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On Rate-Optimal MIMO Signalling with
Mean and Covariance Feedback
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Abstract—We consider a single-user multiple-input multiple-
output (MIMO) communication system in which the transmitter
has access to both the channel covariance and the channel
mean. For this scenario, we provide an explicit second-order
approximation of the ergodic capacity of the channel, and we use
this approximation to show that when the channel has a non-zero
mean, the basis of the optimal input covariance matrix depends
on the input signal power. (This basis is independent of the signal
power in the zero-mean case.) The second-order approximation
also provides insight into the way in which the low-signal-to-
noise-ratio (SNR) optimal input covariance matrix is related
to the optimal input covariance matrix at arbitrary SNRs.
Furthermore, we show that the design of the input covariance
matrix that optimizes the second-order approximation can be cast
as a convex optimization problem for which the Karush-Kuhn-
Tucker (KKT) conditions completely characterize the optimal
solution. Using these conditions, we provide an efficient algorithm
for obtaining second-order optimal input covariance matrices.
The resulting covariances confirm our theoretical observation
that, in general, the low-SNR optimal signal basis does not
coincide with the optimal basis at higher SNRs. Finally, we show
how our second-order design algorithm can be used to efficiently
obtain input covariance matrices that provide ergodic rates that
approach the ergodic capacity of the system.

Index Terms—MIMO communication systems, ergodic capac-
ity, statistical channel state information, correlated channel with
non-zero mean, Kronecker channel model.

I. INTRODUCTION

THE availability of channel state information (CSI) at the
transmitter of a multiple-input multiple-output (MIMO)

communication system can have a significant impact on the
maximum ergodic rate that can be reliably communicated
over the channel [1]. While it is desirable that the transmitter
has access to perfect (instantaneous) CSI, this may not be
realistic in many practical scenarios. Instead, it may be more
practical to assume that the transmitter is given access to
statistical channel information, while the receiver has access
to instantaneous CSI.
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The impact that statistical CSI at the transmitter has on the
maximum achievable ergodic rate depends on the signal-to-
noise ratio (SNR) at which the system operates. In particular,
while transmitter CSI typically plays a significant role in low-
SNR regimes in which the transmit power is only sufficient
to excite a subset of the eigen modes of the channel [2], [3],
transmitter CSI may be less significant at high SNRs [4], [5].

The exploitation of statistical CSI at the transmitter is
typically accomplished via the design of the input covariance
matrix. With an ergodic rate objective in mind, the design of
optimal input covariance matrices for a variety of scenarios
have been considered. In particular, multiple-input single-
output (MISO) systems were considered in [6], [7] and a
comprehensive characterization of rate-optimal transmission
strategies for these systems was provided in [8]. For MIMO
systems, the work in [6], [7] was extended in [9]–[11] to zero-
mean channels with Kronecker-structured covariance (cf. [1]),
and to non-zero mean channels in [12]. A prominent theme
in those studies was to identify scenarios under which beam-
forming is the optimal transmission strategy; that is, scenarios
in which the rate-optimal input covariance matrix is rank
one. The structure of rate-optimal designs for scenarios in
which the channel is zero-mean but the covariance has a more
general structure than the Kronecker model was considered
in [13]. While obtaining closed-form expressions for ergodic
rate-optimal input covariance matrices seems to be quite
difficult in general [14], significant insight into the structure
of those matrices can be drawn by studying asymptotically
low-SNR and high-SNR regimes, [2], [3], [15] and [16], [17],
respectively. In addition to ergodic rate objectives, the design
of the input covariance matrices can be tailored to meet other
pragmatic objectives; e.g., outage capacity [18] and various
error rate perspectives [19], [20].

Our goal in this paper is to study the optimization of the
input covariance with an ergodic rate objective for communi-
cation scenarios in which the transmitter has access to both
the covariance and the mean of the channel. We draw on our
earlier results in [15] in which we provided explicit formulae
for the rate-optimal input covariance matrix at low SNR. That
design was based on a first-order approximation of the ergodic
capacity. In [15] we considered arbitrarily correlated non-
zero mean channels, but in order to maintain mathematical
tractability, in this paper, we restrict our attention to non-
zero mean channels with Kronecker-structured covariance. In
particular, we provide a second-order approximation of the
ergodic capacity of these channels, and we study optimal input
covariance design for this approximation. By comparing the
second-order designs with their first-order counterparts, we
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will show that unlike zero-mean channels (cf. [11]), the basis
(i.e., the eigenvectors) of the rate-optimal input covariance
matrix depends on the input signal power. Although our
results were originally devised to draw insight into low-
SNR signalling regimes, we will show how those results
are intimately related to the second-order approximation of
the ergodic capacity at arbitrary SNRs. In order to use this
observation to devise a rate-efficient signalling strategy at
any SNR, we analyze the second-order approximation and
expose its underlying convexity in the transmit covariance for
every choice of the centre point in the Taylor expansion. This
convexity, and the structure of the constraint set, ensure that
satisfying the Karush-Kuhn-Tucker (KKT) conditions is both
necessary and sufficient for obtaining a transmit covariance
that maximizes the second-order approximation [21], [22].
By solving these conditions, the design problem is reduced
to finding two scalars that can be efficiently obtained using
a bisection search.1 In addition to the effectiveness of the
obtained solutions, those solutions confirm our earlier obser-
vation that, in general, the optimal signalling basis is power-
dependent. Finally, we provide numerical results that show
that by adjusting the centre point in the Taylor expansion, the
covariance matrices obtained through the convex optimization
of the second-order approximation yield ergodic rates that
approach the ergodic capacity.

Notation: Throughout the paper we will adopt the con-
vention of using upper case bold symbols to denote random
matrices and lower case bold symbols to denote random
scalars. Deterministic matrices, vectors and scalars will be
denoted by regular weight symbols.

II. CHANNEL MODEL AND PREVIOUS RESULTS

We consider a MIMO communication system with M trans-
mit and N receive antennas. The channel, H, is assumed to
be Ricean narrowband block-fading with a non-zero mean, H̄ ,
and a Kronecker-structured covariance (cf. [1]) with an M×M
transmit covariance matrix T and an N×N receive covariance
matrix R, where both T and R are positive semidefinite
matrices. In this case the channel model can be written as

H = R1/2HwT 1/2 + H̄, (1)

where Hw is a standard zero-mean circularly-symmetric com-
plex Gaussian matrix with unit-variance independent identi-
cally distributed (i.i.d.) entries. Throughout this paper we will
normalise the matrices T and R so that Tr(R) = Tr(T ) = 1.
Although the Kronecker model is not the most general model
available, it will be adopted in this paper model because its
mathematical tractability generates considerable insight into
the design of the transmit covariance.

Using the results in [23] pertaining to MIMO systems
with perfect (instantaneous) CSI at the receiver, the ergodic
capacity for additive circularly-symmetric zero-mean Gaussian
noise with identity covariance can be expressed as

C = max
Q�0,Tr(Q)=P

EHw{log det(IN + HQH†)}, (2)

1Note that even for zero-mean channels, in which the optimal signalling
bases are power-independent, finding the optimal signalling strategy using
existing methods involves a rather tedious multidimensional stochastic opti-
mization over the eigenvalues of the input covariance matrix; e.g., [11].

where Q is the input covariance matrix, P is the power budget,
H is related to Hw via (1), and ‘�’ is the standard Lowener
ordering whereby A � B indicates that A − B is positive
semidefinite [24]. Solving (2) directly for a general case of
the model in (1) appears to be a difficult problem. Instead,
some progress can be made by using the Taylor expansion. In
particular, if the power budget P is sufficiently small so that
the maximum eigenvalue of HQH†, λmax(HQH†) < 1 with
high probability, then (e.g., [15]) one can express the the right
hand side of (2) as

C = max
Q�0,Tr(Q)=P

EHw

{
Tr(HQH†)−

1
2 Tr

(
(HQH†)2

)
+ 1

3 Tr
(
(HQH†)3

)
+ · · ·}. (3)

In [15] we studied the first-order term in (3) under a correlation
model that is more general than the one in (1). When this
model is restricted to the Kronecker model in (1), it was
shown that [15] the optimal signalling strategy is to perform
beamforming along the principal eigenvector of

X = Tr(R)T + H̄†H̄ = T + H̄†H̄. (4)

As pointed out in [15], for the zero-mean case, the receiver
correlation matrix R plays no role in determining the beam
direction, which agrees with the results in [11], whereas in
the case of a non-zero mean, the trace of R affects the angle
by which the beam is ‘steered’ away from the direction of the
mean. While the results in [15] were derived for the low-
power regime, we showed therein that there are instances
in which signalling along the eigenvectors of the matrix X
in (4) can provide significant gains over standard signalling
strategies at quite large SNRs. These observations prompted
us to investigate whether the low-SNR optimality of signalling
along the eigen basis of (4) extends to higher SNRs (as it does
in the zero-mean case). In Section IV we will use the second-
order approximation of (3) to provide a negative answer to that
question. In particular, we will show that, unlike the zero-mean
case, the optimal signalling basis is power dependent in the
general case.

III. SECOND-ORDER APPROXIMATION OF THE LOW-SNR
ERGODIC CAPACITY

In order to answer the question posed in the previous section
regarding the optimality of signalling along the eigen basis
of (4) at any SNR, we study the second-order term in (3),

τ = EHw

{
Tr

(
HQH†)2}

. (5)

Substituting (1) into (5), we have

τ = EHw

{
Tr

(
A2 + 2A(B + B†) + 2AC+

2(B + B†)C + (B + B†)(B + B†) + C2
)}

, (6)

where

A = R1/2HwT 1/2QT 1/2H†
wR1/2,

B = R1/2HwT 1/2QH̄†, C = H̄QH̄†. (7)

To simplify the expression in (6), we observe that, us-
ing the definitions in (7), EHw{Tr(BC)} = 0, and
EHw{Tr(B†C)} = 0. Hence, one can write (6) as

Authorized licensed use limited to: McMaster University. Downloaded on July 12,2010 at 06:23:57 UTC from IEEE Xplore.  Restrictions apply. 



914 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 2, FEBRUARY 2009

τ = EHw

{
Tr

(
A2 + 2A(B + B†) + 2AC

+ BB + B†B† + 2B†B
)}

+ Tr(C2). (8)

This expression can be further simplified by showing (as we
do in Appendix A) that

EHw{Tr(AB)} = EHw{Tr(AB†)} = 0, (9)

EHw{Tr(BB)} = EHw{Tr(B†B†)} = 0, (10)

and hence that2

τ = EHw

{
Tr

(
A2 + 2AC + 2B†B

)}
+ Tr(C2). In Ap-

pendix B we show that

EHw{Tr(AC)} = Tr(TQ)Tr(RH̄QH̄†), (11)

EHw{Tr(B†B)} = Tr(TQH̄†H̄Q)Tr(R), (12)

and in Appendix C we show that

EHw{Tr(A2)} = Tr(R2)
(
Tr(TQ)

)2

+ Tr(TQTQ)
(
Tr(R)

)2
. (13)

Substituting from (11), (12) and (13) into (8), and regrouping
terms, we have that

τ = Tr(R2)
(
Tr(TQ)

)2 + 2 Tr(TQ)Tr(RH̄QH̄†)

+ Tr
(((

Tr(R)T + H̄†H̄
)
Q

)2
)
. (14)

In the sequel, we will show how this expression can be used
to draw insight into the optimal signalling basis at any SNR.
This expression will also be instrumental in developing an
efficient algorithm for generating second-order optimal input
covariance matrices that perform better than other commonly-
used signalling techniques.

IV. FIRST-ORDER VERSUS SECOND-ORDER OPTIMAL

BASIS

The goal in this section is to show that, unlike zero mean
channels, when the channel is non-zero mean the basis of the
rate-optimal input covariance depends on the signal power. In
order to do that, it is sufficient to find an instance of T , R
and H̄ for which the basis of the first-order rate-optimal input
covariance matrix does not coincide with that of the second-
order rate-optimal matrix.

For the first-order rate-optimal transmission, the basis of the
input covariance matrix is given by the eigenvectors of X =
T +H̄†H̄ (cf. (4)), whereas for up-to second-order optimality,
the optimum input covariance matrix must maximize (cf. (14))

F = Tr(XQ) − 1
2

(
Tr(R2)

(
Tr(TQ)

)2

+ 2 Tr(TQ)Tr(RH̄QH̄†) + Tr(XQXQ)
)
. (15)

Now, consider the case in which T = 1
M IM . Substituting for

T into (15), and using the fact that Tr(Q) = P , we obtain

F = Tr
(
( 1

M IM + H̄†H̄)Q
) − 1

2P 2 Tr(R2)−
P Tr(RH̄QH̄†) − 1

2 Tr
((

( 1
M IM + H̄†H̄)Q

)2
)
.

2In fact, due to the circular symmetry of the complex entries of Hw , one
can show that, in general, if Hw and H†

w do not appear an equal number of
times in an expression, then the expected value of that expression is equal to
zero.

When T = 1
M IM , the basis of the first-order optimal input

covariance matrix coincides with the eigen-basis of H̄†H̄
irrespective of the value of R. Now, if we consider the case
in which Tr(R) � λmax(H̄†H̄), it can be shown, using [24,
Example 7.4.13], that the basis of the second-order optimal
solution approaches the eigen-basis of H̄†RH̄. Hence, we
conclude that for channels with non-zero mean the first-
order optimal basis does not necessarily coincide with the
optimal basis for higher-order approximations. In Section VII
we provide a numerical example that illustrates the difference
between first and second order rate-optimal bases.

V. POWER-SERIES EXPANSION OF CAPACITY AT ANY SNR

In this section we demonstrate the relevance of low-SNR
optimal signalling to optimal signalling at any SNR. In
particular, we show that, apart from a constant (covariance-
independent) term, the capacity is dominated by the low-order
terms in a power series that is intimately related to the low-
SNR expansion in (3) of the ergodic capacity. Towards that
end, we denote the eigen decomposition of HQH† as ΨΘΨ†

and write

CQ = EHw

{
log det(IN + HQH†)

}
= EHw

{
Tr log(IN + HQH†)

}
= EΘ

{
Tr log(IN + Θ)

}
, (16)

where in the last equality in (16) we have denoted the diagonal
matrix of the ordered non-negative (random) eigenvalues of
HQH† by Θ, and the expectation is taken over {θi}, where
θi denotes the i-th eigenvalue of HQH†. For the case in which
the channel is zero-mean and has a Kronecker-structured
correlation, a closed-form expression for this expectation is
available [25]. However, that expression is not readily exten-
sible to the nonzero-mean case, and, instead, we seek insight
into the expectation by writing it as

EΘ

{
Tr log(IN + Θ)

}
=∫

∞>θ1≥···≥θN≥0

pΘ(Θ)Tr log(IN + Θ)dΘ, (17)

where pΘ(Θ) is the joint probability density function of {θi}.
Partitioning the integral, we write

EΘ

{
Tr log(IN + Θ)

}
=∫

Mε≥θ1≥···≥θN≥0

pΘ(Θ)Tr log(IN + Θ)dΘ

+
∫
∞>θ1≥···≥θN >Mε

pΘ(Θ)Tr log(IN + Θ)dΘ, (18)

where the scalar Mε < ∞ is chosen to be sufficiently large
so as to ensure that∫

∞>θ1≥···≥θN >Mε

pΘ(Θ)Tr log(IN + Θ)dΘ ≤ ε, (19)

for some sufficiently small ε > 0. The existence of such a
scalar, Mε, is guaranteed for all statistical distributions of Θ
for which the improper integral in (17) converges [26]; that
is, for all distributions of Θ for which the ergodic capacity is
finite.
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Assuming ε to be sufficiently small and choosing Mε to
satisfy (19), we can write

CQ ≈ EΘ

{
Tr log

(
Θ− MεIN + (Mε + 1)IN

)}
= N log(Mε + 1) + EΘ

{
Tr log

(
1

Mε+1
(Θ− MεIN) + IN

)}
,

(20)

where in (20) we assume that {θi} are restricted to the domain
of the first integral in (18). Since in this domain

∣∣θ1−Mε

Mε+1

∣∣ < 1,
we can use the Taylor expansion about MεIN to write (20) as

CQ ≈ N log(Mε + 1) + EΘ

{
Tr

(
1

(Mε+1) (Θ − MεIN )

− 1
2(Mε+1)2 (Θ − MεIN )2

+ 1
3(Mε+1)3 (Θ − MεIN )3 + · · · )}. (21)

Observe that, similar to the low-SNR case (which corre-
sponds to Mε = 0), the expansion in (21) is dominated
by the low-order terms. In fact, the first-order optimal input
covariance for low SNRs is also first-order optimal at any SNR
and is independent of Mε. However, Mε plays a key role in
determining the range of input powers for which the optimal
signalling strategy is dominated by its second-order optimal
signalling strategy. In particular, if Mε is not sufficiently large,
the Taylor expansion in (21) may not converge and one can
no longer claim that the series is dominated by the first few
terms. On the other hand, if Mε is set to be too large, the series
in (21) will eventually converge but the rate of convergence
will be too slow for the first few terms to capture the dominant
components of the series. This observation suggests that one
ought to carefully choose the value of Mε around which
the series is expanded for each given value of the input
power budget, P . In Section VII, we will show that by
properly selecting Mε, we obtain second-order optimal input
covariance matrices that provide higher achievable rates than
other commonly-used signalling strategies.

VI. SECOND-ORDER OPTIMAL INPUT COVARIANCE VIA

CONVEX OPTIMIZATION

In this section we exploit the Taylor expansion in (21) to
optimize the input signal covariance at an arbitrary SNR. We
will derive an efficient algorithm for obtaining the second-
order optimal input covariance for a given value of Mε; i.e., the
matrix that maximizes the sum of the first- and second-order
terms in (21). This matrix achieves a certain ergodic rate and
hence one can think of the ergodic rate as being parameterized
by Mε. The largest such ergodic rate can be determined
by using a one-dimensional stochastic optimization over Mε.
In contrast, most related methods (e.g., [11]) require multi-
dimensional stochastic optimization over the eigenvalues of
the input covariance matrix.

A. Convex Formulation of the Second-order Optimal Design
Problem

Our goal now is to show that for any Mε, the input covari-
ance matrix that maximizes the second-order approximation
of the ergodic achievable rate can be obtained via the solution
of a convex optimization problem. We will then employ
some duality arguments to develop an efficient method for
computing this matrix.

Using the expansion in (21) and the expectations computed
in Section III, our second-order design problem can be for-
mulated as follows,

max
Q: Q�0,Tr(Q)=P

F (Q),

where

F (Q) = 2Mε+1
(Mε+1)2 Tr(XQ) − 1

2(Mε+1)2

(
Tr(R2)

(
Tr(TQ)

)2

+ 2 Tr(TQ)Tr(RH̄QH̄†)
+ Tr(XQXQ)

)
, (22)

where X is defined in (4) and Mε is appropriately chosen
so as to ensure that (19) is satisfied for the SNR of interest;
see Section V. By the virtue of being the intersection of an
M -dimensional simplex and a positive semidefinite cone [21],
the feasible set of (22) is convex. Furthermore, it is shown in
Appendix D that the objective in (22) is a convex function of
Q.

B. KKT Conditions and Second-order Optimal Input Covari-
ance around MεI

It is easy to check that for any P > 0, the problem in (22)
is strictly feasible. Hence, using Slater’s condition [21], [22],
the convexity of (22) implies that strong duality holds and the
KKT conditions are sufficient and necessary to attain both the
primal and the dual optimal solutions. The Lagrangian of (22)
can written as

L(Q, Z, ν) = β
(
Tr(R2)

(
Tr(TQ)

)2+

2 Tr(TQ)Tr(RH̄QH̄†) + Tr(XQXQ)
)

− α Tr(XQ) − Tr(ZQ) + ν(Tr(Q) − P ), (23)

where α = 2Mε+1
(Mε+1)2 , β = 1

2(Mε+1)2 , and Z � 0 and ν are the
Lagrange dual variables. Using this Lagrangian, we can write
the KKT conditions [21], [22] for the optimization problem
in (22):

∇QL = 2β
(
Tr(R2)Tr(TQ) + Tr(H̄†RH̄Q)

)
T

+ 2β Tr(TQ)H̄†RH̄ + 2βXQX

− (Z + αX − νI) = 0, (24a)

Tr(Q) = P, (24b)

Q � 0, (24c)

Z � 0, (24d)

Tr(ZQ) = 0. (24e)

Assuming that the matrix X in (4) is non-singular,3 we
obtain from (24a) that

Q = X−1
(

1
2β (Z + αX − νI) − (

Tr(R2)Tr(TQ)

+ Tr(H̄†RH̄Q)
)
T − Tr(TQ)H̄†RH̄

)
X−1. (25)

In order to simplify the notation, we introduce the following
transformations:

3If X is singular, a similar expression involving the Moore-Penrose pseudo-
inverse applies, but for ease of exposition we will restrict our attention to cases
in which X is non-singular.
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Z̃ = X−1/2ZX−1/2, T̃ = X−1/2TX−1/2,

S̃ = X−1/2H̄†RH̄X−1/2. (26)

Using this notation, we can write (25) as

Q = 1
2β X−1/2

(
W̃ − γZ2 T̃ − γZ1 S̃

)
X−1/2, (27)

where W̃ = Z̃ + αI − νX−1,

γZ1 = 2β Tr(TQ) = 1
Δ

((
1 + Tr(S̃T̃ )

)
Tr(W̃ T̃ )

− Tr(T̃ 2)Tr(W̃ S̃)
)
, (28)

γZ2 = 2β Tr(R2)Tr(TQ) + 2β Tr(H̄†RH̄Q)

= Tr(R2)γZ1

+ 1
Δ

((
1 + Tr(R2)Tr(T̃ 2) + Tr(T̃ S̃)

)
Tr(W̃ S̃)

− (
Tr(R2)Tr(S̃T̃ ) + Tr(S̃2)

)
Tr(W̃ T̃ )

)
, (29)

where the constant scalar Δ is given by Δ =
(
1+Tr(T̃ S̃)

)2+
Tr(T̃ 2)

(
Tr(R2) − Tr(S̃2)

)
.

Using these simplifications, we now proceed with the anal-
ysis of the KKT conditions in (24). The condition in (24c)
and the structure of Q in (27) imply that

(W̃ − γZ2 T̃ − γZ1 S̃) � 0. (30)

Furthermore, from (24e) and (27) we have

Tr(QZ) = Tr
(
Z̃(W̃ − γZ2 T̃ − γZ1 S̃)

)
= Tr

(
Z̃(Z̃ + αI − νX−1 − γZ2 T̃ − γZ1 S̃)

)
= 0. (31)

Let UZΛZU †
Z be the eigen decomposition of Z̃ , and let UΛU †

be the eigen decomposition of (αI − νX−1 − γZ2 T̃ − γZ1 S̃).
Furthermore, denote the non-negative entries of Λ by Λ+ and
the negative ones by Λ−. Now condition (31) can be re-cast
as

Tr(UΛU †UZΛZU †
Z) + Tr(Λ2

Z) = 0. (32)

If we set4

UZ = U, (33)

condition (32) will yield

Tr
(([

Λ+ 0
0 Λ−

]
+

[
ΛZ1 0

0 ΛZ2

]) [
ΛZ1 0

0 ΛZ2

])
= 0, (34)

where ΛZ1 , ΛZ2 are of the same dimension as Λ+ and Λ−,
respectively.

Now, from condition (30), we know that ΛZ2+Λ− � 0. Fur-
thermore, from condition (24d), it is clear that for any positive
diagonal entry in

[
Λ+ 0
0 Λ−

]
+

[
ΛZ1 0

0 ΛZ2

]
, the corresponding

entry in ΛZ must be equal to zero. Hence, the only solution
that satisfies (34) is the one in which

ΛZ1 = 0, and ΛZ2 = −Λ−. (35)

Using (33) and (35), if γZ1 , γZ2 and ν were known,
one would have been able to obtain Z̃ directly, and hence

4Observe that setting UZ to be equal to U is without loss of optimality,
because the optimality of the solution will be guaranteed by finding values for
Q, Z and ν that satisfy the KKT conditions. Once such values are obtained
they serve as a certificate of optimality [21].

Start

Input (γZ1 , γZ2) and ν

Update ν

Update (γZ1 , γZ2)

Compute Z and Q

γZ1 , γZ2

satisfy

(28), (29) ?

Tr(Q) = P ?

Yes

Yes

No

No

End

Fig. 1. A flow chart of the solution steps in the proposed algorithm.

also Z and Q. However, analytical computation of these
values appears to be intractable, and hence we propose to
perform a bisection search over these scalars. In this search,
the values of ν are changed in an outer loop. For every
value of ν, an inner loop performs a bisection search on
γZ1 and γZ2 . For each test pair (γZ1 , γZ2), a test matrix Z
is computed as per (33) and (35). The inner loop stops the
search whenever a test pair is attained that yields a matrix Z̃
that satisfies (28) and (29). On the other hand, the bisection
search of the outer loop stops if a value of ν is attained
for which the condition in (24b) is satisfied. Observe that
for the bisection search over the pair (γZ1 , γZ2) we have
from (28) that γZ1 ∈ [0, 2βP Tr(T )] and from (29) that
γZ2 ∈ [Tr(R2)γZ1 , Tr(R2)γZ1 + 2βP Tr(H̄†RH̄)]. The flow
chart in Figure 1 shows the steps of the proposed solution
method.

We now revisit the issue that was addressed in Section IV
regarding the fact that the basis of the second-order optimal
input-covariance does not coincide, in general, with that of
the first-order optimal one. We recall that for the second-order
optimal solution, it is sufficient for UZ , the eigenvectors of Z̃
to be the same as U , the eigenvectors of (αI−νX−1−γZ2 T̃−
γZ1 S̃). Now, substituting this result into (27), we obtain

Q = 1
2β X−1/2U

(
ΛZ − Λa

)
U †X−1/2, (36)

where we have used Λa to denote the eigenvalues of (αI −
νX−1 − γZ2 T̃ − γZ1 S̃). Now, consider the following lemma.
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Lemma 1: Let G, K , and L be square Hermitian matrices
and let their eigen decompositions be given by UGΛGU †

G,
UKΛKU †

K , and ULΛLU †
L, respectively. Let K be non-

singular, L have distinct eigenvalues, and G be given by
G = HLH†. Then, UG = UK if and only if UK = ULΠ,
where Π is a permutation matrix that is determined by the
order of the diagonal entries of ΛG, ΛK and ΛL.

Proof: See Appendix E
We now apply the result of Lemma 1 to the right hand side

of (36). Doing so, it is seen that if the diagonal entries of
(Λa − ΛZ) are distinct, then the eigenvectors of Q will be
the same as those of X (up to permutation) if and only if
U = UX ; that is, if and only if the eigenvectors of X are
the same as those of

(
νX−1 − γZ2 T̃ − γZ1 S̃

)
. However, this

condition holds if and only if the matrices X and γZ2 T̃ +γZ1 S̃
commute. From (4), it is seen that one particular situation in
which this condition is satisfied is when H̄ = 0; i.e., when
the channel is zero mean.

It is worth pointing out at this point that although the
second-order optimal signalling directions do not conform to
the first-order ones for any Mε, in practice these directions can
be quite close. The reason for that can be seen by applying the
result in [24, Example 7.4.13] to the objective in (22). That re-
sult implies that the eigen basis of Q that maximizes Tr(XQ)
(in the first order approximation), and at the same time mini-
mizes Tr(XQXQ) (part of the second order approximation),
coincides with the eigen basis of X . Hence, the deviation of
the second-order optimal directions from the first-order ones
is due to the term Tr(R2)

(
Tr(TQ)

)2+2 Tr(TQ)Tr(H̄†RH̄).

VII. NUMERICAL EXAMPLES

In the two numerical examples considered in this section the
channel model is as per (1). In the first example, the number
of transmit and receive antennas is four, and the matrices T, R
and H̄ were chosen at random such that Tr(T ) = Tr(R) = 1
and ‖H̄‖F = 3.5, and were held fixed while channel re-
alizations were generated according to (1). Figure 2 shows
the ergodic rates that can be achieved by signalling along
the first-order directions and those that can be achieved by
second-order signalling using the algorithm outlined in Sec-
tion VI-B. Recall that optimized signalling along the first-order
directions involves multidimensional stochastic optimization
over the eigenvalues of the covariance matrix [15], whereas
for our second-order design, stochastic optimization is only
required for the optimization of the scalar Mε. As described
in Section VI-B, for any Mε the corresponding second-order
optimal covariance matrix can be generated efficiently using
the technique described in Section VI-B. From Figure 2 it can
be seen that the proposed second-order design can provide a
higher ergodic rate than optimal signalling along the first-order
directions. This confirms the observation made in Section IV
that the optimal signalling basis is power dependent and that
this basis does not necessarily conform to the first-order one.

Although the example in Figure 2 shows an appreciable
difference between the ergodic rates that can be achieved via
(optimal) signalling along the first-order basis and those that
can be achieved via our proposed second-order design, in
many cases this difference is quite small. However, as pointed
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Fig. 2. Comparison between second-order optimal signalling and optimal
signalling along the first-order directions.

out earlier, one of the key features of the proposed design
is that it enables us to obtain input covariance matrices that
achieve ergodic rates that exceed those that can be obtained
via significantly more computationally demanding approaches.

In order to compare the achievable ergodic rate of the
proposed signalling strategy with that of other strategies, we
consider a second example in which the number of transmit
and receive antennas is six, and the matrices T, R and H̄
are randomly generated with Tr(T ) = Tr(R) = 1 but
‖H̄‖F = 0.77. The matrices T, R and H̄ were held fixed
while channel realizations were generated according to (1).
For this setup Figure 3 compares the ergodic rates that can be
achieved by the following signalling strategies:

1) Uniform power loading [23]: In this technique the trans-
mitter ignores the available CSI and transmits isotropi-
cally; i.e., it transmits in all directions with equal power.

2) Mean-optimal signalling [23]: The transmitter ignores
the covariance information, treats the mean, H̄ , as if it
were the true channel, and performs signalling along the
eigen basis of the channel mean and ‘water-fills’ over its
eigenvalues.

3) Covariance-optimal signalling [11]: The transmitter ig-
nores the mean information and transmits along the
eigenvectors of the transmit covariance matrix, T . The
power allocation to those eigenvectors that maximizes
the ergodic rate in (2) is determined via stochastic op-
timization over the eigenvalues of the input covariance
matrix.

4) First-order low-SNR signalling [15]: The transmitter per-
forms low-SNR optimal signalling; a technique which
amounts to beamforming along the principal eigenvector
of X in (4).

5) First-order directions signalling [15]: The transmitter
selects the low-SNR signalling directions, and then per-
forms stochastic optimization to find the power loads
(eigenvalues) that maximize the ergodic rate; cf. (2).

6) Second-order optimal signalling (proposed herein): The
transmitter selects an appropriate value of Mε and solves
the convex optimization problem in (22) using the tech-
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Fig. 3. Comparison between the ergodic rates of Strategies 1–8. An upper bound that corresponds to perfect (instantaneous) CSI at the transmitter is also
shown.

nique proposed in Section VI-B. Recall that finding an
appropriate value of Mε is much less involved than
stochastically optimizing M eigenvalues.

7) Second-order signalling directions: In a fashion similar to
Strategy 5, the transmitter signals along the eigen basis
of the input covariance matrix obtained in Strategy 6,
but the eigenvalues are stochastically optimized so as to
maximize the ergodic capacity; cf. (2).

8) Capacity-achieving signalling: In this technique, the
optimal-input covariance is generated using the fixed-
point iteration algorithm provided in [27].5 The expec-
tation in each iteration of this algorithm is evaluated
numerically using Monte-Carlo integration.

In order to set a benchmark for our comparisons, Figure 3
includes the upper bound on the ergodic capacity that corre-
sponds to perfect (instantaneous) transmitter CSI is available.

In Figure 3, it can be seen that for the instance considered in
this example, the uniform power loading (Strategy 1) performs
rather poorly in comparison with the performance of mean
signalling (Strategy 2) and covariance signalling (Strategy 3).
It can also be seen from this figure that although low-
SNR optimal beamforming (Strategy 4) incurs a considerable
rate loss at moderate-to-high input powers, signalling along
the low-SNR optimal directions (Strategy 5) provides higher
ergodic rates than Strategies 1–4. In addition, it can be seen
that the performance of the proposed second-order design
(Strategy 6) coincides with signalling along the second-order
directions (Strategy 7). Strategies 6 and 7 perform slightly
better than Strategy 5, but this is not clear from the scale
in which the figure is plotted. Using the capacity-achieving
signalling technique in Strategy 8, it can be seen from this
figure that in essence, Strategies 5–7 yield covariance matrices
that perform very closely to the ergodic capacity of the MIMO
system. However, we emphasize that, in comparison with
Strategies 5, 7 and 8, Strategy 6 appears to be a more com-
putationally efficient method for obtaining input covariance
matrices that perform close to the ergodic capacity.

5We would like to thank an anonymous reviewer for bringing this paper to
our attention.

VIII. CONCLUSIONS

We considered rate-efficient signalling over MIMO systems
in which both the channel mean and the Kronecker-structured
covariance are known at the transmitter. By obtaining an
explicit expression for the second-order approximation of the
ergodic capacity, we were able to show that, in contrast to the
case of zero-mean channels, the optimal signalling directions
for a channel with a non-zero mean are power dependent.
After having exposed the inherent convexity of the second-
order approximation, we then used Lagrange duality theory
to devise an efficient technique for obtaining the second-
order optimal input covariance matrix. By adjusting the centre
point in the Taylor expansion that underlies the second-order
approximation, this technique was used to obtain second-order
optimized input covariance matrices at any given SNR. Finally,
we showed, numerically, that the second-order optimized input
covariance is not only easier to design, but that it also provides
higher ergodic rates than other commonly-used signalling
strategies.

APPENDIX A
PROOF OF (9) AND (10)

In order to prove (9), we denote the eigen decomposition
of T 1/2QT 1/2 by UΛU †, and that of R by V ΣV †. We also
note that for any (white) complex Gaussian matrix with zero
mean and i.i.d. entries, and for any deterministic matrices U
and V , we have

Hw
d= V †HwU, (37)

where
d= denotes equality in distribution. Using these obser-

vations, we have

EHw{Tr(AB)}
= EHw

{
Tr

(
R1/2HwT 1/2QT 1/2H†

wRHwT 1/2QH̄†)}
= EHw

{
Tr

(
V Σ1/2HwΛH†

wΣHwT−1/2H̄†)}
= Tr

(
V Σ1/2 EHw

{
HwΛH†

wΣHw

}
T−1/2H̄†). (38)

In order to compute the expectation in (38), we use [Hw]i
to denote the i-th column of Hw and λi to denote the i-th
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diagonal entry of Λ. We now write

EHw

{
HwΛH†

wΣHw

}
=

N∑
i=1

λi EHw

{
[Hw]i[Hw]†iΣ

[
[Hw]1, · · · ,

[Hw]i , · · · , [Hw]N
]}

=
N∑

i=1

λi EHw

{
[Hw]i

[
[Hw]†iΣ[Hw]1, · · · ,

[Hw]†iΣ[Hw]i, · · · , [Hw]†iΣ[Hw]N
]}

.

Observe that, for i 
= j

EHw

{
[Hw]i[Hw]†iΣ[Hw]j

}
= E[Hw]i

{
E[Hw]j

{
[Hw]i[Hw]†iΣ[Hw]j

∣∣∣ [Hw]i
}}

= 0.

(39)

Furthermore,

EHw

{
[Hw]i[Hw]†iΣ[Hw]i

}
(40)

= E[Hw]i

{
N∑

r=1

σr|[Hw]i,r|2
[

[Hw]i,1

...
[Hw ]i,N

]}

=
N∑

r=1

σr E[Hw]i

{[
|[Hw]i,r|2[Hw]i,1, · · · ,

|[Hw]i,r|2[Hw]i,r, · · · , |[Hw]i,r|2[Hw]i,N
]T }

, (41)

where in (41), we have used [Hw]i,r to denote the r-th entry
of [Hw]i. For r 
= p,

E[Hw ]i{|[Hw]i,r|2[Hw]i,p} =

E[Hw]i,r

{
E[Hw]i,p

{|[Hw]i,r|2[Hw]i,p
∣∣∣ [Hw]i,r

}}
= 0.

(42)

Also, using the fact that the real and imaginary components
of [Hw]i,r are Gaussian and independent with zero mean, it
is easy to show that

E[Hw]i{|[Hw]i,r|2[Hw]i,r} = 0. (43)

This completes that proof of the first statement of (9); that
is, the proof that EHw{Tr(AB)} = 0. By interchang-
ing the roles of Hw and H†

w, it immediately follows that
EHw{Tr(AB†)} = 0.

We now prove the statements of (10). Let U1Σ1V
†
1 be the

singular value decomposition of T 1/2QH̄†R1/2. Using (37),
we have

EHw{Tr(BB)}
= EHw

{
Tr

(
R1/2HwU1Σ1V

†
1 HwT 1/2QH̄†)}

= EHw

{
Tr

(
R1/2V1V

†
1 HwU1Σ1V

†
1 HwU1U

†
1T 1/2QH̄†)}

= EHw

{
Tr

(
R1/2V1HwΣ1HwU †

1T 1/2QH̄†)} (44)

= Tr
(
R1/2V1 EHw{HwΣ1Hw}U †

1T 1/2QH̄†). (45)

In order to compute the expectation in (45), we write

EHw{HwΣ1Hw} =
N∑

i=1

σi EHw{[Hw]i[H†
w]†i}. (46)

Now, the (p, q)-th entry of EHw{[Hw]i[H†
w]†i} can be written

as[
EHw{[Hw]i[H†

w]†i}
]
pq

= EHw{[Hw]i,p[Hw]q,i} = 0. (47)

In (47), we use the fact that for p 
= q 
= i, p = q 
= i
p 
= q = i and p = i 
= q, [Hw]i,p and [Hw]q,i are independent
and zero mean. For p = q = i, we use the fact that real
and imaginary parts of [Hw]p,p are zero mean i.i.d. random
variables. This completes the proof of (10).

APPENDIX B
PROOF OF (11) AND (12)

In order to prove (11), we denote the eigen decomposition
of T 1/2QT 1/2 by UΛU † and write

EHw{Tr(AC)}
= EHw

{
Tr

(
R1/2HwT 1/2QT 1/2H†

wR1/2H̄QH̄†)}
= Tr

(
R1/2 EHw{HwΛH†

w}R1/2H̄QH̄†) (48)

= Tr
(
R1/2 EHw

{ N∑
i=1

λi[Hw]i[Hw]†i
}
R1/2H̄QH̄†) (49)

= Tr(TQ)Tr(RH̄QH̄†), (50)

where in (48) we have used (37), in (49) we have denoted
the i-th diagonal entry of Λ by λi, and in (50) we have used
EHw

{
[Hw]i[Hw]†i

}
= IN . Using a similar technique, we can

prove (12). In particular, we denote the eigen decomposition
of T 1/2QH̄†H̄QT 1/2 by WSW † and write

EHw{Tr(B†B)} = Tr(S)Tr(R)

= Tr(T 1/2QH̄†H̄QT 1/2)Tr(R). (51)

APPENDIX C
PROOF OF (13)

In order to derive (13), we again denote the eigen decom-
position of T 1/2QT 1/2 by UΛU †, and that of R by V ΣV †

and use (37) to write

EHw{Tr(A2)}
= EHw

{
Tr

(
V Σ1/2HwΛH†

wΣHwΛH†
wΣ1/2V †)} (52)

= EHw

{
Tr

(
Σ1/2

( N∑
i=1

λi[Hw ]i[Hw ]†i
)

× Σ
( N∑

j=1

λj [Hw ]j [Hw ]†j
)
Σ1/2

)}
(53)

=
N∑

i,j=1

λiλj EHw

{
Tr

(
Σ1/2[Hw ]i[Hw ]†i Σ[Hw ]j [Hw ]†jΣ

1/2)}
(54)

=
N∑

i=1

λ2
i EHw

{
Tr

(
Σ1/2[Hw ]i[Hw]†i Σ[Hw ]i[Hw]†i Σ

1/2)}

+

N∑
i,j=1,i�=j

λiλj EHw

{
Tr

(
Σ1/2[Hw]i[Hw]†i Σ[Hw ]j [Hw]†jΣ

1/2)}
(55)

=

N∑
i=1

λ2
i EHw

{
([Hw]†i Σ[Hw ]i)

2
}

+

N∑
i,j=1,i�=j

λiλj Tr(Σ2), (56)
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where we have used the fact that for i 
= j, [Hw]i
and [Hw]j are independent and identically distributed and

EHw

{
[Hw]i[Hw]†i

}
= IN . Now,

EHw

{
([Hw]†iΣ[Hw]i)2

}
= EHw

{( N∑
r=1

σr

∣∣[Hw]i,r
∣∣2)2}

(57)

=
N∑

r=1

σ2
r EHw

{∣∣[Hw]i,r
∣∣4}

+
N∑

r,s=1
r �=s

σrσs EHw

{∣∣[Hw]i,r
∣∣2 ∣∣[Hw]i,s

∣∣2} (58)

= 2
N∑

r=1

σ2
r +

N∑
r,s=1
r �=s

σrσs = Tr(R2) +
(
Tr(R)

)2
, (59)

where we have denoted the r-th diagonal entry of Σ by
σr. In the first equality of (59), we have used the fact that
|[Hw]i,r

∣∣2 is a Chi-square distributed random variable with
two degrees of freedom, χ2

2(σ), with σ = 1
2 . Substituting

from (59) into (56), we obtain (13).

APPENDIX D
CONVEXITY OF −F IN (22)

For notational convenience we will use s to denote
vec(H̄†RH̄), and t to denote vec(T ). We will also use the
definition of X in (4), and the fact that for any two Hermitian
symmetric positive semidefinite matrices, A and B,

Tr(AB) = Tr(A†B) =
(
vec(A)

)† vec(B) = k, (60)

where k is a non-negative real scalar. Using this observation
the function F can be written as

F =
(
vec(X)

)†
q−βq†

(
Tr(R2)tt† +2ts†+X∗⊗X

)
q, (61)

where q = vec (Q), and (·)∗ denotes complex conjugation.
In deriving (61) we have used the fact [28] that for any
three matrices A, B, and C, vec(ABC) = (CT ⊗A) vec(B).
Observe that 2q†ts†q = q†(ts† + st†)q. Hence, by completing
squares, one can write (61) as

F = α
(
vec(X)

)†
q − βq†

(
Tr(R2)

(
t + 1

2Tr(R2)s
)

× (
t + 1

2 Tr(R2)s
)† − 1

4 Tr(R2)
ss† + X∗ ⊗ X

)
q. (62)

In order to show that the optimization problem in (22) is
convex, we will show that the Hessian of the function −F
is positive semidefinite. Since F is quadratic, we have

∇2
q(−F ) = 2β

(
Tr(R2)

(
t + 1

2 Tr(R2)s
)(

t + 1
2Tr(R2)s

)†
− 1

4Tr(R2)ss
† + X∗ ⊗ X

)
= 2β

(
Tr(R2)

(
t + 1

2 Tr(R2)s
)(

t + 1
2Tr(R2)s

)†
− 1

4Tr(R2) (H̄
T ⊗ H̄†) vec(R)

(
vec(R)

)†(H̄∗ ⊗ H̄)

+
(
Tr(R)

)2(T ∗ ⊗ T ) + Tr(R)(T ∗ ⊗ H̄†H̄

+ H̄T H̄∗ ⊗ T ) + H̄T H̄∗ ⊗ H̄†H̄
)

(63)

= 2β
(
Tr(R2)

(
t + 1

2 Tr(R2)s
)(

t + 1
2Tr(R2)s

)†
+

(
Tr(R)

)2(T ∗ ⊗ T ) + Tr(R)(T ∗ ⊗ H̄†H̄

+ H̄T H̄∗ ⊗ T ) + (H̄T ⊗ H̄†)×(
(IN2 − 1

4Tr(R2) vec(R)
(
vec(R)

)†)(H̄∗ ⊗ H̄)
)
,

(64)

where in (63) we have used the fact that s = vec(H̄†RH̄) =
(H̄T ⊗ H̄†) vec(R), and in (64), we have used the mixed
product rule [28]. In order to show that ∇2

q(−F ) is indeed
positive semidefinite, it is sufficient to show that the minimum
eigenvalue of

(
(IN2 − 1

4 Tr(R2) vec(R)
(
vec(R)

)†)
in (64) is

greater than or equal to zero. Since vec(R)
(
vec(R)

)†
is a

dyadic matrix, we have that

λmin

(
(IN2 − 1

4Tr(R2) vec(R)
(
vec(R)

)†) =

1 − 1
4 Tr(R2)

(
vec(R)

)† vec(R) = 0.75 > 0, (65)

where for a matrix A, we use λmin(A) to denote its mini-
mum eigenvalue. Hence, ∇2

q(−F ) is positive definite, which
establishes the (strict) convexity of −F .

APPENDIX E
PROOF OF LEMMA 1

The proofs of the direct part and the converse of this
lemma are quite similar. We will hence focus on proving the
converse. Assume that UG = UK . Therefore, we can write
UKΛGU †

K = UKΛKU †
KULΛLU †

LUKΛKU †
K , and since K

is non-singular, we have U †
KULΛLU †

LUK = ΛGΛ−2
K . Since

the right hand side of that expression is diagonal, and L has
distinct eigenvalues, it follows from the uniqueness property
of the eigen decomposition [24] that U †

KUL = Π, where Π is a
permutation matrix that is detemined by the order of diagonal
entries of ΛL and ΛGΛ−2

K . This completes the proof of the
lemma.
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realities,” in Space-Time Wireless Systems: From Array Processing to
MIMO Communications (H. Boelcskei, D. Gesbert, C. Papadias, and
A. J. van der Veen, eds.), ch. 8, Cambridge, UK: Cambridge University
Press, 2006.

[18] A. L. Moustakas and S. H. Simon, “On the outage capacity of correlated
multiple-path MIMO channels,” IEEE Trans. Inform. Theory, vol. 53,
pp. 3887–3903, Nov. 2007.

[19] M. Vu and A. Paulraj, “Optimal linear precoders for MIMO wireless
correlated channels with nonzero mean in space-time coded systems,”
IEEE Trans. Signal Processing, vol. 54, pp. 2318–2332, June 2006.

[20] A. Hjørungnes and D. Gesbert, “Precoding of orthogonal space-
time block codes in arbitrarily correlated MIMO channels: Iterative
and closed-form solutions,” IEEE Trans. Wireless Commun., vol. 6,
pp. 1072–1082, Mar. 2007.

[21] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK:
Cambridge University Press, 2004.

[22] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar, Convex Analysis and
Optimization. Nashua, NH: Athena Scientific, 2003.

[23] I. E. Telatar, “Capacity of multiantenna Gaussian channels,” Eur. Trans.
Telecom., vol. 10, pp. 585–595, Nov. 1999.

[24] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, UK:
Cambridge University Press, 1999.

[25] M. Kießling, “Unifying analysis of ergodic MIMO capacity in correlated
Rayleigh fading environment,” Europ. Trans. Telecommun., vol. 16,
pp. 17–35, 2005.

[26] N. Piskunov, Differential and Integral Calculus. Moscow: MIR Press,
1969.

[27] L. W. Hanlen and A. Grant, “Optimal transmit covariance for ergodic
MIMO channels,” 2005. Available at http://arxiv.org/abs/cs/0510060.

[28] A. Graham, Kronecker Products and Matrix Calculus: with Applications.
New York: Elis Horwood Ltd., 1981.

Ramy H. Gohary (M’00) received the B.Sc. (Hons.)
degree in Electronics and Communications Engi-
neering from Assiut University, Egypt in May 1996.
In January 2000, he received the M.Sc. degree
in Communications Engineering from Cairo Uni-
versity, Egypt. He received the Ph.D. degree in
Electrical Engineering from McMaster University,
Ontario, Canada in April 2006. In 2007 he received
the NSERC visiting fellowship award and he is cur-
rently a visiting fellow with the Terrestrial Wireless
Systems Branch, Communications Research Centre,

Industry Canada. His current interests include analysis and design of MIMO
wireless communication systems, applications of optimization techniques in
signal processing, information theoretic aspects of multiuser communication
systems, and applications of iterative detection and decoding techniques in
multiple antenna and multiuser systems.

Tim Davidson (M’96) received the B.Eng. (Hons. I)
degree in Electronic Engineering from the Univer-
sity of Western Australia (UWA), Perth, in 1991 and
the D.Phil. degree in Engineering Science from the
University of Oxford, U.K., in 1995.

He is currently an Associate Professor in the
Department of Electrical and Computer Engineering
at McMaster University, Hamilton, Ontario, Canada,
where he holds the (Tier II) Canada Research Chair
in Communication Systems, and is currently serving
as Acting Director of the School of Computational

Engineering and Science. His research interests lie in the general areas of
communications, signal processing and control. He has held research positions
at the Communications Research Laboratory at McMaster University, the
Adaptive Signal Processing Laboratory at UWA, and the Australian Telecom-
munications Research Institute at Curtin University of Technology, Perth,
Western Australia.

Dr. Davidson was awarded the 1991 J. A. Wood Memorial Prize (for
“the most outstanding [UWA] graduand” in the pure and applied sciences)
and the 1991 Rhodes Scholarship for Western Australia. He is currently
serving as an Associate Editor of the IEEE TRANSACTIONS ON SIGNAL

PROCESSING and as an Editor of the IEEE TRANSACTIONS ON WIRELESS

COMMUNICATIONS. He has also served as an Associate Editor of the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS II, and as a Guest Co-editor of
issues of the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

and the IEEE JOURNAL ON SELECTED TOPICS IN SIGNAL PROCESSING.

Authorized licensed use limited to: McMaster University. Downloaded on July 12,2010 at 06:23:57 UTC from IEEE Xplore.  Restrictions apply. 


