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Noncoherent MIMO Communication: Grassmannian
Constellations and Efficient Detection

Ramy H. Gohary, Member, IEEE, and Timothy N. Davidson

Abstract—This paper considers the design of both a trans-
mitter and a receiver for noncoherent communication over a
frequency-flat, richly scattered multiple-input multiple-output
(MIMO) channel. The design is guided by the fact that at high
signal-to-noise ratios (SNRs), the ergodic capacity of the channel
can be achieved by input signals that are isotropically distributed
on the (compact) Grassmann manifold. The first part of the paper
considers the design of Grassmannian constellations that mimic
the isotropic distribution. A subspace perturbation analysis is
used to determine an appropriate metric for the distance between
Grassmannian constellation points, and using this metric, greedy,
direct and rotation-based techniques for designing constella-
tions are proposed. These techniques offer different tradeoffs
between the minimum distance of the constellation and the design
complexity. In addition, the rotation-based technique results in
constellations that have lower storage requirements and admit a
natural “quasi-set-partitioning” binary labeling.

In the second part of the paper, a reduced search suboptimum
detector is proposed. The development of this detector relies on the
subspace perturbation analysis and exploits the geometric proper-
ties of the Grassmann manifold and the isotropic distribution of the
constellation points and the noise realizations. The performance of
this detector is comparable to that of the maximum likelihood de-
tector, but it requires considerably less computational effort. Fi-
nally, in order to assess the performance of a given constellation,
an exact expression is provided for the pairwise error probability
of the ML detector. In comparison to existing pairwise error prob-
ability expressions, the proposed expression is numerically stable
and does not require the evaluation of residues at poles with high
multiplicities.

Index Terms—Grassmann manifold, noncoherent multiple
input–multiple-output (MIMO) communication, reduced-search
maximum likelihood detection, sphere packing.
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I. INTRODUCTION

I N this paper, we consider communication over a block-
fading channel in which the channel coefficients are as-

sumed to remain constant for a block of channel uses and then
to change independently to a new channel realization [1]. If nei-
ther the transmitter nor the receiver has any a priori knowledge
of the channel realization (i.e., no channel state information,
CSI, is available), then the communication framework is said to
be noncoherent [2]–[4], whereas if the receiver has complete a
priori CSI, the framework is said to be coherent [3]. While the
coherent framework facilitates the application of conventional
transmission and reception principles, the noncoherent frame-
work has the advantage that it accounts for the communication
resources that would have to be expended to obtain CSI at the
receiver. Despite the absence of a priori CSI at the receiver, non-
coherent communication systems with multiple antennas can
provide reliable transmission at high data rates. Indeed, it was
shown in [3] and [2] that these multiple input–multiple-output
(MIMO) noncoherent systems can achieve a significant fraction
of the ergodic channel capacity associated with their coherent
counterpart[1]s .

For a MIMO communication system with transmitter an-
tennas and receiver antennas operating noncoherently over a
richly scattered, frequency-flat, block-fading channel with block
length , the generic form of the input signals that enable com-
munication at rates approaching the noncoherent ergodic ca-
pacity can be expressed as the product of an isotropically dis-
tributed random unitary matrix and a diagonal
matrix with real nonnegative entries [3]. While this struc-
ture of the input signals is capacity achieving irrespective of the
values of the received SNR and the channel coherence time ,
the distribution of the entries of the diagonal matrix depends
on these two factors. For example, it was shown in [5] that at
low SNR only one entry of is nonzero when the transmitter
is active. In contrast, achieving capacity for high SNR scenarios
requires the input signals to be in the form of isotropically dis-
tributed unitary matrices [2], [4], provided that satisfies

(1)

That is, when satisfies (1), setting equal to the identity
achieves the high SNR ergodic capacity of the noncoherent
channel. By comparing the degrees of freedom supported by the
unitary component to those supported by the diagonal matrix,

, it was concluded in [6] that even at moderate SNRs most of
the information will be carried by the unitary component.

By assuming that the communication system operates in the
moderate-to-high SNR region, one can gain insight into the
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manner in which the coherence time, , affects the achievable
data rate. It was shown in [2] and [7] that for given and

, the capacity of the noncoherent channel approaches that of
the coherent one as grows; from which one can conclude
that if is sufficiently long, the amount of time needed for
the receiver to acquire a sufficiently accurate channel model
becomes insignificant in comparison with the overall signaling
interval. On the other hand, when does not satisfy (1),
noncoherent communication can be rather power inefficient. In
particular, in the extreme case of , it was shown in [8]
that capacity grows only double logarithmically with SNR. The
moderate-to-high SNR assumption also provides some insight
into how the number of transmit antennas should be chosen for
a given block length. In particular, given and for a system
that satisfies (1), the number of transmit antennas, , required
to attain the maximum number of communication degrees of
freedom is [2]

(2)

In fact, increasing the number of transmit antennas beyond the
value in (2) reduces the number of communication degrees of
freedom. It is also interesting to note that choosing to be
greater than does not increase the degrees of freedom [2].
However, choosing does result in an increase in the
capacity by an additive term that is independent of the SNR.

In addition to unitary signaling, [4], [9], training-based
schemes have been proposed [2], [7], [10], [11] for nonco-
herent MIMO communication. These schemes comprise a
training phase and a coherent communication phase. During
the training phase the transmitter sends pilot symbols which
are used by the receiver to estimate the channel. Assuming
that the channel estimate obtained during the training phase is
sufficiently accurate, the receiver then switches to a coherent
mode of operation in which the remaining channel coherence
time is used to detect the transmitted information coherently.
Although training-based schemes were shown [2] to achieve
the maximum number of degrees of freedom available for
communication at high SNR, they are still short of attaining
the full channel capacity, which involves an SNR independent
term. This term can be particularly significant when a large
number of receive antennas is employed.

In this paper, we will consider communication at mod-
erate-to-high SNRs over a noncoherent MIMO block fading
channel in which the block length satisfies (1) and the
number of transmit antennas satisfies (2). Our approach
will be based on the observation that the fading channel matrix
does not change the subspace in which the transmitted signal
resides. It merely rotates and scales the bases of this subspace.
However, the combined effect of noise and fading results in the
perturbation of the signal subspace in a specific manner. Based
on this geometric insight, it was shown in [2] that, at high SNR,
the information carrying object is a linear subspace. That is,
information about the transmitted data is contained in the sub-
space of the received signal and the particular orientation of the
received signal vector within the subspace is “informationless”.
These observations suggest that, for the noncoherent channel,
spectrally efficient signaling at high SNR requires the design

of the bases of a set of linear signal subspaces rather than
the design of the actual signal values. Although the rotation
of bases within the subspace is inconsequential, the scaling
associated with those bases provides implicit information about
the channel. In Section V we will use this fact to develop a
reduced complexity detector.

Guided by the results in [2] and [4], in the first part of this
paper we design signal constellations that directly mimic the
high SNR capacity achieving isotropic distribution. A funda-
mental issue [12], [13] that arises in constructing a signal con-
stellation is the metric used to measure distances between dif-
ferent constellation points. In [14] multilevel unitary signal con-
stellations were designed using the Kullback-Leibler distance
metric. This appears to be a sensible distance metric when con-
stellation points belong to hyperspheres of different radii; a sig-
naling scheme that suits low-to-moderate SNR operation. Our
approach to determine the appropriate distance metric for the
constellation differs from related work in that it is based on
subspace perturbation analysis. This perturbation analysis sug-
gests that from a rate perspective, an appropriate distance mea-
sure is given by the chordal Frobenius norm rather than the
commonly used projection Frobenius norm (also known as the
chordal Frobenius distance) [12], [13].

Apart from the choice of the underlying metric, there are dif-
ferent approaches for generating ’good.’ Grassmannian constel-
lations [15]. These approaches can be classified into 1) algebraic
(e.g., [16]) and quasi-algebraic (e.g., [17]) approaches, in which
the constellations are synthesized from algebraic constructions;
2) approaches that are based on mapping coherent space–time
block codes onto the Grassmann manifold (e.g., [18], [19]); and
3) approaches that use various numerical tools for optimization
on the Grassmann manifold [9], [20]. The main advantage of
the last approach is that it allows the system designer to exploit
all the design degrees of freedom without restricting the con-
stellation to have a specific structure. However, irrespective of
the underlying distance metric, the direct optimization approach
can be quite cumbersome, because the objective is not differen-
tiable, the Grassmann manifold constraint must be enforced, and
for large constellations there are many points to design.

In the first part of this paper, we provide several techniques
for designing Grassmannian constellations. The first is a greedy
technique in which the constellation is constructed sequentially.
This technique differs from the surrogate based approach in [9]
and the approach in [20] in both the metric used to quantify the
distance between constellation points, and the formulation of the
underlying optimization problem. In particular, we exploit the
smooth geometry of the Grassmann manifold to synthesize an
analytic cost function that jointly penalizes the chordal Frobe-
nius norm between the new constellation point and the constel-
lation points already designed. We then minimize this cost func-
tion by using a derivative-based optimization algorithm that au-
tomatically restricts the iterates to the surface of the Grassmann
manifold [21]. Although greedy techniques often result in con-
stellations that provide reasonable performance in practice [20],
these techniques are relatively coarse and do not guarantee that
the resulting constellation are optimum, even in an asymptotic
sense. In order to improve on the greedy approach, we propose
two methods for jointly designing Grassmannian constellations.
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The first method is direct in the sense that it generates the entire
constellation at once. Although the constellations generated by
this method possess many desirable features, this method be-
comes computationally unwieldy as the constellation size in-
creases, and it is currently only appropriate for constellations
of up to the order of points. In order to reduce the com-
putational complexity, we propose a two-phase design strategy.
In the first phase a relatively small Grassmannian constellation
(which we will refer to as a proto-constellation) is designed
using the direct technique, and in the second phase square uni-
tary matrices are designed to rotate the proto-constellation in an
appropriate sense. We will show that rotation preserves the dis-
tance between the points of the rotated proto-constellation, and
that the performance of constellations designed using the rota-
tion technique lies between that of the constellations designed
using the direct and the greedy techniques. Similar to our greedy
technique, both the direct and the rotation-based techniques ex-
ploit the smooth geometry of the Grassmann manifold and use
derivative-based techniques to minimize a smooth cost func-
tion that approximates the original nondifferentiable objective.
An important advantage of the rotation-based technique over
greedy and direct techniques lies in the efficiency with which the
constellations can be designed and stored. Furthermore, the in-
herent structure possessed by rotation-based constellations au-
tomatically admits a binary labeling technique that adheres, to
a large extent, to the principles that underly the conventional
set-partitioning technique.

In the second part of the paper, we consider the detection and
performance analysis of Grassmannian constellations. In partic-
ular, we use the subspace perturbation analysis from the first part
to develop a reduced-search suboptimum detector. This detector
is based on exploiting an inherent property of isotropically dis-
tributed Grassmannian constellations and on identifying the role
of each component of the received signal matrix. The essence
of this detector is to avoid the exhaustive search required for
maximum likelihood (ML) detection. Specifically, this detector
generates quasi ML decisions by examining a certain subset
of the constellation points against the likelihood metric. We
demonstrate that, in comparison to ML detection, this detection
strategy offers valuable computational savings without signifi-
cant loss in performance.

Having considered both the design and the efficient detection
of Grassmannian constellations, we then consider the analysis
of the performance of these constellations at high SNRs. Seeing
as the computation of the error probability appears to be math-
ematically intractable in general, we derive an exact expression
for the pairwise error probability (PEP) (e.g., [4], [20]), which
can be used to provide further insight into the structure of dif-
ferent Grassmannian constellations. We show that the pairwise
error probability corresponds to a specific point on the cumula-
tive distribution function (cdf) of an indefinite quadratic form.
As a by-product of our method, we obtain an analytic expression
for the whole cdf. This expression can be useful in implementing
detection strategies that are based on soft decisions. Our expres-
sion for the PEP does not involve the computation of residues
required by those in [4] and [20], and hence can be used to study
the key parameters that govern the performance of a given con-

stellation; e.g., analyzing the impact of the distance spectrum of
the constellation on performance.

The paper is organized as follows. In Section II, we introduce
the signal model under consideration. Based on this model,
Section III discusses the choice of an appropriate distance
metric for the constellation. In Section IV, we propose our
constellation design techniques. In Section V, we introduce
our reduced search detection strategy and in Section VI we
derive an exact expression for the pairwise error probability.
Section VII includes our numerical results and Section VIII
concludes the paper. For convenience, most of the proofs of our
results are deferred to the appendices.

We will adopt the standard notations: to denote the Her-
mitian transpose, to denote the trace operator of a matrix,

to denote the identity matrix and to denote
the mutual information between and . The space of
unitary matrices, where , will be denoted by . That is,

. We will also use to de-
note the equivalence class represented by . That is,

. When is implicit
from the context, it will be dropped for simplicity.

II. SYSTEM MODEL

We consider the scenario of moderate-to-high SNR nonco-
herent communication over a richly scattered frequency-flat
block-fading channel with block length that satisfies (1),
transmit antennas and receive antennas, where and
satisfy (2). The transmitter excites the channel in blocks of
channel uses with the rows of the matrix . The

received signal matrix is given by

(3)

where is an channel matrix whose entries are drawn
independently from the standard complex Gaussian distribu-
tion , and the matrix represents the ad-
ditive noise whose entries are also drawn from . The
signal-to-noise ratio (SNR) is given by and is independent of
the number of transmit antennas .

The capacity achieving input signals at high SNR can be rep-
resented by isotropically distributed -dimensional linear sub-
spaces that reside in a larger ambient -dimensional complex
Euclidean space, . Since an -dimensional linear subspace
of can be represented by a “tall” unitary matrix
whose columns form a basis for this subspace, we will hence-
forth assume the input signal matrix to be unitary; i.e.,

. Each of these -dimensional linear subspaces
can be regarded as a single point on the compact Grassmann
manifold . Since a linear subspace can be specified by
an arbitrary basis, points on are equivalence classes
of unitary matrices, where two matrices are equiva-
lent if they span the same -dimensional subspace. Therefore,
the Grassmann manifold can be expressed as [21],

.
When the signal matrix in (3) is right multiplied by the

channel matrix , the basis vectors that span the -di-
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mensional subspace are rotated and scaled within the same sub-
space. With this observation [2], one concludes that when the
receiver does not know the channel, the particular rotation of
the subspace basis is not detectable while the -dimensional
linear subspace spanned by this basis is detectable. It follows
that the transmitter design problem is to assign information bits
to distant linear subspaces, where the distance should be mea-
sured in an appropriate sense. The corresponding role of the re-
ceiver is to decide on which subspace was transmitted irrespec-
tive of its basis. The received signal , spans an -dimensional
subspace. This subspace can be exposed by performing the QR
decomposition (in the sense of [22]) on the received signal ;
see Section III. In that case, one obtains , where

contains a basis of the -dimensional subspace with some
arbitrary orientation and specifies the scaling and rotation
within the subspace. It will be shown in Section V that is
statistically independent of , and that is statistically in-
dependent of . This indicates that the available information
about the channel appears in , whereas all the informa-
tion about is captured by the unitary component . That
is, represents the perturbed version of the transmitted sub-
space available at the receiver. Seeing as the receiver does not
have a model for the channel, it attempts to detect the subspace
spanned by the columns of from the subspace spanned by
the columns of using the implicit channel information con-
tained in .

III. METRIC CHOICE

In order to design a signal constellation, one needs to define
a suitable metric to measure the distance between constellation
points. The choice of an appropriate metric is crucial in de-
termining the number of spheres of a given radius that can be
packed in a manifold of a specific volume [12], [13]. In the cur-
rent setting, the manifold under investigation is a Grassmann
manifold whose volume is a function of the system SNR. If the
specified distance metric does not conform to the underlying
communication model, signal points can seem closer or further
from each other than they actually are. This may result in system
performance measures that do not scale with the increase in
SNR in the right sense. (As an example of such scaling, the high
SNR ergodic capacity expression in [2] suggests that increasing
the data rate by bits per channel use requires an
increase of 3 dB in the SNR.) In this section, we study the way
in which the noise and the channel perturb the signal subspace.
Based on this analysis, we will conclude that the chordal Frobe-
nius norm is an appropriate metric for the rate-centric design of
Grassmannian constellations. We will then discuss a number of
other distance metrics that have previously been employed in
constellation design for the noncoherent MIMO channel.

A. An Appropriate Distance Metric

Our approach to answering the question of the appropriate
distance metric between signal subspaces is based on analysis
of the received signal in (3). We have stated in Section II
that in the absence of noise, the signal subspace is not affected
by propagation through the channel [2]. However, when the re-
ceived signal is contaminated by additive noise, the signal sub-
space is perturbed in a particular fashion that depends on both

the channel and noise. Our goal in this subsection is to identify
the effect of different components of the noise and their interac-
tion with the signal subspace.

We begin our analysis by stating a result due to Stewart [22]
which we have generalized to the case of . This re-
sult allows us to understand the statistical dependencies between
the transmitted and received signal subspaces. We will exploit
these dependencies in Section V to develop an efficient detec-
tion scheme.

Lemma 1: Let , where and
have rank with , and let . Denote

the orthogonal complement of by , where
and . If , is such

that

is non- singular (4)

where and , then
there exist matrices and that are
unique up to right multiplication by unitary matrix,
such that

where (5)

(6)

(7)

(8)

Observe that no structure is imposed on the -matrix in the
decomposition in Lemma 1, and hence the decomposition

is not unique. That is, for any unitary matrix ,
and are equivalent decompositions of

in the sense of [22]. Equation (5) says that the additive pertur-
bation results in the augmentation of the -dimensional sub-
space spanned by the columns of , namely , to
the -dimensional subspace spanned by the columns of ,
namely . Notice that when , will
be equal to and the subspace represented by the point on

is perturbed to the subspace represented by
on the same manifold.

To apply Lemma 1 to the signal model in (3) we observe that
the signal subspace represented by corresponds to , and
the channel matrix corresponds to . That is, in (3)
corresponds to the QR decomposition of in Lemma 1 and the

additive Gaussian noise term corresponds to the pertur-
bation matrix . Our goal is to analyze the properties of the
perturbation , but before we do so, we need to study the roles
played by the different components of the noise term. This will
enable us to bound the probability that the condition (4) for
Lemma 1 to hold is violated. For the time being we assume that
(4) is satisfied. Hence, based on Lemma 1 we can identify the
following noise components:

and (9)

where and . As will be-
come clear in Section V, each of those components affects the
transmitted signal in a certain way. In particular, by observing
that , where the
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partition of is conformal with that in Lemma 1, one can
rewrite the signal model in (3) as

(10)

Using the decomposition of noise in (10), we observe that
• is a noise component that does not affect the

signal subspace. In fact, this noise component contributes
to the received signal power; cf. (11) below.

• For , the channel matrix is “fat”. Hence the product
of the signal and the channel matrix

results in the immersion of the -dimensional signal
subspace in an -dimensional subspace. The noise com-
ponent spans the range space of . If we assume, for
the moment, that the noise component is zero, then the
corresponding received signal will be given by the first
term on the right hand side of (10). The subspace spanned
by the columns of this signal is -dimensional of which
only -dimensions are spanned by the signal (and the
noise component ) and the remaining dimen-
sions are spanned by the noise component . Hence, even
in the absence of , for the receiver to detect the trans-
mitted signal, it will have to decide on which subspace was
transmitted from all possible -dimensional subspaces
which are spanned by the columns of . (There are of
these -dimensional subspaces.) That is, the noise com-
ponent will introduce ambiguity in distinguishing the
signal subspace from the noise subspace. However, it does
not change the ‘orientation’ of the original signal subspace.

The above observations suggest that the perturbations in the
signal subspace are due only to the noise component . We
will use this fact later in this section.

We now investigate the applicability of Lemma 1 in the sto-
chastic framework of (3). To that end, we consider the proba-
bility that (4) is violated. Let

(11)

which corresponds to in Lemma 1. In order to
bound the probability that (4) is violated, we need to bound the
probability of the event that the minimum eigenvalue of ,

, falls below some threshold . The following
lemma, which is based on a result from [23], provides the
required bound.

Lemma 2: Let denote the probability that
is smaller than some .

• For ,
.

• For , .
Proof: See Appendix A.

This lemma confirms that one can use Lemma 1 to investigate
signal subspace perturbation for any finite SNR, . That is, for

, the probability that Lemma 1 does not hold approaches

zero as . Moreover, as , one can see that the
perturbation due to the noise term will vanish and the signal will
only undergo fading which does not affect the signal subspace.

Lemma 1 states that the subspace is perturbed additively by
; cf. (8). We now study the properties of in more detail. We

begin by showing that in the general case belongs to neither
the compact Grassmann manifold nor to its tangent space at .
The following lemma exposes the inherent structure of .

Lemma 3: Let be the singular value decomposition
(SVD) of defined in (6), and let and be defined as in

Lemma 1. Define . Then in
(8) can be written as

(12)

Proof: See Appendix B.

Using the form of the perturbation in (12), one can verify
that,

(13)

Notice that because in Lemma 1 does not have a particular
structure, in Lemma 1 (and hence in Lemma 3) is unique up
to right multiplication by some unitary matrix. Thus for

to belong to the compact Grassmann manifold, must
be equal to the identity. Simple computation shows that this is
the same as requiring to be equal to a particular multiple of a
unitary matrix. Due to the random nature of

(14)

this condition is generally not satisfied, indicating that generally
is not a point on the Grassmann manifold.

In order to check whether , where
is the tangent space of the Grassmann manifold

at , we use the following fact from [21].

Lemma 4: At any point , the tangent vectors
satisfy,

(15)

Using (12), one can verify that

(16)

Hence, for to belong to , must be equal
to zero, or, equivalently, . Under that condition, the
component of noise in the range space of is zero. Given
the isotropic nature of noise, the probability associated with that
event is vanishingly small.

In order to gain further insight into the nature of the perturba-
tion in Lemma 1, we restrict ourselves to the case of . In
this case, the model can be simplified by observing that the noise
component does not exist, and that and .
In Fig. 1 we provide a pictorial representation of the subspace
perturbation. The ambient space is the Euclidean space .
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Fig. 1. A pictorial representation of the subspace perturbation analysis: The
dashed line represents the geodesic on the Grassmann manifold that passes
through the two (dash-dotted) orbits � and � . The vector � lies in
� � �, the tangent space at � , and the vector � denotes the
perturbation.

The points and lie on the Grassmannian manifold and
the subspaces that their columns span are represented by the
orbits and in .1 The two orbits are connected
by a geodesic on the Grassmannian manifold (depicted by the
dashed line), whose length gives the geodesic distance between

and . The vector is the tangent to the geodesic at
. As illustrated in Fig. 1, the perturbation, , of to

is additive in the Euclidean space and does not lie along
the geodesic nor does it lie in the tangent space. As suggested by
Fig. 1, the norm of quantifies the perturbation of the subspace
spanned by (i.e., ) to that spanned by (i.e., ). In
the following theorem, we formally state that result. (The tan-
gential and normal components of are and ,
respectively [21], and the chordal Frobenius norm is defined in
(19), below.)

Theorem 1: Let , and let ,
where , and .
Let the subspace spanned by the columns of be and
that spanned by the columns of be . Then the basis of

is an additively perturbed version of the basis of and
the Frobenius norm of the perturbation vector is given by the
chordal Frobenius norm between and . Moreover, the
tangential and normal components of the perturbation and
hence the norm of the perturbation vector are statistically inde-
pendent of .

Proof: See Appendix C.

Remark 1: From Lemma 3, one can see that while the norm
of does not depend on , itself depends on . This
is in contrast to typical coherent communication scenarios in
which the perturbation induced by noise does not depend on the
transmitted signal. To further investigate this dependence, let
us consider a set of noise and channel realizations indexed by
, namely , and let denote the set of

perturbations that these channel and noise realizations induce on
the point . Since each of the resulting unitary components of
the received signal, , satisfies , each pertur-
bation satisfies

(17)

1The orbit of a point in the Grassmann manifold is the set of points in the
Euclidean space that span the same subspace. This orbit can be generated by
the right action of the group of� � � unitary matrices on any “tall” � � �

unitary matrix that represents the point on the Grassmannian manifold.

Fig. 2. A pictorial representation of the dependence of the perturbation �
on � . The dashed curve joining the points � and � on the Grassman-
nian manifold represents the geodesic between those points. For a given set
of channel and noise realizations, ��� �� ��, we have illustrated the pertur-
bations induced on � and � , namely �� �� �� �� (solid rays) and
�� �� �� �� (dotted rays), respectively. For reference, we have parallel
translated �� �� �� �� to the point � , and the figure illustrates the fact
that this is not the set of perturbations that these channel and noise realizations
induce on � .

If we were to parallel translate to another
point on the manifold, say, , then it is clear that

will not necessarily satisfy a relation
of the form in (17), and hence that is not
necessarily on the manifold ; see Fig. 2 for a pictorial
representation. Therefore, it is clear that cannot
be independent of .

Having taken a closer look at the way in which the noise per-
turbs the signal subspace, we are now in a position to design
signal constellations that enable the high SNR ergodic capacity
of the noncoherent MIMO channel to be approached. In order
to do that, we recall that achieving this capacity corresponds to
packing spheres in the Grassmann manifold, where the center
of each sphere represents a constellation point and the radius
corresponds to the region within which the noise perturbs the
constellation point with high probability; cf. [24]. We have seen
in Lemma 1 that the combined effect of the channel and the
noise is to perturb the signal subspace spanned by the columns
of to another subspace which is spanned by the columns
of , where was defined in
that lemma, and we have seen in Theorem 1 that for
the norm of this perturbation is given by the chordal Frobenius
norm between and . These observations suggest that the
chordal Frobenius norm is an appropriate distance metric for the
rate-centric design of Grassmannian constellations, and we will
use this metric in our designs.

We will formally define the chordal Frobenius norm below,
but first we state a result from [25].

Lemma 5: Let and let denote
its SVD. Then

(18)

and the optimal is given by .

The chordal Frobenius norm between the two subspaces that
are spanned by the columns of and is defined [21]
to be the (nonnegative) square root of , where
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is given in (19) at the bottom of the page, where
is the singular value de-

composition (SVD) of . Using Lemma 5, we have

(20)

B. Other Distance Metrics

In the previous subsection we have used subspace perturba-
tion analysis to conclude that from the ergodic rate perspective,
the chordal Frobenius norm is an appropriate distance metric for
packing spheres in the Grassmann manifold. In this subsection
we will discuss the relationships between this metric and other
distance metrics.

The discussion leading to Theorem 1 suggests that the com-
bined effect of the channel and noise does not perturb the signal
subspace along a geodesic on the Grassmann manifold. Instead,
it takes the signal along a more general path that resides in the
ambient Euclidean space, . (Note that has
degrees of freedom whereas has only .)
This observation suggests that the arc length (used in [18]) might
not be the appropriate distance metric for constellation design
and symbol detection. Another metric that has been used in [9],
[26] for designing Grassmannian constellations and packings
[26] is the projection Frobenius norm defined as,2

(21)

This distance metric results from embedding the Grassmann
manifold in the space of projection matrices of rank

[12], [13], [21]. However, the norm defined through this em-
bedding is strictly less than the norm defined by observing the
Grassmann manifold, , as a subspace of the Euclidean
space . This is a consequence of the fact that the space
of projection matrices of rank is of higher dimen-
sion than the Euclidean space . By moving along higher
dimensional paths, we may “cut corners” in measuring the dis-
tance between any two points [21]. However, the perturbation
analysis in Lemma 1 shows that the noise perturbs the subspace
by an additive term ( in (8)), and hence the perturbation path
cannot lie in a space of higher dimension than the Euclidean
space . That said, the projection Frobenius norm is a
lower bound on the chordal Frobenius norm, and hence constel-
lations that are designed using the projection Frobenius norm
may also exhibit favourable performance characteristics.

2This norm was called the chordal Frobenius distance in [26].

A comprehensive discussion on other distance metrics and
the corresponding embeddings can be found in [21] and [12].
It is worth mentioning that the impact of choosing the appro-
priate metric on the density of packing becomes less acute as
the SNR increases, because several metrics become equivalent
in the limit as the angles between subspaces approach zero. This
observation can be easily verified by taking the limits on the
bounds in [12] as the radius of the metric balls approaches zero.

Remark 2: Although a Grassmannian constellation that cor-
responds to densely packed spheres in the Grassmann manifold
is sufficient to approach the noncoherent ergodic capacity, this
constellation does not necessarily achieve maximal diversity; cf.
[20, SectionVI-B]. In particular, the radius of the spheres in a
capacity-approaching packing is chosen such that the perturbed
constellation point lies within the sphere with high probability;
cf. [24]. That is, for this packing the radius of spheres is deter-
mined by the probability distribution of the perturbation around
the origin. (For example, in standard additive white Gaussian
channels, this radius is equal to the square root of the noise vari-
ance.) In contrast, for a constellation with a given cardinality to
achieve maximal diversity, the constellation points are designed
in such a way that the high SNR rate of decay of error proba-
bility is maximal. Hence, the assumption that underlies such a
design is that the constellation is used to operate away from the
ergodic capacity. Unlike a capacity-approaching constellation,
the spacing between constellation points in a constellation with
maximal diversity is determined by the tail of the perturbation
distribution.

IV. CONSTELLATION DESIGNS

Having shown that the chordal Frobenius norm is an appro-
priate metric for measuring distances between constellation
points on the Grassmann manifold, we now develop practical
procedure s for the design of Grassmannian constellations.
We will adopt a design approach similar to the one in [9], in
which the number of spheres is given, and the minimum of
the radii of the spheres is to be maximized. In particular, given

, the constellation design problem consists of finding unitary
matrices with maximum pairwise chordal Frobenius norm
between the subspaces they span. Given (19), that problem can
be formulated as

subject to

(22)

where denotes the diagonal matrix of singular
values of .

(19)
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The development of effective algorithms for (approximately)
solving (22) requires the resolution of two key issues: the
nondifferentiability of the objective, due to the presence of the

function, and optimizing over multiple Grassmannian
points at the same time. In Sections IV-A–C, we will propose
three design techniques that provide different approaches to ad-
dressing these two issues. These techniques offer the designer
a tradeoff between the minimum mutual distance between
constellation points and the design complexity.

A. A Greedy Algorithm

A relatively coarse method for finding an approximate solu-
tion to the constellation design problem in (22) is to generate
the constellation sequentially using a greedy algorithm. Starting
from an arbitrary point on the Grassmann manifold, the essence
of the greedy algorithm is to augment the constellation recur-
sively by one constellation point at a time. Since the isotropic
distribution implies maximum distance between constellation
points, given the set of current constellation points, we would
like to choose the next constellation point to be the one that
maximizes the minimum distance to all points in the set. That
is, assume that have already been
determined, then, for , we choose

(23)

where is the diagonal matrix of singular values

of ; see (20). For the special case in which the block
length is an even number and the number of transmit antennas

is chosen to maximize the number of degrees of freedom,
that is , we have the following proposition that can be
used to reduce the computational complexity by a factor of two.

Proposition 1: For , if , for some integer
, and if is generated by (23) then

Proof: See Appendix D.

Remark 3: The statement of Proposition 1 also holds if the
projection Frobenius norm (cf. (21)) is used instead of the
chordal Frobenius norm (cf. (20)). This can be proved using an
argument similar to the one given in Appendix D.

When the conditions of Proposition 1 are satisfied, the result
in Lemma 8 in Appendix D implies that the design problem in
(23) can be written as shown in (24) at the bottom of the page
with the remaining points being .

In order to solve (23) (or (24)), one needs to perform
the inner maximization over the discrete set of ,

. This discrete minimization, along with the
fact that is not smooth in , means
that (23) is particularly difficult to solve. Instead of performing
explicit maximization, we propose to approximate the
function in (23) (or (24)) by a smooth differentiable function
that is amenable to effective gradient-based numerical opti-
mization techniques. In order to provide such an approximation,
we note that the “Jacobian logarithm” (e.g., [27]) for two real
numbers and is

(25)

where , and the second term in (25) is a correc-
tion term. For sufficiently large values of , the correction
term goes to zero and can be well approximated by

. To refine this approximation for , we pro-
pose to use the function

(26)

for to reduce the effect of the correction term. In fact, for
any as , . Using (26), the
smooth approximation of the optimization problem in (22) can
be written as3

(27)

As mentioned above, , and hence (cf.
(20)), are functions on the Grassmann manifold. The Grassmann
manifold is a smooth topological space [21], and since the ob-
jective function in (27) is also smooth, one can use efficient gra-
dient-based optimization algorithms to solve the optimization
problem in (27). A particular class of these algorithms is pre-
sented in [21]. The optimization algorithms in that class start
from an initial point on the manifold, and subsequent iterates are
generated by moving along geodesics of the manifold. This ap-
proach results in unconstrained optimization problems in which
the required orthogonality constraints are automatically satis-
fied at each iteration. In our numerical work, we will use the
Riemannian version of the conjugate gradient algorithm (with
resets) given in [21].

Our greedy algorithm has a number of interesting properties.
In particular:

3Our numerical experiments have shown that the convergence rate of such
algorithms can be substantially improved by (partially) solving a sequence of
problems indexed by increasing values of �.

(24)
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• The greedy algorithm involves optimization of one constel-
lation point at a time, and hence each instance of (27) it-
eration of the greedy algorithm involves optimization over

real dimensions. Therefore, the accuracy of
the current solution of the conjugate-gradient algorithm
(with resets) on the Grassmann manifold doubles every

iterations; see [21, Sec. 3.5.1]. For practical
communication systems, this number is relatively small,
and hence each step of the greedy algorithm typically ex-
hibits fast convergence.

• Although the function in (23) can be well-approxi-
mated by increasing the value of in (26), the greedy algo-
rithm remains inherently suboptimal due to the underlying
sequential design.

• One of the attractive features possessed by the constella-
tions generated by the greedy algorithm is that each con-
stellation is a subset of larger constellations. This feature
enables the transmitter to easily vary the transmission rate;
something that can be particularly useful if the Grassman-
nian constellation were to be used in an adaptive coded
modulation (ACM) framework [28].

Having provided a greedy technique for designing Grassman-
nian constellations, we now propose alternative methods that en-
able these constellations to be jointly designed.

B. Direct Design

In this method, we directly address the problem of simulta-
neous design of the Grassmannian points formulated in (22).
Our first step is to apply (26) to obtain the following smooth ap-
proximation of (22):

(28a)

subject to (28b)

Notice that, unlike the greedy technique, the constellation points
that solve (28) approach as , where is a Grass-
mannian constellation with maximal minimum distance. This
asymptotic optimality could not be guaranteed for the greedy
technique because of the sequential fashion in which that tech-
nique generates the constellation points. Although it is smooth,
the optimization problem in (28) is over multiple points on the
manifold, and hence the techniques from [21] that were em-
ployed for the greedy algorithm are not immediately applicable.
In order to facilitate the adaptation of such techniques to(28), we
construct the block diagonal matrix with di-
agonal blocks of size ; i.e.

(29)

where is the block diagonal operator. Each matrix
in (22) and (28) can be expressed as

(30)

where denotes the singular value decomposition of

and the matrix denotes the all zero
“fat” matrix with the th block replaced with .

By using (29) and (30) one can reformulate (28) as an op-
timization problem over the matrix , which represents the

points in by a single point on the Grassmann man-
ifold (The dimension of is

, whereas that of is .)
However, because the matrix is restricted to have a block
diagonal structure, resides in a submanifold of
of dimension . We
will refer to this submanifold as . In order to
adapt the techniques in [21] to this submanifold, we need to
examine its tangent space. First, the submanifold inherits both
the canonical inner product and the projector [21] from the
original . Now, for all

where denotes the tangent space
to at . Since tangent vectors

satisfy (cf. (15)) it
is clear that tangent vectors also possess a block diagonal
structure. That is, the tangent vectors
can be expressed as the block diagonal component of

, where . This implies
that if the gradient-based algorithms for optimization on the
Grassmann manifold (e.g., [21]) are initialized with a point on
the submanifold , then the iterates are guaranteed
to remain on this submanifold, and hence those algorithms can
now be extended to the case of direct design.

In order to illustrate the potential impact of the direct de-
sign technique, in Fig. 3 we compare the distance spectrum
of 16-point constellations designed using the greedy and direct
techniques, for a system with and . For the greedy
technique the minimum distance is about 1.0917, whereas for
the joint design the minimum distance is about 1.1759. (In order
to simplify the design, we enforced the antipodal symmetry of
Proposition 1 in both designs.) In order to demonstrate the cor-
responding performance of these constellations when used in
noncoherent communication, in Fig. 4 we plot the block error
rate of the maximum likelihood detector for the case in which
the number of receive antennas . At a block error rate
of , the direct constellation design yields an SNR gain of
about 6 dB over the greedy technique.

C. Rotation-Based Design

Although the direct design technique generates good constel-
lations, the size of the matrix in (29) results in an unwieldy
optimization problem for large constellations. Furthermore, the
resulting constellation points do not have a specific structure that
could be used, among other things, to reduce the memory re-
quired for their storage.

Since the Grassmann manifold is a Lie group under left mul-
tiplication by square unitary matrices, every element

can be expressed as a rotation of another element,
say . That is, . Using the block diagonal for-
mulation presented in Section IV-B, it can be readily seen that a
constellation of points in is equivalent to one point
in . Since is a Lie group under left
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Fig. 3. Distance spectra of greedy and directly designed 16-point constellations for a system with� � � and � � �.

multiplication by block diagonal square unitary matrices, a large
Grassmannian constellation of size can be represented
as a collection of points in and a set of ro-
tation matrices . Since can be represented as a single
point in , (cf. (29)), can be represented by
points in , where each point is a specific left mul-
tiplication of the representation of . In other words

(31)

where denotes the disjoint union operation, and and are
represented by one and block diagonal matrices, respectively.

In order to generate a constellation with maximal min-
imum distance, one ought to design both the small constellation

(which we will call the proto-constellation) and the rotation
matrices jointly. However, this problem is even more com-
plicated than designing directly using (22), because repre-
sent points on the unitary group , whereas the constellation
consists of points in . Instead, we propose a simplified
two-step approach. The first step is to generate a proto-constel-
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Fig. 4. Performance comparison of the greedy and directly designed constellations in Fig. 3 for a system with � � � receiver antennas.

lation using the direct technique. The second step is to restrict
the rotation matrices in (31) to have identical blocks; i.e.,

. In this case the design of the rotation
matrices can be formulated as

(32a)

subject to (32b)

where denotes the the matrices of singular values
of . Like the Grassmannian manifold, the unitary
group, , is a smooth manifold to which the gradient-based
optimization techniques presented in [21] can be effectively ap-
plied. As in the greedy and direct methods, we will use the Rie-
mannian version of the conjugate-gradient algorithm (with re-
sets) in [21].

We now state two properties of the rotated constellations.

Property 1: For any two elements
and any rotation

(33)

Proof: This property can be verified by evaluating the right
hand side of the equality and showing that it is independent
of .

This property guarantees that rotating the proto-constellation
by a block diagonal unitary matrix with identical blocks pre-
serves the distance between the points of the rotated proto-con-
stellation. That is, in designing rotations, one only needs to max-
imize the distance between points that belong to different rotated
versions of the proto-constellation.

Property 2: For any and ,

Proof: Since is invariant under rotation, one can
express as the Cholesky factor of ; i.e.,

Now,

, and hence
the proof.

This property implies that if the conditions of Proposition 1
are satisfied for the proto-constellation then the rotation-
based constellation possesses the same antipodal symmetry.

The rotation-based technique is suboptimal in general, be-
cause enforcing the associated structure reduces the number of
degrees of freedom; for rotated de-
signs as opposed to for direct designs. Fig. 5
illustrates the distance spectra of 256-point constellations for a
system with and that are generated by the greedy, di-
rect and rotation-based techniques. In order to illustrate the im-
pact of the proto-constellation size on the performance, Fig. 5
shows two rotation-based constellations: the first is generated
by 32 rotations of an 8-point proto-constellation, whereas the
second is generated by 16 rotations of 16-point proto-constel-
lation. In the greedy and direct cases, the minimum distance
of the constellation is 0.7036 and 0.8288, respectively. For the
32 8 rotation-based design the minimum distance is 0.7633,
and that for the design is 0.7113. The decrease in the
minimum distance in the case is to be expected, since
a larger proto-constellation imposes a more stringent structure
on the final constellation. In terms of performance in a system
with receiver antennas, it can be seen from Fig. 5 that
at a block error rate of the and rota-
tion-based constellations offer a gain of about 0.2 and 0.4 dB
over the greedy constellation, respectively, whereas the directly
designed constellation offers a gain of about 0.9 dB. However,
the main advantage of rotation-based constellations is that, in
comparison with the other two techniques, these constellations

Authorized licensed use limited to: McMaster University. Downloaded on July 12,2010 at 05:54:13 UTC from IEEE Xplore.  Restrictions apply. 



GOHARY AND DAVIDSON: NONCOHERENT MIMO COMMUNICATION 1187

Fig. 5. Distance spectra and performance of 256-point constellations for a system with � � �, � � �, and � � �.

are significantly easier to design and store. As we will explain in
Section IV-D, the inherent structure of the rotation-based con-
stellations also facilitates the binary labeling of the constella-
tion points. (Although we will not attempt to do so here, we
suspect that one might also be able to utilize the structure of ro-
tation-based constellations in order to reduce the detection com-
plexity at the receiver.)

In order to provide some insight into the computational ad-
vantage of generating Grassmannian constellations using the ro-

tation-based technique rather than the direct technique, we recall
that the accuracy of the current solution of the conjugate-gra-
dient (CG) algorithm with resets on the Grassmann and Stiefel
manifolds [21] doubles in at most iterations, where is the
dimension of the manifold [21, Sec. 3.5.1]. Using this observa-
tion, one can use the dimension of the underlying manifolds to
compare the number of iterations required to guarantee a cer-
tain accuracy in both the direct and the rotation-based designs.
In particular, if is a constellation of the desired cardinality,
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is the proto-constellation, and is the number of
rotations, then the dimension of the manifold that underlies the
direct design is , whereas the dimension of the
manifold that underlies the rotation-based design is .4

As an example, consider the case in which a 256-point constella-
tion is designed using rotations of a proto-constellation
of cardinality with . For this case, the
manifold that underlies the direct design is of dimension 2048,
whereas the manifold that underlies the rotation-based design is
of dimension 240.

D. Quasi-Set-Partitioning Labeling

In order to use Grassmannian constellations in a practical
coded communication system, one typically needs to assign a
binary label to each point of the constellation. The way in which
the points are labeled can have a significant effect on the perfor-
mance of the system. However, binary labeling of the points in a
Grassmannian constellation is difficult, because even for small
dimensions, “good” constellations are not known to possess a
structure that could be exploited to determine an appropriate la-
beling strategy. In addition, the number of (real) dimensions of
the Grassmann manifold is , which can be quite
large for practical signaling scenarios. This large dimension-
ality renders labeling quite cumbersome, even for, ostensibly
plain, Euclidean spaces, let alone Grassmann manifolds. Nu-
merical optimization of the mapping is, in principle, an option
(e.g., [29]), but there are possible labelings, and hence the
optimization is a computationally formidable task for all but the
smallest constellations. However, we will now show how the in-
herent structure of rotation-based Grassmannian constellations
can be exploited to develop a labeling technique that adheres, to
a large extent, to the principles that underly the standard set-par-
titioning technique, and hence may be of interest in the develop-
ment of trellis-coded modulation schemes with Grassmannian
signaling; e.g., [30].

We begin by observing that, roughly speaking, standard set-
partitioning assigns labels with small Hamming distances to
points that lie at large distances in the signaling space. In our
case, the signaling space corresponds to a compact Grassmann
manifold. Now, if the proto-constellation, , is properly de-
signed, points in this constellation will lie at maximum pairwise
distance. Furthermore, the compactness of the Grassmann man-
ifold implies that introducing more constellation points does
not increase the minimum pairwise distance. (It typically re-
duces it.) From Property 1, we know that rotation preserves the
distance between points in the proto-constellation. Hence, the
smaller distances in the final constellation, in (31), occur be-
tween points that belong to different rotations of . Using this
insight, we now describe our labeling strategy.

Consider a rotation-based constellation with and
. It is required to label the points of the constella-

tion with binary vectors of length . For each point in
the constellation we will use the first bits to index the point
on the underlying proto-constellation, and the remaining bits to

4In general, the design complexity of the proto-constellation is much less than
that of the rotations and hence is ignored in this comparison.

index the rotation. By partitioning the label in this way, we en-
sure that constellation points generated by the same rotation,
which will be well-spaced (so long as the proto-constellation
is well-designed), differ by a Hamming distance of at most
bits. The remaining bits label the rotation, and since there is
no known structure for these rotations, these bits can be chosen
pseudo-randomly. In general, small proto-constellations pro-
vide more degrees of design freedom (in a geometric sense),
whereas large proto-constellations endow the final constella-
tion with more structure. Hence, the choice of the cardinality
of the proto-constellation and the number of rotations provide a
tradeoff between favourable geometric and Hamming distance
properties of the constellation.

V. DETECTION

Having established design principles for the transmitter, we
now turn our attention to the receiver. After briefly discussing
conventional noncoherent Maximum Likelihood (ML) detec-
tion [3], we will describe the proposed reduced search detector.
Throughout this section we assume that the channel symbols are
drawn from an isotropically distributed Grassmannian constel-
lation.

A. Maximum Likelihood Detection

For ML detection, we observe from (3) that conditioned on
, the received signal is a zero-mean isotropically dis-

tributed Gaussian random matrix. Hence

(34)

A maximum likelihood detector tests the entire constellation,
, in search for the constellation point that maximizes

in (34). Equivalently

(35)

The main drawback associated with the ML detector is the
computational cost of having to examine all possible con-
stellation points in the constellation. In order to increase the
computational efficiency, the reduced search algorithm pro-
posed below selects a particular set of candidate points to be
examined against the maximum likelihood metric in (35).

B. Reduced Search Quasi-ML Detection

The reduced search algorithm is based on two concepts: the
structure of isotropically distributed Grassmannian constella-
tions and the nature of the received signal. In order to visualize
the structure of an isotropically Grassmannian constellation, it
is instructive to consider a low-dimensional example. Consider
the Grassmann manifold , which is the set of all pairs
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Fig. 6. Reduced Search detection: The width of the band is determined by�
and � .

Fig. 7. Pictorial view of the reduced search algorithm when two reference
points are used.

of antipodal points that lie on (the surface of) the sphere in
. As illustrated in Fig. 6, by observing the manifold from an

arbitrary reference point, , one can define a sequence of
disjoint sets that cover the entire manifold.
That is,

(36)

where

(37)

and is a distance metric (not necessarily the chordal
Frobenius norm used in Section IV) and is a set of ap-
propriate threshold values. As illustrated in Fig. 6, each of these
sets constitutes a ‘band’ on the Grassmannian manifold. The
partitioning of the manifold in (36) suggests that the points in
a Grassmannian constellation can be classified according to the
band in which they lie, and we will exploit that partitioning in
the reduced-search detector proposed below.

For a perfect Grassmannian constellation, the elements of the
set can be chosen sufficiently small for each band

to either contain no constellation points or
to contain points that lie on a “circle” of a certain radius. For
a practical constellation that is not perfectly uniform, the cor-
responding constellation points might be slightly perturbed and
might not necessarily lie on the contour of a circle, but they will
lie within a specific band.

In addition to the Grassmannian structure, the reduced search
algorithm is also based on a specific feature of the received
signal, . In particular, we have the following result.

Theorem 2: Let , where
is a nonunique QR decomposition of the received signal ,
is a isotropically distributed random unitary matrix,

is an isotropically distributed random Gaussian
matrix and . Then the mutual information between

and is zero and the mutual information between and
is zero. That is,

(38)

and

(39)

Proof: See Appendix E.

Theorem 2 states that the perturbation in the signal subspace
caused by the isotropically distributed additive noise does
not couple the information about the signal subspace and the
channel state. That is, all the information about the subspace
spanned by the columns of is contained in the subspace
spanned by the columns of and all the channel state infor-
mation is contained in .

In order to efficiently generate reliable decisions, the reduced
search algorithm decomposes the ML detection in (35) into two
steps. In the first step the detector uses the information contained
in and the look-up table to select a set of candi-
date constellation points. In the second step the detector selects
the constellation point in that set with the largest likelihood; cf.
(35). Based on Theorem 2, the information contained in and
the information contained in can be processed separately in
the first step. Indeed, in the proposed reduced search algorithm,
for each received signal matrix , the information contained in

is used to determine the size of the search region and the
information contained in to determine to the location of the
search region.

We now describe the detection procedure in more detail. The
reduced search detector employs a look-up table that contains
the distance between all the constellation points and
the reference point . This look-up table is only constructed
once, prior to implementation, and is stored at the receiver. At
each channel use, the receiver initiates the detection process
by computing the QR decomposition of . Since Theorem 2
states that all the information about is contained in ,
the receiver attempts to localize the search by computing the
distance between and the reference point, .
Using this distance, the receiver then consults the look-up table
to select a certain set of candidate constellation points. To de-
termine the size of this set, the receiver uses the channel in-
formation contained in to generate two real values,
and . Observing the manifold from , these values are
used to define a band that contains ,

. The reduced set of candi-
date constellation points is then defined as the set of points in
this band. That is, if we denote this set by ,
we have

(40)
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Having determined , the second step of
the detection process involves the examination of all the con-
stellation points that lie within this set against the maximum
likelihood metric in (35). That is, the receiver decides in favour
of

(41)

Since is a subset of , and since the cardinality of depends
on the width of the band in (40), if the width of the band is de-
creased, the number of likelihood computations is reduced but
the probability of missing the correct constellation point is in-
creased. On the other hand, if the width of the band is increased,
the probability of missing the correct constellation point is re-
duced at the expense of computing redundant likelihoods. The
tradeoff between the cardinality of and performance can be
controlled through the choice of the threshold values and

. In Section VII we will show that by carefully choosing
and , the cardinality of can be considerably reduced from
that of without significant loss in performance.

A further step in applying the reduced search detection
strategy is to augment the look-up table by including distances
from the constellation points to several other reference points.
In particular, if distances from another reference point are
recorded in the look-up table, one can measure
and and only consider the candidate points

such that

From Fig. 7, it is evident that the the volume of the intersection
of the two bands can be significantly less than the volume of
one band. However, this reduction in the search space must be
properly accounted for in the computation of the values of
and . In Section VII, the potential impact of using several
reference points on reducing the search space is investigated.

One appropriate choice for the values of and in (40)
would be those that yield the smallest value of the band width

that guarantees that the probability that the correct
constellation point does not lie inside is less than a small
number, say . That is,

(42)

where is defined in (40). Direct computation of the proba-
bility is quite complicated and depends on the
choice of the reference point. As an alternative we propose to
use Chebychev’s inequality to bound this probability. Doing so,
in Appendix F we obtain closed form expressions for and

that can be used to generate some insight into the character-
istics of the reduced search algorithm. In agreement with The-
orem 2, we will show that these threshold values are independent
of both the transmitted signal subspace spanned by the columns
of and the received signal subspace spanned by the columns
of . That is, the values of and depend only on . In
fact, these values are dominated by the smaller singular values of
the matrix . (In Appendix F, we will show that is closely
related to the channel matrix .) By adjusting the values of

and one can ensure that the correct constellation point be-
longs to the set of candidate constellation points with some pre-
scribed high probability. For a channel matrix with small sin-
gular values, the width of the band, , is typically
large, which indicates that exhaustive search maximum likeli-
hood detection is required, whereas for channel matrices with
large singular values, the width of the band is small, which in-
dicates that only a few constellation points need to be tested
against the ML metric.

In Appendix F, we have shown that if the probability that the
correct constellation point lies outside the search region is held
constant, the width of the search region decays at least as fast
as . However, in Appendix F we have argued that it is de-
sirable for this probability of missing the correct constellation
point to decay with the SNR. In Appendix F we propose a par-
ticular way for choosing the parameters of the reduced search
algorithm so that this probability decays with the SNR. For these
choices, the width of the search region decay s as ,
irrespective of , and , and also irrespective of the number
of reference points and the cardinality of the constellation.

One drawback of the reduced search scheme is the need to
store the look-up table increases the memory requirement of
the receiver. This is especially true if many reference points are
used. This drawback can be reduced by quantizing distances
from the reference points to the constellation points. For ex-
ample, the look-up table can be organized such that the th
cell holds the index of the constellation points that lie at dis-
tances between and from the th reference point. Using
this approach we can obtain valuable reduction in the required
memory.

VI. PAIRWISE ERROR PROBABILITY

In the previous sections, we considered the design and detec-
tion of Grassmannian constellations that enable the high SNR
ergodic capacity of the MIMO system to be approached. In this
section, we consider the performance of such constellations if
the data rate is fixed and the SNR is allowed to increase. Since
computing an exact expression for the probability of block error
is usually infeasible in space–time signaling contexts, the pair-
wise error probability has often been employed to provide useful
insight into the key features that govern the high SNR perfor-
mance of a given space–time coding scheme [4], [31], [32].
For unitary signaling in communication scenarios in which the
channel is not known at the receiver, exact expressions for the
pairwise error probability were derived in [4] and [32]. How-
ever, the evaluation of these exact expressions is numerically
unstable because they involve the computation of residues at
poles of high multiplicities [32]. In order to avoid this numerical
inconvenience, bounds on the pairwise error probabilities were
developed in [4], [32] and [33]. In this section we provide an
alternative expression for the exact pairwise error probability.
Our method differs from the one presented in [4] and [32] in
that it produces an expression in the form of a series expansion
and avoids the computation of residues. Our series expansion
is absolutely convergent and hence can be used to compute the
pairwise error probability up to the required degree of preci-
sion. In fact our method will not only yield an expression for the
pairwise error probability, it will also give an expression for the
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distribution of the multivariate random variable involved in the
computation of this probability (see Appendix G). This distri-
bution may be useful in assessing the performance of “soft-de-
cision” based detectors.

The pairwise error probability (PEP) is defined as
the probability that the receiver mistakes the th constellation
point, , for the th constellation point, , given that the
th constellation point has been transmitted. In order to compute

, we will define the matrix to be

(43)

where , , , and

is the SVD of . Let be the th eigenvalue
of and be the multiplicity associated with this eigen-
value. Let be the random variable defined as

(44)

where denotes a Chi-Square random variable with degrees
of freedom and is the number of distinct eigenvalues of

. We show in Appendix G that the pairwise error probability
is given by

(45)

In order to compute , we invoke the following result
from [34], [35] to find the distribution function of .

Lemma 6: Let
, where the Chi-square variates are

independent and are positive constants
such that , . Define constants and by the
identities,

(46a)

(46b)

Let , .
Then for every ,

(47)

where

,
and .

Using (45) and (47), one can analytically compute

(48)

The union bound is therefore given by

(49)

Notice that , , and and
hence the series in (46) is absolutely convergent. Moreover, for
given , and , the inner summation is independent of both
the constellation size and the SNR. Hence the inner summation
need only to be computed once and can be used to assess the PEP
performance of the communication system at different rates and
SNRs. For and constellations generated by (24), one
can use the results of Proposition 2 in Appendix D, to show that
only half the terms of (49) need to be computed.

The PEP expression in (48) can help to identify the impact
of changes in the design parameters on the asymptotic perfor-
mance of the communication system. For instance, the expres-
sions in (44) and (48) suggest that the number of receive an-
tennas, , has an impact on the pairwise error probability only
through the number of degrees of freedom of the associated Chi-
square random variables. An increase in the degree of freedom
results in a Chi-square distribution that is more concentrated
around its mean. Hence, if is increased the areas of overlap
between the positively weighted and the negatively weighted
Chi-square variables in (44) is reduced, which results in a signif-
icantly smaller PEP. Notice that the number of receive antennas
does not affect the magnitude nor the multiplicity of the eigen-
values of in (43).

VII. NUMERICAL RESULTS

In this section we provide a few numerical results that illus-
trate the efficacy of our approaches to constellation design and
detection. The channel is assumed to be independent Rayleigh
block-fading with coherence time . In order to achieve
the maximum number of degrees of freedom of this channel
(cf. (1) and (2)), the numbers of transmit and receive antennas
were chosen to be . In Section VII-A
we will evaluate the performance and the computational cost
of the reduced search detector introduced in Section V-B, in
Section VII-B we will compare the performance of constella-
tions designed using the techniques described in Section IV
against that of some existing unitary constellations, and in
Section VII-C we will provide performance comparisons with
some training-based signaling schemes. In these simulation
experiments, we will consider Grassmannian constellations
of size 16, 256, 512, 1024, and 4096, which correspond to

Authorized licensed use limited to: McMaster University. Downloaded on July 12,2010 at 05:54:13 UTC from IEEE Xplore.  Restrictions apply. 



1192 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 3, MARCH 2009

Fig. 8. The performance and computational advantage of the Reduced Search detection algorithm of Section V over that of ML detection for the 256-point
Grassmannian constellation.

data rates of 1, 2, 2.25, 2.5, and 3 bits per channel use (bpcu),
respectively.

A. Evaluation of the Reduced Search Detector

In order to assess the effectiveness of the reduced search al-
gorithm introduced in Section V, in Figs. 8(a) and 9(a) we have
plotted the corresponding block error rate when different num-
bers of reference points are used, for systems employing the
greedily designed constellations of size 256 and 1024. These
systems operate at data rates of 2 and 2.5 bpcu, respectively.
For all simulations in these figures, the parameter of reduced
search algorithm was chosen according to (81) in Appendix F

with and . In these figures we have also
plotted the block error rate of the ML detector, as well as the
union bound derived from the exact expression for the pairwise
error probability of Section VI. From these figures, we observe
that when the reduced search algorithm uses multiple reference
points its performance can indeed approach that of the ML de-
tector. In addition, our expression for the pairwise error proba-
bility seems to lead to a tighter union bound than the asymptotic
union bound derived in [20].

In Figs. 8(b) and 9(b), we have plotted the number of likeli-
hood computations required for the reduced search algorithm.
From these figures, one can conclude that an increase in the
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Fig. 9. The performance and computational advantage of the reduced search detection algorithm of Section V over that of ML detection for the 1024-point
Grassmannian constellation.

number of reference points not only results in the performance
of the reduced search algorithm approaching that of the ML de-
tector; there is also a significant reduction in the number of like-
lihood computations. For example, at an SNR of 30 dB, when
the detector uses 15 reference points instead of 1 reference point,
the average number of likelihood computations is reduced from
about 56.3 to 15.4 evaluations for the 256-point constellation
and from about 225.3 to 51.2 likelihood computations for the
1024-point constellation. (ML detection requires the evaluation
of 256 and 1024 likelihoods, respectively.) Observe that because
we choose as in (81), the width of the search region (and con-
sequently the number of candidates to be considered) initially

expands with the SNR, and then decays. The asymptotic decay
of the width takes the form ; see Appendix F for fur-
ther discussion.

B. Performance Comparison of Greedily Designed
Constellations

In this section we provide performance comparisons, based
on (full) ML detection, between the Grassmannian constel-
lations designed using the greedy technique in Section IV-A
and those designed in [20], which we will refer to as the
MBV constellations. The design of the MBV constellations
is based on greedily minimizing the asymptotic union bound
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Fig. 10. Performance comparison between constellations designs via greedy techniques that use the chordal Frobenius (CF) norm, the asymptotic union bound
(MBV) and the projection Frobenius (PF) norm as the distance metric. ML detection is used for all constellations.

derived in [20], whereas our approach to constellation design
(cf. Section IV) is based on maximizing the chordal Frobenius
norm between constellation points. The performance results in
Fig. 10 show that for 16-point constellations (i.e., a data rate
of 1 bpcu) the MBV constellation outperforms our greedily
designed constellation by about 2.5 dB at a block error prob-
ability of . When the data rate is increased to 2 bpcu, the
256-point MBV constellation provide better performance than
our 256-point constellation, but only slightly better. When the
data rate is further increased to 2.25 bpcu (i.e., for the case of
512-point constellations), our (greedy) constellation performs
better than the MBV constellations. This figure shows that
when the system is operating at higher data rates our greedily
designed constellations can outperform the (greedy) MBV
ones.

Fig. 10 also shows the performance of a 256-point constella-
tion that was generated using the greedy algorithm, but with the
projection Frobenius norm in (21) instead of the chordal Frobe-
nius norm proposed herein; cf. (20). It can be seen from this
figure, that the constellation designed using the chordal Frobe-
nius norm performs slightly better than that designed using the
projection Frobenius norm for SNRs up to about 17 dB. How-
ever, the constellation designed using the projection Frobenius
norm performs slightly better at higher SNRs. This suggests that
for systems operating close to the ergodic capacity, the chordal
Frobenius norm is a more appropriate distance metric than the
projection Frobenius norm. For systems operating away from
the capacity limit, a distance metric that directly accounts for
the probability of error may be more appropriate.

Finally, we emphasize that the comparisons in this section
have focused on the performance of greedily designed constella-
tions. Better performance can be achieved by constellations that
are designed using the joint techniques outlined in Sections IV-B
and C; cf. Figs. 4 and 5.

C. Comparison With Training-Based Schemes

In [7] a training-based signaling scheme for the noncoherent
MIMO channel was presented. In the training phase of this
scheme, the transmitter uses the channel times to send pilot
symbols. The receiver uses these pilot symbols to generate
a minimum mean square (MMSE) estimate of the channel.
Assuming this estimate to be sufficiently accurate, the receiver
then coherently detects the data sent by the transmitter during
the remaining channel uses, using a ‘mismatched’ ML
detector. This phase is known as the data communication phase.

As a first comparison of the performance of the training-based
scheme with that of Grassmannian signaling, we consider sys-
tems operating at rates of 1, 2, and 2.5 bpcu. For Grassmannian
signaling these rates correspond to constellations of size 16,
256, and 1024, respectively. For this comparison, we have used
constellations that were designed using the direct technique
in Section IV-B. For the training-based scheme we have used
Alamouti signaling [36] in the data communication phase. To
match the considered rates, the underlying constellations of the
training-based scheme were chosen to be 4, 16, and 32-QAM,
respectively. (For Alamouti signaling, ‘mismatched’ ML detec-
tion can be achieved by linear processing and (low-complexity)
symbol-by-symbol detection.) From Fig. 11, it can be seen
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Fig. 11. Performance comparison between signaling using the proposed constellations with ML detection and Alamouti-based training signaling schemes with
“mismatched” detection. The Grassmannian constellations in this figure were designed using the direct method of Section IV-B. The performance of the 256-point
constellation in [18] (denoted by KB) with ML detection is also shown.

that the Grassmannian constellations that are designed using
the direct technique of Section IV-B perform better than the
Alamouti-based training schemes. Furthermore, Fig. 11 shows
that the advantage of signaling with Grassmannian symbols
over signaling with Alamouti-based training increases with the
data rate. This advantage directly follows from the asymptotic
optimality of Grassmannian signaling at high SNR.

In Fig. 11 we have also plotted the performance of the 256-
point constellation proposed in [18], which is based on an
exponential mapping of a coherent space–time constellation.
One can see from this figure, that due to the stringent structure
imposed by the design methodology in [18], both the Alam-
outi-based training scheme and the proposed Grassmannian
signaling scheme provide better performance.

Although the Alamouti scheme is attractive from a detection
complexity perspective, it is known to be rate-suboptimal when
the number of receive antennas, , is greater than one [37].
In the case that we are considering, a constellation
that exhibits more favourable performance characteristics is
that in [38], which we will refer to as the Golden constella-
tion. In Fig. 12 we compare the performance of a 4096-point
Grassmannian constellation (designed using 512 rotations of
an 8-point directly designed proto-constellation) with that of
a training-based scheme that utilizes a Golden constellation
with 8-QAM symbols. (Both schemes have a data rate of 3
bpcu.) In this figure we use ML detection for the Grassmannian
constellations, and both ‘mismatched’ and ‘optimal’ detection
[39] for the detection of the Golden constellation. At a block

error rate of , one can see that the proposed constellation
has an SNR advantage of about 1.5 dB over the training-based
scheme with the Golden constellation and ‘optimal’ detection,
and about 2 dB over the same scheme when ‘mismatched’ de-
tection is used. While the complexity of mismatched detection
of Alamouti-based training schemes is quite low, detection
of Golden constellations is significantly more expensive. In
particular, the number of multiplications required for ‘optimal’
and ‘mismatched’ detection of the Golden constellation is

and , respectively,
where is the time interval of the data communication
phase. For comparison, the complexity of ML detection of
noncoherent Grassmannian symbols is .
Fig. 12 also shows the performance of a randomly generated
Grassmannian constellation. The points of this constellation are
the unitary components of the QR decomposition of
matrices with independent and identically distributed complex
zero mean Gaussian entries. From Fig. 12 it can be seen that
although our ‘carefully’ designed constellations perform better
than the randomly chosen constellation, the difference is not
very large. However, our rotation-based constellation has the
additional advantage that it possesses a structure that reduces
its storage requirements and enables a quasi-set-partitioning
labeling scheme; cf. Section IV-D.

In order to develop further insight into the performance of
the proposed constellation designs, we recall that it was shown
in [2] that at high SNRs, every 3 dB increase in the SNR results
in a capacity gain of bpcu. Now, by com-
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Fig. 12. Comparison between the performance of the proposed codes with ML detection and a training-based scheme with Golden code and “mismatched” and
“optimal” detection. The performance of randomly generated Grassmannian constellations with ML detection is also shown.

paring the performance of our 256-point constellation (2 bpcu)
in Fig. 11 with that of our 4096-point constellation (3 bpcu) in
Fig. 12 at a fixed block error rate, say , one can see that
the SNR gap between these constellations is only slightly more
than 3 dB, which is the difference that one would predict from
the capacity expression in [2]. This suggests that our constella-
tions will enable the high SNR ergodic noncoherent capacity of
the MIMO system to be approached, and is due, in part, to the
fact that these constellations were designed using a metric that
appropriately accounts for the manner in which noise perturbs
the signal subspace.

VIII. CONCLUSION

In this paper, we considered noncoherent MIMO communica-
tion over a block Rayleigh fading channel using Grassmannian
constellations. We began by studying the manner in which the
channel and noise matrices perturb the subspace spanned by the
transmitted signal matrix. This perturbation analysis was used
to determine an appropriate distance metric for constellation de-
sign and to develop an efficient suboptimum detection strategy.
The rationale behind choosing the distance metric was to quan-
tify the perturbation that the signal subspace undergoes, in a
sense that conforms with the communication model. This metric
was found to be the chordal Frobenius norm, rather than the
commonly used projection Frobenius norm. Having determined
the appropriate distance metric, we then developed greedy, di-
rect and rotation-based techniques for designing Grassmannian
constellations. These techniques provide a tradeoff between the

quality of the distance spectrum and design complexity. In ad-
dition, the rotation-based technique yields constellations that
are easy to store and regenerate, and admit a binary labeling
of the constellations that resembles, to a large extent, standard
set-partitioning labeling. As we illustrated in our simulations,
the choice of the appropriate metric for constellation design
leads to an appreciable performance gain over constellations
that are designed according to other distance metrics. Further-
more, the proposed constellations exhibit performance charac-
teristics that conform to established theoretical results.

In addition to guiding the development of the proposed con-
stellation design techniques, the subspace perturbation analysis
also enabled us to show that the information about the trans-
mitted constellation point is captured by the -component of
the received signal matrix whereas all the channel information
is contained in the -component. We then used this result to
introduce an efficient suboptimum detection strategy with a
search region whose width decays as , where is the
SNR. Finally, we derived an exact expression for the pairwise
error probability. This expression is numerically stable and
was shown to be significantly tighter than other approximate
expressions that have been developed in the literature.

The analysis herein of the detection strategy and the pairwise
error probability could prove valuable in identifying the role of
various design parameters. For instance, while the capacity gain
of choosing was discussed in [2], using the analyses in
this paper we are able to assess the potential gains of choosing

from other perspectives. In particular, we have shown
in Section VI how the increase in the number of receive antennas
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is reflected in the asymptotic error performance of the communi-
cation system. Similarly, in Appendix F-B we have shown that
this increase can offer an attractive reduction in the computa-
tional complexity of the proposed detector.

APPENDIX A
PROOF OF LEMMA 2

Let . In order to show the desired result,
we will use the following lemma.

Lemma 7: If and are defined as in (9), then and
are independent of each other and independent of .

Proof: Let . Since the additive noise ma-
trix in (3) is isotropically distributed then

is also isotropically distributed with independent complex
Gaussian entries. This implies that and are independent
of each other. Furthermore, we have that

and hence and are independent of .

Using Lemma 7, the entries of

and

are statistically independent. If we let

as in (11), we can write

(50)

where and is a random
matrix with i.i.d. Gaussian entries. Now, for we have
that

(51)

where and denote the minimum and max-
imum eigenvalues of . Now, is a complex Wishart [40]
matrix . The distribution of the minimum eigenvalue
of this matrix is given by [23]

(52)

Using (52) and (51), we obtain the required result. For ,
the inequality in (51) can be replaced by equality if the scalar
multiplier of in the denominator is replaced by .

APPENDIX B
PROOF OF LEMMA 3

In this section we will use the notations of Lemma 1. Let
be defined such that

Using this definition of , one can express (7) as

From (8) we have

Denoting the SVD of by and letting

, we obtain the desired form of .

APPENDIX C
PROOF OF THEOREM 1

Using Lemma 3 and the definition of the chordal Frobenius
norm in (19), one can verify that

where is defined as in Lemma 3. We now show that the normal
and tangential components of the additive perturbation term
in (12) are independent of . Using (12), for we have
that

Therefore, the tangential component is given by

(53)

and the normal component is given by

(54)

These components are functions of through the SVD of
the matrix , which is, in turn, a random quantity that only de-
pends on and in (9); cf. (14). The result in Lemma 7 (see
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Appendix A) implies that and are independent of , and
hence we conclude that the tangential and normal components
(and hence the norm) of are independent of as claimed.

APPENDIX D
PROOF OF PROPOSITION 1

In order to prove this proposition, we begin by stating the
following result.

Proposition 2: For , if , and belong
to the constellation generated by (23), then augmenting the
constellation by does not reduce the minimum distance
between constellation points.

To prove this proposition, we merely need to show that the
constellation point does not increase the minimum chordal
Frobenius norm between constellation points if those points
exist as pairs of the form , where and
span orthogonal subspaces. Alternatively, we need to show that
for defined as in (20)

(55)

We will use the following lemma.

Lemma 8: Let and be unitary matrices with
. Let be the unitary matrix whose columns span the

null space of . If denotes the SVD of , then the

SVD of is given by for
some unitary matrix , where 0 denotes the all zero matrix of
dimension .

Proof: Observe that is a projector on the null
space of . The uniqueness of the projector operator [25] im-
plies that . Hence

Using the Cholesky factorization, we conclude that the SVD of
is given by , for some unitary

matrix .

By applying Lemma 8 twice; first with and
, and then with and , we obtain the

desired result.
Using the result in Proposition 2, we now prove Proposition

1 by induction.
Proof: For , , and the constellation

generated by (23) is given by . Sup-
pose that the assumption is true for . That is,

. We wish to prove that
the property holds for . Let be the th
constellation point generated by (23) with . Then
by Proposition 2, we have . The proof is complete.

APPENDIX E
PROOF OF THEOREM 2

In order to prove the first statement of the theorem (cf. (38)),
we have from (7) that corresponds to a rotated version of

. Therefore, we can write

where (cf. (14), (9)), is defined in (11) and is
some unitary matrix that specifies the rotation of the basis of the
subspace spanned by the columns of . The result of Lemma
7 in Appendix A shows that and are statistically indepen-
dent of , and hence is also statistically independent of

.
In order to prove the second statement (cf. (39)), let

and , where is de-

fined in Lemma 3. The matrix and hence the matrix
are isotropically distributed. Then, using Lemmas 1 and 3, one
can write

In order to show that , one can equivalently show
that . To that end, we have

(56)

The first inequality in (56) follows from the fact that condi-
tioning reduces entropy [24]. The second inequality in (56) fol-
lows from the fact that affects only through . That is,

contains more information about than because it in-
volves information about the noise components.

We now prove that . In order to do that,
we only need to show that

(57)

for some function . Let be a square unitary
matrix, where is the orthogonal complement of . Now,
because contains more information about than , we
have

(58)

In order to evaluate the differential entropy , we con-
sider the marginal distribution , which is given by

(59)

Consider the marginal probability distribution .
Since for a fixed unitary matrix , the matrix is unitary
and isotropically distributed, we have [6]

(60)
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where the integration is over the space of Hermitian matrices
and is a normalizing scalar. We now perform a change of

variables with being the Hermitian matrix .
That is, . Using a result in [40], it can be shown
that the differential

Using this result with the expression in (60), we have

(61)

The right hand side of (61) is not a function of . Hence,
. Using this result in (56) and (58) com-

pletes the proof.

APPENDIX F
THRESHOLD VALUES FOR THE REDUCED SEARCH DETECTOR

In this section, we propose a method for determining the
threshold values and for the reduced search quasi-ML
detection strategy described in Section V-B. As pointed out in
that section, proper selection of these values is critical in con-
trolling the tradeoff between complexity and performance of the
reduced search detection strategy. Our method for selecting
and is based on using Chebychev’s inequality to bound the
probability of missing the correct constellation point in the set
of candidate constellation points. In the initial development we
will first focus on the case. Later, we will discuss the
extension to the case when .

Case: Let be the probability of missing
the correct symbol in the set of candidate points.
That is, denotes the probability that , where

is the transmitted symbol,
and is the

metric used by the reduced search detector. Although the
chordal Frobenius norm might be more appropriate for com-
puting the threshold values, the analytical derivation appears to
be intractable when th at norm is used. Therefore, for conve-
nience we will choose the squared projection Frobenius norm
for computing the threshold values; cf. (21). That is

Define to be the following function of the transmitted signal

matrix , the received signal matrix
and the reference point

(62)

where we used Lemma 1 in arriving at (62). Let
and where the expectation is taken with
respect to the isotropically distributed transmitted signal ,
the channel and noise . For a given width of the search
region, , the probability of missing can be expressed
as

(63)

Direct computation of the probability in (63) is quite compli-
cated and depends on the choice of the reference point. Using
Chebyshev’s inequality, we have, for any

(64)

This inequality suggests that for to be bounded by a certain
constant, a good choice of scales with , i.e.

(65)

(We will discuss later in this section how to choose the value of
.) The corresponding threshold values, and , are given

by

(66)

In order to determine the values of and , we need to
find and . To do so, we will first show that and are in-
dependent of the actual choice of the reference point. We will
then proceed to compute and . Since the transmitted signal,

, the channel realizations, , and noise, , are all indepen-
dent random processes, we can compute and by first per-
forming the expectation over and then the expectations over

and .
We begin by using Lemma 1 to expose the dependency of
on , and . From (5) we have

. Let ,

and ; cf. (9). Substituting into (62) we
obtain (67), which appear at the bottom of the page, where

. Observe that the averaging over has
been absorbed into the averaging over the reference point. This
indicates that as far as the moments of are concerned, the ref-
erence points are identical.

The noise matrices , and the channel matrix are inde-
pendent Gaussian random matrices. In particular, the elements

(67)
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of , and those of ,
and . Observe that is

the component of noise that adds directly to the channel. That is,
contributes additively to the received signal power. However,

at high SNR, the variance of this component decays as , and
hence the effect becomes negligible.

Assuming that the channel matrix is nonsingular, from
Lemma 1, we have that at high SNR

(68)

where we have used the fact that and have zero mean, and
the variance of their elements decays as . Hence,
and converge in distribution to and , re-
spectively, as . The matrix is a unitary matrix that
specifies the orientation of the basis within the subspace.5 Sub-
stituting (68) into (67), we obtain

(69)

where the approximation in (69) is obtained by assuming that
the SNR is sufficiently high so that in (67) is approxi-
mately equal to . The approximation error becomes negligible
as .

Using the result in (68), we can assume that is indepen-
dent of and , which enables us to compute and
based on the approximate expression in (69). To begin with, we
will compute the conditional expectations and and then

we will compute the expectation over . If we let

(70)

then

(71)

where we have used the fact that for isotropically distributed
, a result in [41] implies that

In order to compute , we begin by finding

(72)

5Note that the receiver has no access to�. That is, the receiver does not know
the rotation of the QR decomposition that corresponds to the signal propagation
through the channel.

where and are th entries of and , respectively.
Notice that our result here complements the result in [5] in
which the variance of the same quadratic term is computed for
Gaussian matrices rather than the isotropically distributed uni-
tary matrices. In order to compute the statistical expectation in
(72), we make use of the following lemma from [41], which we
have extended to the case of complex unitary matrices.

Lemma 9: Let be a random isotropically dis-
tributed unitary matrix. The following statements hold.

i) The multiplication of a fixed row or column of by
does not destroy the isotropic distribution. Consequently
the mixed moments of elements of a random unitary ma-
trix are zero unless each index occurs an even number of
times in the product of which we take expectation.

ii) For all and ,
.

iii) For all , and ,
.

iv) For all , and ,
.

v) For all , , and
, .

vi) For all , , and
, .

It follows from part i) of Lemma 9, that only the terms with
the following indices will be nonzero in the expectation:

, , ,
, , and

.
Using the results in Lemma 9, after regrouping and arranging

terms, we can express as

(73)

In order to compute and , we still need to average the ex-
pressions in (71) and (73) over . To that end, we observe that
is an isotropically distributed Gaussian random matrix. Hence,
using the SVD of

where we have used to denote the th column of and to
denote the th diagonal entry of . We have also used the fact
that , where denotes equality in distribution.
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Likewise

(74)

Now, is a Chi-square random variable with
degrees of freedom and Gaussian variance equal to . Hence

(75)

(76)

(77)

Using (76), (77), (73), (75) and the fact that

one can readily compute the proposed values of and
given in (66) for any given .

We now make a few remarks regarding the values computed
for and .

• The high SNR asymptotic result in (68) conforms with the
result of Theorem 2 that the channel information is cap-
tured by the -component of the received signal. However,
Theorem 2 asserts a stronger claim; at any SNR the channel
information is contained in .

• Notice the dependence of and on the the singular
values of . Specifically, as the singular values of
grow, indicating that the channel is close to singularity (cf.
(68)), the width of the search region should be increased in
order to maintain a reasonable likelihood of the transmitted
constellation point being within the search region.

• Notice that, in agreement with Theorem 2, the values of
and turn out to be independent of the received signal
subspace spanned by .

• As the SNR, , decays as . Therefore,
(cf. (64)), and, for a fixed , the width of the search region
approaches zero as . In that case, if more than one refer-
ence point is used, only a small number of likelihoods need
to be computed. This observation is verified numerically in
Section VII.

It remains to determine an appropriate choice for the param-
eter in (65). To that end we have the following comments.

i) The above analysis was based on using one reference
point. When increasing the number of reference points,
we found it beneficial to slightly increase the scaling pa-
rameter (65). Since the distribution of in (67) seems
complicated to compute, even in the case of one refer-
ence point, the computation of an exact scaling parameter
does not seem feasible. We will therefore assume that
is a zero-mean Gaussian random variable, and determine
a method for adjusting the scaling factor according to the
number of reference points, . Suppose that in (65)
is the (positive real-valued) parameter used when one ref-
erence point is used and we wish to find the corresponding
value associated with a choice of different ref-
erence points. For points, the event of missing oc-
curs if the correct constellation point does not lie in the
prescribed band associated with the first reference point
or it does not lie in the prescribed band associated with
the second reference point, and so on. Since our estima-
tion of the missing probability is based on the moments
of (cf. (64)), which are invariant under the choice of the
reference point, we conclude that the estimate of the prob-
ability of missing is simply the sum of probabilities that
the correct constellation point does not lie in one of the
prescribed bands. That is, , where is
the probability of missing with respect to the first refer-
ence point, . Our goal is to find such that

(78)

Under the Gaussian assumption on , and with the choice
of in (65), we have from (78), that

(79)

This choice of , though approximate, provides rea-
sonable guidance as to how should be adjusted with the
number of reference points.

ii) It is well known that the bound given by Chebychev’s in-
equality (64) is quite loose. A better bound can be derived
using the Chernoff bound. However, the latter involves
computations that require the distribution of the entries of
random unitary matrices. One approach might be to as-
sume Gaussianity of the entries, which is an asymptoti-
cally tight assumption [41], but this is beyond our current
scope.

iii) We now consider the effect of choosing a particular on
the probability of error and the detection complexity. Let
the probability of error be denoted as . The proba-
bility of error is the probability that the constellation point
in with the highest likelihood, say , is not the trans-
mitted constellation point, . This probability can be
written as,

(80)

where the approximation in (80) is based on the assump-
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tion that . The first term on the right-hand side of
(80) denotes the inherent probability of error due to ML
detection, whereas the second term is the probability of
error due to the correct constellation point falling outside
the reduced search region . In order to ensure that our
choice of does not result in significant deterioration in
the performance of the receiver, must be maintained
small with respect to . We note
that for a given value of , the Chebychev bound in (64)
asserts that is upper bounded by . However, this
bound is generally loose [42] and one can afford to use
values of smaller than those predicted by this bound
without significantly affecting the overall probability of
error. At high SNR the probability of missing can be
large compared to the inherent probability of error of ML
detection. This suggests that in order to ensure that the
performance of the reduced search detector continues to
be essentially the same as that of the ML detector, larger
values of must be chosen at higher SNRs. That is, we
should allow the scaling parameter to be a function of
the SNR. However, we would still like to have as

. Since decays as fast as , we seek a func-
tion that grows no faster than . One such function is

, for some constant , which results in an overall
decay in the band width at a rate of . In Section VII
we show that this choice of yields good tradeoff in
performance versus decoding complexity. Hence, for any
SNR and number of reference points, , we propose to
choose the parameter to be

(81)

for some scalars and , where we have used the expres-
sion in (79).

Case: In this case, the channel matrix,
is fat. Let be partitioned as and

, be partitioned as
and . Assume that the receiver performs the
unique QR-decomposition of such that is an upper trian-
gular matrix with real nonnegative diagonal elements. That is

(82)

(83)

Therefore, using (82) and (83), we have

(84)

(85)

From (84), it is clear that we could determine the search re-
gion by simply applying the previous algorithm to the first
columns of . In that case, the probability of missing the correct
constellation point in would be the same as that when

, but the information from the additional antennas is naturally
incorporated into the likelihoods; cf. (41). The performance of
that approach can be significantly improved by first permuting

so that the diagonal entries of are arranged in
a nondecreasing order [25]. The results in Appendix F-A sug-
gest that the width of the search region is dominated by the in-
verse of the the minimum eigenvalue of ; i.e., the max-

imum eigenvalue of . Since the diagonal entries
of a positive semidefinite matrix strongly majorize its eigen-
values [43], after permuting , the width of the search region
that corresponds to the upper left block of is
typically less than the width of the search region that corre-
sponds to blocks of smaller diagonal entries. That is, the di-
versity gain offered by the increase in the number of receive
antennas can be used to reduce the adverse effect of atypically
weak channel realizations on the detection complexity. In that
way, the additional receive antennas play a role in both the se-
lection of the candidate constellation points and in the values of
the likelihoods; something that improves the tradeoff between
the probability of missing and the number of likelihood com-
putations. This tradeoff could be more tightly controlled by ex-
ploiting the information in (85). However, such an algorithm
would need to compute the distance not only between constella-
tion points and reference points but also the distance between the

-dimensional null spaces of the constellation
points and the reference points. That is, the look-up table would
have to be augmented in order to include the distance to refer-
ence points from all possible -dimensional null spaces
of the constellation points. Since there are pos-
sible null spaces associated with each constellation
point and , attempting to
reduce the probability of missing the correct constellation point
in by exploiting the null space information contained in (85)
would require an increase in memory size that would be hard
to justify. Fortunately, the probability of missing can be easily
controlled via the scaling factor in (66) and the number of ref-
erence points at a small storage cost.

APPENDIX G
PAIRWISE ERROR PROBABILITY

The pairwise error probability (PEP) is defined as
the probability that the receiver mistakes the th constellation
point for the th one given that the th constellation point has
been transmitted. Assuming that the receiver employs an ML
detector6 (cf. (35)), then the PEP is given by

(86)
Since we assume to be the transmitted constellation point,
then the received signal can be expressed as

where is the isotropically distributed (i.d.)
complex Gaussian channel matrix and is the i.d.
complex Gaussian additive noise matrix.

6Notice that the performance of the reduced search detector in Section V-B
is very similar to that of the ML detector.
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Now consider the first term in the probability argument in
(86). Let and be defined as in (9). Then

(87)

where is a zero mean isotropically
distributed complex Gaussian random matrix with variance

per real dimension. Similarly

(88)

The random matrix is zero mean isotropically
distributed (i.d.) complex Gaussian with variance of per

real dimension. From Lemma 7 in Appendix A, we have that
and are statistically independent. Using the result of Lemma
8 in Appendix D and (88), the PEP in (86) can be written by
(89), which appears at the bottom of the page, where
and denote the SVD of

and respectively, and

. Notice that because (cf.
(1)), and are independent i.d. Gaussian random
matrices with respective variances and per real
dimension. The equality in (89) follows from the invariance of
the norm under unitary transformation. Now, (89) can be written
as (90), which also appears at the bottom of the page. Let
and be the zero mean and unit variance i.d Gaussian random

matrices and , respectively. If we let

be the i.d. random Gaussian matrix with i.i.d. zero mean unit
variance entries given by , and let be
given by

where , , and ,
then one can express the argument of the trace in (90) as

(91)

Notice that is symmetric and hence using the eigen de-
composition of we obtain, . Since is

i.d., then and the expression in (90) reduces
to

(92)

(93)

where is the th column of . Since is a Chi-
square distributed random variable with degrees of freedom,
then if we denote the multiplicity of by , the expression
in (45) follows.

It remains to determine the eigenvalues of in terms of .
For brevity, we will suppress the subscript in and ,
and we will define . Using these notations, we
obtain

(94)

where and are both diagonal matrices with non negative
entries given by and , respectively. In order to compute
for , we need to find the roots of

. Assuming that is nonsingular, an expression
for those roots can be obtained by using the expression for the

(89)

(90)
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determinant of a block partitioned matrix [43] and the diagonal
structure of and . Specifically, one can show that

Therefore, the eigenvalues of are given by

and hence one can see that has nonpositive eigenvalues.
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