It is well known
[1] that C(M,N, ρ) = EH{log det(IN + (ρ/M)HHH)}. In
order to show that the right hand side of (24) is an upper
bound on C(M,N, ρ), we point out that since C(M,N, ρ) is
a monotonically increasing function of M , then

C(M,N, ρ) ≤ lim
M̃→∞

C(M̃,N, ρ).

Furthermore,

lim
M̃→∞

C(M̃,N, ρ)

=EH





lim

M̃→∞
log det



IN +
ρ

M̃




HH

1 H1 · · · HH
1 HN

...
. . .

...
HH

NH1 · · · HH
NHN














(37)

=EH {log det(IN + ρIN )} (38)

=N log(1 + ρ) (39)

where, in (37), we have denoted the jth column of H as
Hj , and in (38), we have used the fact that for a richly
scattered environment, the entries of the channel matrix H

are i.i.d. complex Gaussian random variables CN (0, 1), and
hence, for any two columns in H , Hi and Hj , we have
limM̃→∞(1/M̃)HH

i Hj = δij , where δij is the Kronecker delta
function.

APPENDIX II
PROOF OF PROPOSITION 1

Before proceeding with the proof of Proposition 1, we first
point out that in Lemma 2, the assumption of diagonal C and
D matrices having nondecreasing entries is without loss of
generality. To show that, let E = UCV T be the singular value
decomposition of an arbitrary real matrix E. Here, U and V are
orthonormal and C = Diag(c1, . . . , cn) and (c1 ≥ c2 ≥ . . . ≥
cn ≥ 0). Now

Tr(EΓ) =Tr
(
UT(EV V TΓ)U

)

=Tr
(
(UTEV )(V TΓU)

)
= Tr(CΞ)

where Ξ = V TΓU . Notice that by appropriately choosing E,
one can choose any entry from Γ, implying that each entry
of Γ converges in distribution to a standard normal random
variable. Hence, if Γ converges in distribution to the isotropic
standard normal distribution, then so does Ξ (the same argu-
ment holds for D and Λ).

As mentioned in Proposition 1, we assume that for some
N ≥ 1, Q ≥ M , with T/M held constant, and the coding ma-
trices are drawn at random from the group of unitary matrices.
Notice that for the actual finite-sized coding matrices, in order
to ensure the existence of coding matrices Aq that satisfy (16)
and (23), the block size T must be restricted to be no greater
than 2MQ. However, the result in Proposition 1 applies for any
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T that grows in proportion to M . For the sake of brevity, we
will only consider square coding matrices Aq, i.e., T/M = 1.

We begin by observing that the (i, j)th 2T × 2T block of
(1/M)HHT can be written as

Zij =
1
M

∑

q

Aqhih
T
j AT

q . (40)

Now, the (k, +)th element of this block can be written as

[Zij ]k( =
1
M

∑

q

Aq(k, :)hih
T
j Aq(+, :)T

=
1
M

(
hT

j

[
∑

q

Aq(+, :)TAq(k, :)

]
hi

)
(41)

where Aq(+, :) denotes the +th row of Aq. Consider the fol-
lowing scenario, in which we pick 2Q i.i.d. random unitary
coding matrices Aq from a uniform distribution with respect
to the Haar measure of unitary matrices, and construct the
corresponding 2M × 2M matrices10 Aq with the symplectic
structure given in (6), such that AqAT

q = (M/Q)I2M .
We note that, while the matrices Aq are uniformly distrib-

uted with respect to the Haar measure of unitary matrices,
the matrices Aq, due to their symplectic structure, are not
uniformly distributed with respect to the Haar measure of
orthogonal matrices. However, our treatment needs only the
circular symmetry of Aq. By invoking the result in Lemma 2,
we can examine the asymptotic behavior of [Zij ]k( in (41)
as M grows. In particular, Lemma 2 enables us to assume
independence between the entries of unitary coding matrices of
sufficiently large dimensions. Using this result, we first consider
the case when |k − +| 1= T in (41). For that case, one can write

1
2Q

2Q∑

q=1

Aq(+, :)TAq(k, :)

=
1

2Q

2Q∑

q=1




Aq(+, 1)Aq(k, 1) · · · Aq(+, 1)Aq(k, 2M)

...
. . .

...
Aq(+, 2T )Aq(k, 1) · · · Aq(+, 2M)Aq(k, 2M)



.

(42)

Notice that for any k 1= + or n 1= m, {ζq|ζq = Aq(+,m)
Aq(k, n)}q=1,...,2Q is a set of i.i.d. zero-mean random vari-
ables. Thus, for k 1= +, by the strong law of large numbers,
(1/2Q)

∑2Q
q=1 Aq(+, :)TAq(k, :) converges to 02M×2M almost

surely.
For the case when k = +, we have for Q ≥ M

1
2Q

2Q∑

q=1

Aq(+, :)TAq(+, :)
a.s.−→ ρ0I2M (43)

where ρ0 = EH{|Aq(+, k)|2} = 1/2Q. Next, we consider the
case when |k − +| = T . In this case, we notice that because

10While we have only considered square coding matrices, the generalization
to rectangular matrices is straightforward.

of the structure in (6), we can no longer assume independence
between the entries. In fact, for this case [cf., (6)]

1
2Q

2Q∑

q=1

Aq(+, :)TAq(+, :)

=
1

2Q

∑

q

[
AR,q(+, :)TAI,q(+, :) AR,q(+, :)TAR,q(+, :)
−AI,q(+, :)TAI,q(+, :) AI,q(+, :)TAR,q(+, :)

]
.

(44)

Now, using the independence assumption on the real and imag-
inary components of the entries of Aq as per Lemma 2, one can
argue that for Q ≥ M

1
2Q

2Q∑

q=1

Aq(+, :)TAq(+, :)
a.s.−→ 1

2Q

[
0 IM

−IM 0

]
. (45)

Substituting (43) and (45) in (41), one obtains

[Zij ]k(
a.s.−→ 1

M

(
hT

j hiδk( + hT
j

[
0 IM

−IM 0

]
hiδ|k−(|,T

)

(46)

where δij denotes the Kronecker delta. Given our assumption
on the distribution of the elements of H , it is observed that for
i 1= j, the entries of hi and hj are independent. Therefore, by
the strong law of large numbers, (1/M)hT

j hi
a.s.−→ 0, and hence,

[Zij ]k(
a.s.−→ 0. For i = j, the second term on the right-hand side

of (46) vanishes, and the strong law of large numbers implies
that (1/M)hT

i hi
a.s.−→ 1. Therefore

[Zij ]k(
a.s.−→ δijδk(.

Thus, our claim that as M increases HHT converges almost
surely to EH{HHT} = MI2NT is asserted.

APPENDIX III
INSIGHT INTO ROW INTERLEAVING

The row-interleaving operation derived in Section V has the
tendency to increase the diagonal dominance of H̃H̃T. In order
to show this, we write the 2T × 2T blocks of H̃H̃T in an
analogous way to the 2T × 2T blocks of HHT in (40)

Z̃ij =
1
M

∑

q

Ãq




h(1)

i
...

h(T )
i








h(1)

j

...
h(T )

j





T

ÃT
q , i, j = 1, . . . , N.

(47)
The (k, +)th element of this block can be written as

[Z̃ij ]k( =
1
M

2Q∑

q=1

Aq(k, :)h(κ(k))
i h(κ(())

j Aq(+, :)T

=
1
M

h(κ(())T

i

[
2Q∑

q=1

Aq(k, :)TAq(+, :)

]
h(κ(k))

j (48)
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where κ(i) was defined in (36). We observe that the entries
of the off-diagonal blocks in (48) involve inner products of
vectors from different channel realizations. Hence, they tend to
approach zero as M grows, even when entries of the coding ma-
trices are not completely statistically independent. In contrast,
the diagonal blocks will be averaged out solely by the statistical
independence of coding matrices. In fact, each row of H̃H̃T has
exactly two entries that involve an inner product of the same
channel realization and averaging over coding matrices (one
of these is a diagonal entry). All other entries involve inner
products of different realizations and averaging over coding
matrices.

APPENDIX IV
GRADIENT COMPUTATION

One way to parameterize an M × M unitary matrix A is
through Givens rotations [28], [29], [32]. Thereby

A =




M(M−1)

2∏

m=1

Gm



D




M(M−1)∏

m=M(M−1)
2+1

Gm



 (49)

where Gm is a planar rotation matrix for coordinates im and
km with angle θm. This matrix can be constructed from the
identity matrix by replacing the (im, im)th element by a, the
(im, km)th element by b, the (km, im)th element by c, and
the (km, km)th element by d, where for type + rotations,
+ ∈ {1, 2}, a = cos(θm), b = sin(θm), c = (−1)( sin(θm), and
d = (−1)((−1) cos(θm). The matrix D is a diagonal unitary
matrix, i.e, [D]ii = ejφi .

If the coding matrices Aq are parameterized using (49), we
can express the equivalent-channel matrix [cf., (5) and (6)] as a
function of the set of Givens rotations Θ that parameterize the
matrices Aq and the physical channel H as

H(Θ,H) = [ h̆1 h̆2 · · · h̆2Q ]

where h̆q = (IN ⊗Aq)[hT
1 . . . hT

2 ]T, and Aq is defined in (6).
Let C denote the matrix of cofactors of H. Then

det(H) =
∑

i

[h̆j ]iCij = h̆T
j Čj

where Čj is the jth column of C. This expression is convenient
because a given planar rotation θr ∈ Θ affects only one coding
matrix Aq. Let q(r) denote the index of that matrix. Then, θr

affects only Aq(r) and h̆q(r). That is, θr affects only one column
of H. Therefore

∂ det(H)
∂θr

=
∂h̆T

q(r)

∂θr
Čq(r). (50)

Since h̆q(r) = (IN ⊗Aq(r))[hT
1 . . . hT

N ]T, we have that

∂h̆q(r)

∂θr
=
(

IN ⊗
∂Aq(r)

∂θr

)
[hT

1 . . . hT
N ]T. (51)

Since Q = NT , H is square, and hence, det(HHT) =
det(H)2. Therefore, using (50), (51), and (6), the chosen
Givens parameterization of Aq, and the standard rules for
the derivative of a composite function, the gradient is readily
computed.
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