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Geometric Program (GP), and in addition to generating the bounds, the GP also generates the corresponding power loads and
partitions. There are special cases of the general problem that can be precisely formulated in a convex form. In this paper, explicit
convex formulations are given for three such cases, namely, the case of 2 users, the case in which only particular messages are
transmitted (in both of which the SPCGS rate region is the capacity region), and the case in which only the SPCGS sum rate is to
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1. Introduction

Consider a broadcast communication scenario in which a
single transmitter wishes to send a combination of (inde-
pendent) particular messages that are intended for individual
users and a common message that is intended for all users
[1]. Such broadcast systems can be classified according to the
probabilistic model that describes the communication chan-
nels between the transmitter and the receivers. A special class
of broadcast channels is the class of degraded channels, in
which the probabilistic model is such that the signals received
by the users form a Markov chain. Using this Markovian
property, a coding scheme that can attain every point in the
capacity region for this class of channels was developed in
[2]. If, however, the received signals do not form a Markov
chain, the broadcast channel is said to be nondegraded,
and the coding scheme developed in [2] does not apply
directly to this case. Although degraded channels are useful
in modelling single-input single-output broadcast systems,

many practical systems give rise to nondegraded channels,
including those that employ multicarrier transmission [3],
and the class of multiple-input multiple-output (MIMO)
systems [4].

Most of the studies on nondegraded broadcast channels
have focused on scenarios in which only particular messages
are sent to the users [5, 6], and, of late, particular emphasis
has been placed on Gaussian MIMO broadcast channels
[4, 7–12]. For that class of channels, it has been shown
that dirty paper coding [13] with Gaussian signalling can
achieve every point in the capacity region [4]. For general
nondegraded systems with common information, single-
letter characterizations of achievable inner bounds were
obtained in [14, 15], and a single-letter characterization of
an outer bound was obtained in [16].

In this paper, we will focus on a class of nondegraded
broadcast channels that arises in multicarrier transmission
schemes; for example, [3, 17]. In particular, we consider
systems in which a common message and particular messages
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are to be broadcast to K users over N parallel scalar
Gaussian subchannels. In such a system, each component
subchannel is a degraded broadcast channel, but the overall
broadcast channel is not degraded in the general case,
because the ordering of the users in the Markov chain on
each subchannel may be different. When that is the case,
the subchannels are said to be unmatched [17]. As discussed
below, the development of coding schemes for some related
multicarrier broadcast systems has exploited the degraded
nature of each subchannel, and we will do so in the proposed
scheme.

For degraded broadcast channels superposition cod-
ing is an optimal coding scheme [18, 19], and, in fact,
superposition coding can be shown to be equivalent to
dirty paper coding for degraded broadcast channels [10].
The superposition coding scheme divides the transmission
power into partitions, and each partition is used to encode
an incremental message that can be decoded by any user
that observes the signal at, or above, a certain level of
degradation, but cannot be decoded by weaker users. Since
each component subchannel of the parallel scalar Gaussian
channel model is degraded, superposition coding is optimal
for each subchannel, and this observation was used in [17]
to characterize the capacity region of the unmatched 2-
user 2-subchannel scenario with both particular messages
and a common message. For that case, a rather compli-
cated method for obtaining optimal power allocations was
provided in [20]. For the case in which only particular
messages are transmitted to the users, the capacity region for
the unmatched K-user N-subchannel case was characterized
in [21], and methods for obtaining the optimal power
allocations for that case were provided in [21–23].

In this paper, we consider a broadcast system with
N (unmatched) Gaussian subchannels and K users in
which both a common message and particular messages
are transmitted to the users. For this system we provide
a characterization of the rate region that can be achieved
using superposition coding and Gaussian signalling. For
convenience, this region will be referred to as the SPCGS rate
region. This characterization encompasses as special cases
the characterization of the capacity region of the 2-user 2-
subchannel scenario [17], and the characterization of the
capacity region of the K-user N-subchannel scenario with
particular messaging only [21].

Using the characterization developed herein, we express
the boundary points of the SPCGS rate region as the solution
of an optimization problem. Although that optimization
problem is not convex in the general case, we use convex
optimization tools to provide efficiently computable inner
and outer bounds on the SPCGS region. In particular, we
employ (convex) Geometric Programming (GP) techniques
[24, 25] to efficiently compute these bounds, and to generate
the corresponding power loads and partitions. In addition
to the inner and outer bounds for the general case, we will
develop (precise) convex formulations for the optimal power
allocations in two special cases for which the capacity region
is known; namely, the 2-user case with common information
[17], and the case in which only particular messages are
broadcast to K users [21]. (Concurrent with our early work

on this topic [26], geometric programming was used in [23]
to find the optimal power allocation for the case of particular
messaging.) In contrast to the methods proposed in [20, 21],
which are based on a search for Lagrange multipliers, our
formulations for the optimal power allocation for these two
problems are in the form of a geometric program, and hence
are amenable to efficient numerical optimization techniques.
In addition, we will provide a (precise) convex formulation
for the problem of maximizing the SPCGS sum rate in the
general K-user N-subchannel case.

2. The Superposition Coding and Gaussian
Signalling (SPCGS) Rate Region

We consider a broadcast channel with K users and N
unmatched parallel degraded Gaussian subchannels, which is
a common model for multicarrier transmission schemes; for
example, [3]. We will find it convenient to parameterize this
model by normalizing the subchannel gains for each user to
1, and scaling the corresponding noise power by the inverse
of the squared modulus of the gain. (The scaled noise power
will be referred to as the “equivalent noise variance”.) Since
the ordering of the users’ noise powers is not necessarily the
same on each subchannel, the overall broadcast channel is
not degraded in the general case. This situation is depicted
in Figure 1, in which the signal transmitted on the ith
subchannel is denoted by U1

i , the signal received by User k
on the ith subchannel is denoted byWk

i , and the (equivalent)
noise variance on the ith subchannel at the �th degradation
level by N�

i . The signal U�
i is the auxiliary signal on the ith

subchannel that corresponds to the �th degradation level.
The role of these auxiliary signals will become clear as we
discuss the achievability of the superposition coding rate
region.

To simplify the description of that characterization, we
first establish some notation. Let πi(k) denote the level of
degradation of User k on the ith subchannel. Using this
notation, if the received signal of User k1, Wk1

i , is the
strongest signal on the ith subchannel then πi(k1) = 1, and
if the received signal of User k2, Wk2

i , is the weakest signal
on this subchannel, then πi(k2) = K . Let the power assigned
to the ith subchannel be denoted by Pi, where

∑N
i=1 Pi ≤ P0,

and P0 is the total power budget. Furthermore, denote the

power partitions on the ith subchannel by {α�i }
K
�=1, where

∑K
�=1 α

�
i = 1. Using these partitions, the power assigned to

each auxiliary signal U�
i in Figure 1 is given by

∑K
r=� α

r
i Pi,

where αri corresponds to the partition on the ith subchannel
at the rth degradation level. As mentioned above, we will
denote the equivalent noise variance on the ith subchannel
at the �th level of degradation by N�

i , and hence 0 ≤ N1
i ≤

· · · ≤ NK
i . We will also use the standard notation C(x) to

denote (1/2) log(1 + x).
We will use R0 to denote the rate of the common

message to all users, and Rk to denote the rate of the
particular message to User k. (For simplicity, we will use
the natural logarithm throughout this paper, and hence rates
are measured in nats per (real) channel use.) Using these
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notations, we can now express the rate that is achievable via
superposition coding and Gaussian signalling (SPCGS) for
a broadcast system with K users and N parallel Gaussian
subchannels. This is a generalization of the characterization
in [17] for the system with K = N = 2.

Proposition 1. Let P = {Pi}Ni=1 denote a power allocation, and

let α = {α�i }
N ,K
i,�=1 denote a set of power partitions. Let R(P,α) =

(R0,R1, . . . ,RK ) be the set of rate vectors that satisfy

R0 ≤ min
k

N∑

i=1

C

(
αKi Pi

Nπi(k)
i +

∑K−1
�=1 α

�
i Pi

)

, (1a)

R0 + Rk

≤
N∑

i=1

C

⎛

⎝

∑K
�=πi(k) α

�
i Pi

Nπi(k)
i +

∑πi(k)−1
�=1 α�i Pi

⎞

⎠, k = 1, . . . ,K ,
(1b)

R0 +
L∑

�=1

Rk�

≤
N∑

i=1

C

⎛

⎝

∑K
�=πi(k1) α

�
i Pi

Nπi(k1)
i +

∑πi(k1)−1
�=1 α�i Pi

⎞

⎠

+
N∑

i=1

∑

{k∈{k2,...,kL}|
πi(k)<πi(k1)}

C

⎛

⎜
⎝

∑m
πi(k)
i (k1,...,kL)−1

t=πi(k) αtiPi

Nπi(k)
i +

∑πi(k)−1
r=1 αri Pi

⎞

⎟
⎠,

m�
i (k1, . . . , kL) = min

k∈{k1,...,kL}
{πi(k) > �},

L ∈ {2, . . . ,K}, ∀(k1, . . . , kL) ⊆ {1, . . . ,K}.

(1c)

Then the set of all rate vectors (R0,R1, . . . ,RK ) that are
achievable using superposition coding and Gaussian signalling
over the N parallel scalar Gaussian subchannels depicted in
Figure 1 is given by

⋃

P∈P , α∈A

R(P,α), (2)

where

P =
⎧
⎨

⎩
P |

N∑

i=1

Pi ≤ P0, Pi ≥ 0, i = 1, . . . ,N

⎫
⎬

⎭
, (3)

A =
⎧
⎨

⎩
α |

K∑

�=1

α�i = 1, α�i ≥ 0, i = 1, . . . ,N , � = 1, . . . ,K

⎫
⎬

⎭
.

(4)

Proof. For a given power allocation P and a given set of
power partitions α the region bounded by the constraints in
(1a)–(1c) is the region of rates achievable by superposition
coding and Gaussian signalling (SPCGS). To show that, we
first observe that each subchannel is a degraded broadcast
channel. On subchannel i, a composite signal of power Pi

is transmitted, and this signal is synthesized from Gaussian
component signals that are superimposed on each other

using the power partitions {α�i }
K
�=1. The rates that can be

achieved by that scheme on subchanel i are well known;
see, for example, [27]. The rate region in (1a)–(1c) is then
obtained by using the Kth power partitions to (jointly)
encode the common message across the N subchannels, and
the other partitions to encode the particular messages. The
SPCGS achievable region is then the union of all such regions
over all power allocations satisfying the power constraint and
all valid power partitions.

More details regarding the way in which the Gaussian
signals are constructed are provided in the following remark.

Remark 1. Assume that the values of {Pi} and {α�i } are fixed
and that these values satisfy (3) and (4), respectively. In
the following remarks, we refer to the signals illustrated in
Figure 1.

(i) For subchannel i, and degradation level �, U�
i is

an auxiliary Gaussian signal that is constructed by
superimposing an incremental Gaussian signal on
U�+1
i . Being Gaussian and independent of the noise,

this incremental signal contributes additively to the
total noise plus interference power observed by any
user attempting to decode the signal Ur

i with r > l
[2].

(ii) The common message to all users is encoded
using a single Gaussian codebook, and this message

is embedded in the signals {UK
i }

N
i=1. The power

assigned to these signals is {αKi Pi}
N
i=1, and the aggre-

gate mutual information that User k gathers about

these signals is
∑N

i=1 C(αKi Pi/(N
πi(k)
i +

∑K−1
�=1 α

�
i Pi)).

For User k to be able to decode the common message,
the rate of this message must be less than the
aggregate mutual information, and conversely, all
users whose aggregate mutual information is greater
than this rate will be able to be reliably decodable the
common message. Hence, for the common message
to reliably decodable by all users, the rate at which
this message is transmitted must be less than the
aggregate information of the weakest user. Therefore,
the rate of the common message is limited by the
constraint in (1a).

(iii) The particular and common messages that are
intended for any User k are embedded in the signals

{Uπi(k)
i }Ni=1. The respective powers of these signals are

{∑K
r=πi(k) α

r
i Pi}

N

i=1
. For these messages to be reliably

decodable, the sum of the rates of these messages
must be less than the aggregate mutual information

that this user gathers about {Uπi(k)
i }Ni=1. This leads to

the set of constraints in (1b).

(iv) Consider a specific user, say User k1, in the subset
of L users {k1, . . . , kL}. As in (1b), the sum of
the rates of the messages that are intended for
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Figure 1: The product of N unmatched parallel degraded broadcast subchannels with K users.

User k1 is bounded by
∑N

i=1 C(
∑K

�=πi(k) α
�
i Pi/(N

πi(k)
i +

∑πi(k)−1
�=1 α�i Pi)); compare with the first term in (1c).

On the ith subchannel, the degradation level of User
k1 is πi(k1). Now if the sum of the rates intended for
User k1 is such that the ith term in the summation in
(1b) is satisfied with equality, the other users in the
subset {k2, . . . , kL} whose degradation level is above
that of User k1 (i.e., their degradation level is less
than πi(k1)) can still reliably decode messages that

are embedded in {Uπi(k)
i }k∈{k2,...,kL},πi(k)<πi(k1). Hence,

the sum of the rates of these messages that can
be achieved by superposition coding and Gaussian
signalling is bounded by the second term in (1c). This
holds for all permutations of users, that is, for all
choices of k1 in {k1, . . . , kL}.

Before proceeding to particular instances of Propo
sition 1, we make the following remark regarding the number
of inequalities required to characterize the SPCGS rate region
of a general broadcast channel with N parallel Gaussian
scalar subchannels and K users.

Remark 2. In the general case, the number of inequalities
that are required to characterize the (K + 1)-dimensional
SPCGS rate region in Proposition 1 is independent of the
number of subchannels and is given by

K + K +
K∑

L=2

L

⎛

⎝
K

L

⎞

⎠ = K
(

2K−1 + 1
)

, (5)

where the first term is the number of inequalities that are
required to account for the achievable rate of the common
message, and the second and third terms are the maximum
number of inequalities that are required toaccount for partial

sums of the achievable rates of the particular messages in the
presence of a common message.

In contrast with the exponential number of inequalities
in (5), the number of inequalities that are required to
characterize the capacity region when no common message
is transmitted is equal to K [21].

Although Proposition 1 provides a unified framework
that allows us to describe the set of rates that can be achieved
by superposition coding and Gaussian signalling for an
arbitrary set of degradation orderings of the users on each
subchannel, for some orderings some of the bounds given
in Proposition 1 will be redundant, and significantly simpler
expressions can be obtained by removing this redundancy.
For example, for the 2-user 2-subchannel case, for which
the SPCGS rate region is the capacity region [17, 28], direct
substitution in Proposition 1 and simple manipulation of the
resulting inequalities shows that for matched subchannels,
the description of the region in Proposition 1 can be reduced
to the two inequalities in [28]. For unmatched subchannels,
the description in Proposition 1 yields the six inequalities in
[17, Theorem 2].

That Proposition 1 coincides with [17, Theorem 2] in
the special case of 2 subchannels and 2 users is not
surprising because the underlying principles used in the
derivation of these results are similar. However, in order to
demonstrate some of the difficulties that arise in generalizing
from 2-user to K-user scenarios, we now discuss a slightly
more complicated example than the 2-user 2-subchannel
one, namely, the 3-user 2-subchannel scenario depicted in
Figure 2. For this situation we have π1 = (1, 2, 3) and
π2 = (3, 2, 1). By substituting these values of π1 and π2 into
Proposition 1, we obtain the following corollary.

Corollary 1 (K = 3, N = 2; π1 = (1, 2, 3), π2 = (3, 2, 1)).
Let P = {Pi}2

i=1 denote a power allocation, and let
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α = {α�i }
2,3
i,�=1 denote a set of power partitions. Let R(P,α) =

(R0,R1,R2,R3) be the set of rate vectors that satisfy

R0 ≤ min
k

{

C

(
α3

1P1

Nπ1(k)
1 +

(
α2

1 + α1
1

)
P1

)

+C

(
α3

2P2

Nπ2(k)
2 +

(
α2

2 + α1
2

)
P2

)}

,

(6a)

R0 + R1 ≤ C

(
P1

N1
1

)

+ C

(
α3

2P2

N3
2 +

(
α2

2 + α1
2

)
P2

)

,

(6b)

R0 + R2 ≤ C

⎛

⎝

(
α2

1 + α3
1

)
P1

N2
1 + α1

1P1

⎞

⎠ + C

⎛

⎝

(
α2

2 + α3
2

)
P2

N2
2 + α1

2P2

⎞

⎠,

(6c)

R0 + R3 ≤ C

(
α3

1P1

N3
1 +

(
α2

1 + α1
1

)
P1

)

+ C

(
P2

N1
2

)

,

(6d)

R0 + R1 + R2 ≤ C

(
P1

N1
1

)

+ C

(
α3

2P2

N3
2 +

(
α2

2 + α1
2

)
P2

)

+ C

(
α2

2P2

N2
2 + α1

2P2

)

,

(6e)

R0 + R1 + R2 ≤ C

⎛

⎝

(
α2

1 + α3
1

)
P1

N2
1 + α1

1P1

⎞

⎠ + C

(
α1

1P1

N1
1

)

+ C

⎛

⎝

(
α2

2 + α3
2

)
P2

N2
2 + α1

2P2

⎞

⎠,

(6f)

R0 + R1 + R3 ≤ C

(
P1

N1
1

)

+ C

(
α3

2P2

N3
2 +

(
α2

2 + α1
2

)
P2

)

+ C

((
α2

2 + α1
2

)
P2

N1
2

)

,

(6g)

R0 + R1 + R3 ≤ C

(
α3

1P1

N3
1 +

(
α2

1 + α1
1

)
P1

)

+ C

(
P2

N1
2

)

+ C

((
α2

1 + α1
1

)
P1

N1
1

)

,

(6h)

R0 + R2 + R3 ≤ C

⎛

⎝

(
α2

1 + α3
1

)
P1

N2
1 + α1

1P1

⎞

⎠ + C

⎛

⎝

(
α2

2 + α3
2

)
P2

N2
2 + α1

2P2

⎞

⎠

+ C

(
α1

2P2

N1
2

)

, (6i)

R0 + R2 + R3 ≤ C

(
α3

1P1

N3
1 +

(
α2

1 + α1
1

)
P1

)

(6j)

+ C

(
α2

1P1

N2
1 + α1

1P1

)

+ C

(
P2

N1
2

)

, (6k)

R0 + R1 + R2 + R3 ≤ C

(
P1

N1
1

)

+ C

(
α1

2P2

N1
2

)

+ C

(
α3

2P2

N3
2 +
(
α2

2 +α1
2

)
P2

)

+C

(
α2

2P2

N2
2 +α1

2P2

)

,

(6l)

R0 + R1 + R2 + R3 ≤ C

⎛

⎝

(
α2

1 + α3
1

)
P1

N2
1 + α1

1P1

⎞

⎠ + C

(
α1

1P1

N1
1

)

+ C

⎛

⎝

(
α2

2 + α3
2

)
P2

N2
2 + α1

2P2

⎞

⎠ + C

(
α1

2P2

N1
2

)

,

(6m)

R0 + R1 + R2 + R3 ≤ C

(
P2

N1
2

)

+ C

(
α1

1P1

N1
1

)

+ C

(
α3

1P1

N3
1 +

(
α2

1 + α1
1

)
P1

)

+ C

(
α2

1P1

N2
1 + α1

1P2

)

.

(6n)

Then the set of all rate vectors (R0,R1,R2,R3) that are
achievable using superposition coding and Gaussian signalling
over the 2 parallel scalar Gaussian subchannels depicted in
Figure 2 is given by

⋃

P∈P , α∈A

R(P,α), (7)

where

P =
⎧
⎨

⎩
P |

2∑

i=1

Pi ≤ P0, Pi ≥ 0, i = 1, 2

⎫
⎬

⎭
,

A =
⎧
⎨

⎩
α |

3∑

�=1

α�i = 1, α�i ≥ 0, i = 1, 2, � = 1, . . . , 3

⎫
⎬

⎭
.

(8)

By examining the constraints in Corollary 1, it can be
seen that for the scenario in Figure 2, the constraints in (6g)
and (6h) are redundant. In order to see that, we note that
because N2

2 > N1
2 , the right-hand side (RHS) of (6l) is less

than or equal to the RHS of (6g), and for any R2 > 0, the
left-hand side (LHS) of (6l) is greater than the LHS of (6g).
Hence, the constraint in (6l) is tighter than that in (6g). In
a similar way, one can show that (6n) is tighter than the
constraint in (6h), whence the redundancy of (6h).

Remark 3. In order to assist in the interpretation of
Corollary 1, we now identify the role of each signal.

(i) The signal U3
1 contains common information for all

users, and particular information for User 3.
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(ii) For a fixed value of U3
1, the signal U2

1 contains
particular information for User 2.

(iii) For a fixed value of U2
1 , the signal U1

1 contains
particular information for User 1.

(iv) The signal U3
2 contains common information for all

users, and particular information for User 1.

(v) For a fixed value of U3
2 , the signal U2

2 contains
particular information for User 2.

(vi) For a fixed value of U2
2 , the signal U1

2 contains
particular information for User 3.

Note that, as pointed out in Remark 1, to achieve an
arbitrary rate vector within the SPCGS region, the common
message must be encoded and decoded jointly across the sub-
channels, whereas the particular messages may be encoded
using independent codebooks on each subchanne.

3. Power Loads and Partitions via
Geometric Programming

In Proposition 1 we have provided a set of inequalities
that characterize the SPCGS region. These inequalities are
expressed in terms of the power loads {Pi} and the power
partitions {α�i }. In order to achieve particular points on
the boundary of this region, one can determine the power
loads and partitions that maximize the weighted sum rate for
any given weight vector. However, as shown in (5) and the
discussion thereafter, the number of constraints that charac-
terize the rate region of multicarrier broadcast channels with
common information grows very rapidly with the number
of users. Since it appears to be unlikely that a closed-form
solution for the power allocation problem can be obtained,
it is desirable to develop an efficient numerical technique to
determine the optimal power loads and partitions. Towards
that end, in this section, we formulate the problem of
finding the SPCGS rate region as an optimization problem.
Unfortunately, this formulation is not convex. However, we
will provide two alternative formulations that will be used
in Section 4 to obtain convex formulations for tight inner
and outer bounds on the SPCGS region along with the
corresponding power allocations. In addition, in Section 5,
we will use these formulations to provide precise convex
formulations for three important special cases of the optimal
power allocation problem.

Let μk ∈ [0, 1] be the weight associated with the rate Rk,
k = 0, 1, . . . ,K , where

∑K
k=0 μk = 1. Our goal is to maximize

∑K
k=0 μkRk subject to the constraints of Proposition 1 being

satisfied. That is, we would like to solve

max
K∑

k=0

μkRk

subject to (1)–(4).

(9)

In order to transform the optimization problem in (9) into a
more convenient form, we introduce the change of variables
tk = e2Rk , k = 0, 1, . . . ,K. Furthermore, we will denote α�i Pi

by Q�
i . By observing that the logarithm is a monotonically

increasing function, we can recast (9) as

max
K∏

k=0

t
μk
k

subject to

(10a)

t0

N∏

i=1

⎛

⎝Nπi(k)
i +

K−1∑

�=1

Q�
i

⎞

⎠
(
Nπi(k)
i + Pi

)−1 ≤ 1, k = 1, . . . ,K ,

(10b)

t0tk

N∏

i=1

⎛

⎝Nπi(k)
i +

πi(k)−1∑

�=1

Q�
i

⎞

⎠
(
Nπi(k)
i + Pi

)−1≤1, k = 1, . . . ,K ,

(10c)

t0

L∏

�=1

tk�

N∏

i=1

⎛

⎝Nπi(k1)
i +

πi(k1)−1∑

�=1

Q�
i

⎞

⎠
(
Nπi(k1)
i + Pi

)−1

×
N∏

i=1

∏

{k∈{k2,...,kL}|πi(k)<πi(k1)}

⎛

⎝Nπi(k)
i +

πi(k)−1∑

r=1

Qr
i

⎞

⎠

×

⎛

⎜
⎝Nπi(k)

i +
m
πi(k)
i (k1,...,kL)−1∑

t=1

Qt
i

⎞

⎟
⎠

−1

≤ 1,

m�
i (k1, . . . , kL) = min

k∈{k1,...,kL}
{πi(k) > �}

for L ∈ {2, . . . ,K}, ∀(k1, . . . , kL) ⊆ {1, . . . ,K},

(10d)

∑

i

Pi ≤ P0, Pi ≥ 0, ∀i, tk ≥ 1, k = 0, 1, . . . ,K ,

(10e)

∑

�

Q�
i = Pi, ∀i, Q�

i ≥ 0, ∀i, �. (10f)

The power loads and partitions that correspond to
every point on the boundary of the SPCGS region can
be obtained by varying the weights in (9), which appear
as the exponents in (10a). For instance, the loads and
partitions that correspond to a “fair” rate tuple can be
obtained by maximizing

∏K
k=1t

μk
k for an appropriately chosen

set of weights, subject to the constraints in (10a)–(10f) and,
possibly, a lower bound constraint on t0. A more direct
technique for obtaining “fair” loads and partitions is to
draw insight from [29] and maximize the harmonic mean

of {tk}Kk=1, namely, (
∑K

k=1 t
−1
k )

−1
, subject to the constraints

in (10a)–(10f) and the lower bound constraint on t0 (if it
is imposed). Although we will not pursue that problem in
this paper, its objective, and the additional constraint, can
be written as posynomials (in the sense of [24, 25]), and
the techniques that we will apply to the weighted sum rate
problem can also be applied to the problem of maximizing
the harmonic mean of the rates.

A key step in providing a convenient reformulation of
(10a)–(10f) is the following sequence of substitutions. Let
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Figure 2: The product of 2 unmatched degraded broadcast channels with 3 users.

Δ�i
Δ= NK

i −N�
i , i = 1, . . . ,N , � = 1, . . . ,K − 1. Because each

subchannel is degraded, Δ�i ≥ 0 for all i and �. Let

Si = Pi +NK
i . (11)

Using these new variables we can eliminate {Pi} and write
the constraints in (10a)–(10f) as follows

(10b) through (10d) with Pi replaced by
(
Si−NK

i

)
, (12a)

∑

i

Si ≤ P0 +
∑

i

NK
i , Si ≥ NK

i , ∀i, (12b)

tk ≥ 1, k = 0, . . . ,K ,

Q�
i ≥ 0,

K∑

�=1

Q�
i +NK

i = Si, ∀i, �.
(12c)

Using (12a)–(12c), we will develop, below, two alternative
formulations of (10a)–(10f), each of which will be used in
Section 4 to develop a certain outer bound. Before we do

so, let us bound the terms of the form (Si − Δ�i )
−1

by new
variables x�i . Hence, the constraints of the form

f (S,Q)
(
Si − Δ�i

)−1 ≤ 1, (13)

where f (S,Q) is a posynomial (cf. [24, 25]), can be
equivalently expressed as

f (S,Q)x�i ≤ 1,
(
x�i
)−1

+ Δ�i ≤ Si. (14)

Both parts of (14) are in the form of posynomial constraints,
and hence can be easily incorporated into a Geometric
Program (GP) [24, 25].

3.1. Formulation 1. In order to develop a more convenient
formulation, we note that in (12a)–(12c) the only constraint

in which the variables {QK
i }

N
i=1 appear is (12c). Hence, the

set of constraints in (12c) can be written in a GP compatible
form as

K−1∑

�=1

Q�
i +NK

i ≤ Si, i = 1, . . . ,N. (15)

We can now recast the constraints in (12a)–(12c) as

t0

N∏

i=1

⎛

⎝Nπi(k)
i +

K−1∑

�=1

Q�
i

⎞

⎠xπi(k)
i ≤ 1, k = 1, . . . ,K , (16a)

t0tk

N∏

i=1

⎛

⎝Nπi(k)
i +

πi(k)−1∑

�=1

Q�
i

⎞

⎠xπi(k)
i ≤ 1, k = 1, . . . ,K , (16b)

t0

L∏

�=1

tk�

N∏

i=1

⎛

⎝Nπi(k1)
i +

πi(k1)−1∑

�=1

Q�
i

⎞

⎠xπi(k1)
i

×
N∏

i=1

∏

{k∈{k2,...,kL}|πi(k)<πi(k1)}

⎛

⎝Nπi(k)
i +

πi(k)−1∑

r=1

Qr
i

⎞

⎠

×

⎛

⎜
⎝Nπi(k)

i +
m
πi(k)
i (k1,...,kL)−1∑

t=1

Qt
i

⎞

⎟
⎠

−1

≤ 1,

m�
i (k1, . . . , kL) = min

k∈{k1,...,kL}
{πi(k) > �}

for L ∈ {2, . . . ,K}, ∀(k1, . . . , kL) ⊆ {1, . . . ,K},

(16c)

K−1∑

�=1

Q�
i +NK

i ≤ Si, Q�
i ≥ 0, ∀i, �, (16d)

∑

i

Si ≤ P0 +
∑

i

NK
i , Si ≥ NK

i , tk ≥ 1, k = 0, 1, . . . ,K ,

(16e)

(
x�i
)−1

+ Δ�i ≤ Si, x�i ≥ 0, i = 1, . . . ,N , � = 1, . . . ,K.

(16f)

The feasible set for the constraints in (16a)–(16f) is not
convex because of the nonposynomial terms generated by
the inverse of the sum of optimization variables in the right-
hand side of (16c). However, in Section 4, we will show how
the reformulation in (16a)–(16f) can be used to develop an
efficiently computable outer bound on the capacity region.

3.2. Formulation 2. We now provide a different formulation
that will be used to develop another useful outer bound and
an inner bound on the achievable rate region. Consider the
formulation in (12a)–(12c), and let us bound the terms of the
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form (Nπi(k1)
i +

∑πi(k2)−1
t=1 Qt

i)
−1

by new variables y(k1,k2)
i . Using

these bounds, the constraints of the form

g(S,Q)

⎛

⎝Nπi(k1)
i +

πi(k2)−1∑

t=1

Qt
i

⎞

⎠

−1

≤ 1, (17)

where g(S,Q) is a posynomial can be equivalently expressed
as

g(S,Q)y(k1,k2)
i ≤ 1,

(
y(k1,k2)
i

)−1 ≤ Nπi(k1)
i +

πi(k2)−1∑

t=1

Qt
i .

(18)

However,

Nπi(k1)
i +

πi(k2)−1∑

t=1

Qt
i = Si − Δπi(k1)

i −
K∑

πi(k2)

Qt
i . (19)

Therefore, one can write the constraints on the right of (18)
as

(
y(k1,k2)
i

)−1
+ Δπi(k1)

i +
K∑

πi(k2)

Qt
i ≤ Si. (20)

This constraint now is in the form of posynomial, and hence
can be incorporated into a GP. Therefore, we can rewrite the
constraints in (12a)–(12c) as

(16a)-(16b) and (16e)-(16f), (21a)

t0

L∏

�=1

tk�

N∏

i=1

⎛

⎝Nπi(k1)
i +

πi(k1)−1∑

�=1

Q�
i

⎞

⎠xπi(k1)
i

×
N∏

i=1

∏

{k∈{k2,...,kL}|πi(k)<πi(k1)}

×
⎛

⎝Nπi(k)
i +

πi(k)−1∑

r=1

Qr
i

⎞

⎠y
(�,m

πi(k)
i (k1,...,kL))

i ≤ 1,

for L ∈ {2, . . . ,K}, ∀(k1, . . . , kL) ⊆ {1, . . . ,K},

(21b)

(
y(k1,k2)
i

)−1
+ Δπi(k1)

i +
K∑

πi(k2)

Qt
i ≤ Si, y(k1,k2)

i ≥ 0,

i = 1, . . . ,N , k1, k2 = 1, . . . ,K ,

(21c)

∑

�

Q�
i +NK

i = Si, i = 1, . . . ,N. (21d)

By examining the constraints in (21a)–(21d), it can be
seen that all the constraints are in the form of posynomial
inequalities except for the constraint in (21d). Because
of this posynomial equality constraint, the formulation in
(21a)–(21d) is not a geometric program. However, there
are important instances in which the boundary of the rate
region and the corresponding power loads and partitions
can be formulated in the form of a geometric program;

namely, the unmatched two user case and the case in which
only independent information is transmitted to the K users.
In Section 5 we will provide convex formulations for these
cases. In Section 5 we will also provide a convex formulation
for obtaining the power loads and partitions that maximize
the SPCGS sum rate. In the next section we will develop inner
and outer bounds for the rate region that can be achieved by
superposition coding and Gaussian signalling.

4. Outer and Inner Bounds on
the SPCGS Region

In this section, we use the formulations in (16a)–(16f) and
(21a)–(21d) to develop tight inner and outer bounds on the
SPCGS rate region.

4.1. Outer Bounds

4.1.1. An Outer Bound Based on Formulation 1. The formula-
tion in (16a)–(16f) is not convex due to the terms of the form

(Nπi(k)
i +

∑m
πi(k)
i (k1,...,kL)−1

t=1 Qt
i)
−1

in (16c). In order to derive an
outer bound on the rate region, we use the transformation

V�
i = N1

i +
∑�

j=1 Q
j
i . By invoking this transformation in

the formulation in (16a)–(16f), one can verify that for each
constraint of the nonposynomial form in (16c), an inverse
term appears in one of the constraints in (16a). We can
multiply each constraint that contains an offending term
in the denominator by the corresponding constraints that
contain the same term but in the numerator. By doing so
we develop new constraints that do not contain offending
terms. These new constraints are obviously a relaxation of
the original constraints and hence lead to an outer bound
on the SPCGS rate region. Indeed, the rates yielded by the
relaxed constraints are not necessarily decodable by the users,
even though the power allocations and partitions satisfy
their respective constraints. However, these new constraints
are posynomial constraints that can be used to replace
the nonposynomial ones. As a result, the outer bound
can be efficiently computed via geometric programming
techniques. If any constraint that contains the offending
term in the numerator is active, the relaxed constraint will
(precisely) enforce the original nonposynomial constraint.

4.1.2. An Outer Bound Based on Formulation 2. In order
to develop an alternative outer bound, we recall that the
nonconvexity of the formulation in (21a)–(21d) arises from
the posynomial equality constraint in (21d). An outer bound
can therefore be obtained by relaxing this constraint. In
particular, for all i ∈ {1, . . . ,N} we replace the ith constraint
in (21d) by

K∑

�=1

Q�
i +NK

i ≤ Si. (22)

This relaxation may yield power partitions that do not add
up to unity, and hence the generated rates are not necessarily
decodable by the users. However, this constraint is in a GP-
compatible posynomial inequality form and therefore can be
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used to develop an efficiently computable outer bound on the
SPCGS region.

4.2. An Inner Bound. The fact that the relaxation in
Section 4.1.2 leads to an outer bound can be verified by
observing that if (22) is satisfied with strict inequality, the
corresponding rate tuple might not be achievable because
the set {α�i } does not necessarily represent a set of feasible
power partitions. On the other hand, any rate tuple for
which the corresponding set {α�i } satisfies

∑
� α

�
i = 1 is

achievable, and the set of such rate tuples forms an inner
bound on the SPCGS rate region. In order to efficiently
determine valid power partitions (that satisfy

∑
� α

�
i = 1)

that yield (achievable) rates that are close to the boundary
of the SPCGS region, we will consider an auxiliary problem
in which we fix the value of the weighted sum rate and search
for a valid power partitioning that achieves this weighted sum
rate. One formulation of the auxiliary problem is as follows.
Let log(Z) denote twice the weighted sum rate. For a fixed
value of Z, solve

max
∑

i,�

Q�
i

subject to

(23a)

the posynomial inequality constraints in (21a)–(21c),
(23b)

∑

�

Q�
i +N3

i ≤ Si, (23c)

K∏

k=0

t
μk
k = Z. (23d)

For the given value of Z, if the solution of (23a)–(23d)
satisfies (23c) with equality, the corresponding solution
represents a valid power partitioning and this value of Z
corresponds to twice a weighted sum of achievable rates.
However, if the solution does not satisfy (23c) with equality,
this value of Z corresponds to rates outside the SPCGS
rate region. Hence, our goal is to find the maximum value
of Z for which the solution of (23a)–(23d) satisfies (23c)
with equality. In order to do that, we require a method for
choosing the value of Z and a technique for solving (23a)–
(23d) in an efficient manner.

In order to select appropriate values for Z we observe that
the optimal value of Z is a monotonically increasing function
of the total power budget, P0. In order to show that, we note

that Z = e2
∑K
k=1 μkRk is a monotonically increasing function

of each of the rates {Rk}. For any valid power partition, each
rate Rk is the sum of terms of the form log((aiPi+N�

i )/(biPi+

N�
i )), where ai ≥ bi. Now, (∂Rk/∂Pi) = (ai − bi)N

j
i /(aiPi +

N
j
i )(biPi + N

j
i ) > 0, which implies that the each rate is

monotonically increasing in the total power budget, P0. Now
for any valid power allocation that corresponds to a point on
the boundary of the SPCGS rate region we have

∑
i,� Q

�
i = P0.

Hence, if we assume that the optimization in (23a)–(23d) can
be solved exactly, one can perform bisection search over Z to

find the largest value of Z for which the power partitions that
maximize the objective in (23a)–(23d) satisfy

∑
i,� Q

�
i = P0.

Note that in order to determine a search interval for the
bisection technique, one may solve the relaxed problem in
Section 3.2. Now, if f �u is the optimum value of the relaxed
problem, then the optimal feasible value of Z for (23a)–(23d)
must lie in the interval [0, f �u ].

We now consider solving (23a)–(23d). Observe that
although all the constraints in (23a)–(23d) are GP com-
patible, the objective is not GP compatible. One way to
find an inner bound is to use a monomial to approximate
the objective in (23a)–(23d). This approximation results
in a geometric program that can be efficiently solved. An
inner bound can then be found by using the bisection
technique described above to find the largest value of Z
for which maximizing the approximated objective yields a
valid power allocation. By varying the monomial used to
approximate the objective, one obtains a family of inner
bounds. Of course, it is desirable to find the outermost
inner bound. An efficient technique for doing so is to
employ Signomial Programming (SP) [25]. In this technique,
the objective is iteratively approximated by the best fitting
monomial in the neighbourhood of the current iterate. Since
all the constraints in (23a)–(23d) are GP compatible, each
iteration in the signomial programming technique involves
the solution of a geometric program, and because the
objective is the only expression in (23a)–(23d) that is not
GP compatible, signomial programming is likely to provide
solutions that are close to optimal [24, 25]. In fact, our
numerical experiments show that for the scenarios in which
the capacity region can be computed exactly, the region
generated by the proposed algorithm almost coincides with
the capacity region; see Figure 5.

For completeness, we now describe the proposed algo-
rithm in more detail. In signomial programming, the
set {Q�

i } is initialized by arbitrary values that satisfy the
constraints in (23a)–(23d). We then find the best fitting
monomial for

∑
i,� Q

�
i in the neighbourhood of the initial

values of {Q�
i } using the Taylor expansion in the logarithmic

domain. This monomial takes the form
∏

i,�(Q
�
i )
γ(0)
i� . Using

this approximation, we solve the following geometric pro-
gram:

max
∏

i,�

(
Q�
i

)γ(0)
i�

subject to (23b)–(23d).

(24)

By solving this geometric program, we obtain a new set {Q�
i }.

This set is used to generate a new set of exponents {γ(1)
i� }.

(For the current objective, the exponents that correspond to
the best fitting monomial at the rth iteration are given by

γ(r)
i� = β(r−1)(Q�

i )
(r−1)

where β(r−1) is a positive scalar that is

a function of all {(Q�
i )

(r−1)}i,� . Being positive and common
to all exponents, β(r−1) can be dropped from the formulation
of the optimization program in (24).) We continue to iterate
in this manner until either the inequality constraint in (23c)

is satisfied with equality or the sequence of sets {γ(r)
i� }r
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converges without (23c) being satisfied with equality. In the
former case, the SP approach has generated a solution to
(23a)–(23d) that satisfies (23c) with equality. Hence, the
current value of Z corresponds to twice the weighted sum
rate of an achievable rate tuple, and the next step is to use
the bisection rule to increase the value of Z and solve (23a)–
(23d) again. In the latter case, the SP approach has been
unable to find a solution to (9) that satisfies (23c) with
equality. While this does not necessarily mean that such a
solution does not exist, we adopt the conservative approach
and use the bisection rule to reduce Z and solve (23a)–
(23d) again. This conservative approach is the reason why
our approach generates an inner bound on the SPCGS rate
region rather than the SPCGS rate region itself, but it is also
the key to the computational efficiency of the algorithm.

5. Exact Convex Formulations—Special Cases

In the previous section we considered a general Gaussian
broadcast channel with N parallel subchannels and K users,
and we showed how to derive convex formulations for inner
and outer bounds on the SPCGS rate region. In this section
we provide exact convex formulations for three particular
instances of the general problem, namely, the 2-user case and
the case of K users with (independent) particular messages
only, and the SPCGS sum rate point of the general K-
user N-subchannel case. (For the first two cases, the SPCGS
rate region is known to be the capacity region [17, 21].)
Using these convex formulations, optimal power loads and
partitions for these three cases can be obtained using efficient
interior point techniques.

5.1. Optimal Power Allocation for the 2-User Case. For this
case, the capacity region was shown in [17] to be the
same as the SPCGS rate region. Similar to the general case
considered in Proposition 1, the boundary of the 2-user
SPCGS rate region is parameterized by power loads and
partitions. Although the optimal values of these parameters
can be determined using the indirect Lagrange multiplier
search technique provided in [20], in this section we provide
a (precise) convex formulation that enables us to determine
those loads and partitions directly, and in a computationally
efficient manner.

Recall that in our notation the degradedness condition
on each subchannel implies that N2

i ≥ N1
i . Let χk , k = 1, 2,

be the set of subchannels on which User k is the stronger user.
Using Proposition 1 and the logarithmic substitutions: R0 =
(1/2) log(t0), R1 = (1/2) log(t1) and R2 = (1/2) log(t2), we
formulate the weighted sum rate optimization problem as

max
2∏

k=0

t
μk
k

subject to

t0 ≤
∏

i∈χ1

N1
i + Pi

N1
i +Qi

∏

i∈χ2

N2
i + Pi

N2
i +Qi

,

t0 ≤
∏

i∈χ1

N2
i + Pi

N2
i +Qi

∏

i∈χ2

N1
i + Pi

N1
i +Qi

,

t0t1 ≤
∏

i∈χ1

N1
i + Pi
N1
i

∏

i∈χ2

N2
i + Pi

N2
i +Qi

,

t0t2 ≤
∏

i∈χ1

N2
i + Pi

N2
i +Qi

∏

i∈χ2

N1
i + Pi
N1
i

,

t0t1t2 ≤
∏

i∈χ1

N1
i + Pi
N1
i

∏

i∈χ2

N2
i + Pi

N2
i +Qi

N1
i +Qi

N1
i

,

t0t1t2 ≤
∏

i∈χ1

N2
i + Pi

N2
i +Qi

N1
i +Qi

N1
i

∏

i∈χ2

N1
i + Pi
N1
i

,

N∑

i=1

Pi ≤ P0,

0 ≤ Qi ≤ Pi, i = 1, . . . ,N , tk ≥ 1, k = 0, . . . , 2,

(25)

where Qi = αiPi, and αi is the power partition associated
with the stronger user on the ith subchannel. In order to
transform this optimization problem into a convex form, we
perform the variable substitutions

Si = N2
i + Pi, Ti = N1

i +Qi, (26)

and Δi = N2
i − N1

i . Using these variable substitutions, and
the equivalent constraints in (14), the optimization problem
in (25) can be reformulated as

max
2∏

k=0

t
μk
k

subject to

t0
∏

i∈χ1

Tixi
∏

i∈χ2

(Ti + Δi)S−1
i ≤ 1,

t0
∏

i∈χ1

(Ti + Δi)S−1
i

∏

i∈χ2

Tixi ≤ 1,

t0t1
∏

i∈χ1

N1
i xi
∏

i∈χ2

(Ti + Δi)S−1
i ≤ 1,

t0t2
∏

i∈χ1

(Ti + Δi)S−1
i

∏

i∈χ2

N1
i xi ≤ 1,

t0t1t2
∏

i∈χ1

N1
i xi
∏

i∈χ2

N1
i (Ti + Δi)S−1

i T−1
i ≤ 1,

t0t1t2
∏

i∈χ1

N1
i (Ti + Δi)S−1

i T−1
i

∏

i∈χ2

N1
i xi ≤ 1,

x−1
i + Δi ≤ Si, i = 1, . . . ,N ,

N∑

i=1

Si ≤ P0 +
N∑

i=1

N2
i ,

Ti ≥ N1
i , Ti + Δi ≤ Si,

tk ≥ 1, k = 0, . . . , 2.

(27)

The formulation in (27) is in the form of a convex geometric
program and the optimal values of Ti and Si, i = 1, . . . ,N ,
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can be efficiently found. Once Ti and Si have been computed,
one can use (26) to find the power loads {Pi} and the power
partitions {αi = Qi/Pi}.

5.2. Optimal Power Allocation for the Broadcast of Particular
Information to K users. The capacity region for the case in
which only particular information is to be transmitted to K
users over N parallel channels was considered in [21–23]. In
[21] the concept of utility functions was introduced. Using
the properties of these functions and a search for a Lagrange
multiplier, optimal power loads and power partitions were
determined algebraically. In this section we will present an
alternative efficient numerical technique for determining
these loads and partitions through the solution of a convex
optimization problem. (This technique is similar to that
presented in [23] and was developed independently.) Using
our notation for the rate of particular information of User k,
Rk, the capacity region is the closure of all points of the form
[21]

Rk ≤
N∑

i=1

log

(

1 +
απi(k)
i Pi

Nπi(k)
i +

∑πi(k)−1
�=1 α�i Pi

)

, (28)

where k = 1, . . . ,K , i = 1, . . . ,N ,
∑K

�=1 α
�
i = 1, and

∑N
i=1 Pi ≤ P0. In order to simplify the notation, we will use

Q�
i to denote α�i Pi and (1/2) log(tk) to denote Rk. Finding

each point on the boundary of the capacity region and the
corresponding power loads and partitions is equivalent to
solving the following optimization problem for a given set
of weights {μk}Kk=1 that satisfy

∑K
k=1 μk = 1:

max
K∏

k=1

t
μk
k

subject to

(29a)

tk

N∏

i=1

⎛

⎝Nπi(k)
i +

πi(k)−1∑

�=1

Q�
i

⎞

⎠

⎛

⎝Nπi(k)
i +

πi(k)∑

�=1

Q�
i

⎞

⎠

−1

≤ 1, k = 1, . . . ,K ,

(29b)

K∑

�=1

Q�
i = Pi, i = 1, . . . ,N , (29c)

N∑

i=1

Pi ≤ P0, (29d)

Q�
i ≥ 0, ∀i, �, tk ≥ 1, k = 1, . . . ,K. (29e)

In its current form, the formulation in (29a)–(29e) is not
convex. The key to casting (29a)–(29e) in a convex form is
the change of variables

T�
i = N�

i +
�∑

r=1

Qr
i . (30)

To begin with, we note that this substitution is one-to-one.
That is, once the problem is solved in terms of the variables

{T�
i }, one can readily obtain the required power partitions

{Q�
i }. We now examine the constraints in (29a)–(29e). The

set of constraints in (29b) can be rewritten as

tk

N∏

i=1

(
Tπi(k)
i

)−1((
Nπi(k)
i −Nπi(k)−1

i

)
+ Tπi(k)−1

i

)
≤ 1. (31)

Observe that because each subchannel is degraded, the

constant (N
πj (i)
j − N

πj (i)−1
j ) is greater than or equal to zero.

Hence, (31) is in the form of a posynomial constraint, and
can be easily incorporated in a geometric program. In order
to account for the constraints (29c), (29d), and (29e), we
observe that from (30) we have

T�
i − T�−1

i = N�
i −N�−1

i +Q�
i , (32)

where we will use the convention that T0
i = 0. The set of

constraints in (29e) can now be expressed as

T�
i ≥ T�−1

i +N�
i −N�−1

i , ∀i, �. (33)

This constraint is also in a posynomial format. Finally, we
observe that the constraints in (29c) and (29d) can be merged
together. In particular, the variables {Pi} can be eliminated.
Using (30), this will lead to the following constraint:

N∑

i=1

TK
i ≤ P0 +

N∑

i=1

NK
i . (34)

Using these transformations, the weighted sum rate opti-
mization problem in (29a)–(29e) can be recast in the
following convex format:

max
K∏

k=1

t
μk
k

subject to

tk

N∏

i=1

(
Tπi(k)
i

)−1((
Nπi(k)
i −Nπi(k)−1

i

)
+ Tπi(k)−1

i

)
≤ 1,

T�
i ≥ T�−1

i +N�
i −N�−1

i , ∀i, �,

N∑

i=1

TK
i ≤ P0 +

N∑

i=1

NK
i ,

tk ≥ 1, k = 1, . . . ,K.

(35)

Once (35) has been solved, one can use (32) and (29c) to
obtain the required power loads and partitions.

5.3. Optimal Power Allocation for SPCGS Sum Rate Max-
imization. In Section 3.1 we expressed the points on the
boundary of the SPCGS rate region of a K-user N-
subchannel broadcast channel as the solution of the opti-
mization problem in (16a)–(16f). As discussed in Section 3.1,
that problem is not convex for general values of the weights
{μk}. However, for the case in which all the weights are equal,
the objective in (16a)–(16f) corresponds to the sum of the
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common and particular SPCGS rates. We will now show
that finding the power loads and partitions that maximize
this sum rate can be cast a (convex) geometric program.
In order to do that, we observe that the constraints in
(16a)–(16f) that bound the sum rate can be extracted from
(16c) by setting L equal to K . It can be shown that in the
problem of maximizing the sum rate only these constraints
and the constraints in (16d)–(16f) can be active. That is,
the constraints in (16a) and (16b) and the constraints in
(16c) that correspond to L < K do not constrain the
optimal solution to the sum rate optimization problem.
In order to see that, we observe that solving (16a)–(16f)
with these constraints removed results in a relaxation of
the optimization problem. This relaxation yields an upper
bound on the maximum sum rate. However, the solution
of the relaxed problem provides power allocations that
satisfy the power constraints in (16d)–(16f) and achieve
this upper bound on the maximum sum rate. Hence, the
maximum sum rate that can be achieved by superposition
coding and Gaussian signalling, and the corresponding
power allocations, can be obtained by solving the relaxed
problem.

We now provide an explicit formulation of the relaxed
problem in a convex form. In order to do that, let the sum
rate RT be equal to (1/2) log(tT), and note that by setting L to

be equal to K in (16c), we have mπi(k)
i (k1, . . . , kL) = πi(k) + 1.

Hence, the relaxed problem can be expressed as

max tT

subject to
(36a)

tT

N∏

i=1

⎛

⎝Nπi(k1)
i +

πi(k1)−1∑

�=1

Q�
i

⎞

⎠xπi(k1)
i

×
∏

{k∈{k2,...,kL}|πi(k)<πi(k1)}

⎛

⎝Nπi(k)
i +

πi(k)−1∑

r=1

Qr
i

⎞

⎠

×
⎛

⎝Nπi(k)
i +

πi(k)∑

t=1

Qt
i

⎞

⎠

−1

≤ 1

for all K ! permutations of {1, . . . ,K},

(36b)

K−1∑

�=1

Q�
i +NK

i ≤ Si, Q�
i ≥ 0,∀i, �, (36c)

∑

i

Si ≤ P0 +
∑

i

NK
i , Si ≥ NK

i , tT ≥ 1, (36d)

(
x�i
)−1

+ Δ�i ≤ Si, x�i ≥ 0, i = 1, . . . ,N , � = 1, . . . ,K.

(36e)

In order to cast the optimization problem in (36a)–(36e) in a
convex form, we use the transformation in (30) to write the
constraints in (36b) in a posynomial form as

tT

N∏

i=1

(
Nπi(k1)
i −Nπi(k1)−1

i + Tπi(k1)−1
i

)
xπi(k1)
i

×
∏

{k∈{k2,...,kL}|πi(k)<πi(k1)}

(
Nπi(k)
i −Nπi(k)−1

i + Tπi(k)−1
i

)

×
(
Tπi(k)
i

)−1 ≤ 1.

(37)

Noting from (11) and (30) that Si is equal to TK
i , the

constraints in (36c)–(36e) can be easily transformed into
posynomial inequality constraints using the same technique
that was used to formulate (35).

Remark 4. In addition to casting the SPCGS sum rate in a
convex form, it is also possible to show that by setting all
the particular rates equal to zero, one can cast the problem
of maximizing the common SPCGS rate as a GP. This can
be done by removing the constraints in (16b) and (16c) and
solving the resulting GP directly.

6. Numerical Example

In this section we will provide a numerical example based
on the 3-user 2-subchannel scenario depicted in Figure 2.
Although it is straightforward to particularize the general
formulation in (12a)–(12c) for this scenario, for com-
pleteness we have provided an explicit formulation in the
appendix. Using this formulation, we obtain formulations
for the outer and inner bounds on the SPCGS rate region
using the approaches described in Section 4.

The rate region for this scenario lies in a 4-dimensional
space (R0,R1,R2,R3), which can be rather difficult to visu-
alize. Therefore, in Figures 3, 4, and 5 we will provide
exemplary cross-sections of the rate region for different
values of the common information rate, R0. The parameters
of the system model in Figure 2 were chosen by setting the
transmitted power, P0, to be equal to 1, and picking the
values for the equivalent noise variances at random, such that
N�
i < N�+1

i , i, � = 1, 2. In these figures we will show the
rate regions for a system with N1

1 = 0.3046, N2
1 = 0.4943,

N3
1 = 1.6877, N1

2 = 0.4822, N2
2 = 0.9050, and N3

2 =
1.0526. (Other results for this scenario are available in [26].)
Using the observation in Remark 4, the maximum common
information rate R0,max, can be efficiently computed, and in
this setting it is equal to 1.0534 nats per channel use.

As an initial illustration of the proposed approach, in
Figure 3 we show the regions of SPCGS achievable rate triples
(R1,R2,R3) that are obtained via the signomial programming
technique described in Section 4.2 for different values of the
common information rate: R0 = 0, R0 = 0.4R0,max, and
R0 = 0.8R0,max. As can be seen from this figure, increasing
the rate of the common message simultaneously reduces
the maximum achievable rates for all particular messages; a
result that conforms with natural intuition.

In order to investigate the tightness of the proposed
inner and outer bounds on the set of SPCGS achievable
rates, in Figure 4 we provide a comparison between the
inner bound proposed in Section 4.2, which is obtained via
signomial programming and bisection search, and the outer
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Figure 3: The SPCGS rate regions obtained via signomial program-
ming for R0 = 0, R0 = 0.4R0,max and R0 = 0.8R0,max.
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Figure 4: A comparison between the inner and outer bounds on
the SPCGS rate region at R0 = 0.4R0,max.

bound proposed in Section 4.1.1, which is obtained via a
geometric program. In particular, Figure 4(a) shows a 3-
dimensional plot of the inner and outer bounds on the rate
triples (R1,R2,R3) when the common information rate is set
at R0 = 0.4R0,max. For fixed values of R1 and R2, the difference
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Figure 5: Difference between the values of R3 on the boundary of
the capacity region for particular messaging (R0 = 0) and the values
of R3 generated by the proposed inner bound (for R0 = 0). The
boundary of the capacity region is marked by “∗”.

between the inner and the outer bounds on R3 in Figure 4(a)
is illustrated in Figure 4(b) using a 2-dimensional intensity
plot, with black and white colours corresponding to the
maximum and minimum differences, respectively. From this
figure, it can be seen that the maximum difference is about
0.07, corresponding to a relative difference of approximately
14.84%. It can also be seen from this Figure that although the
bounds do not agree on the entire rate region, they almost
coincide over a significant portion of it.

Finally, we investigate the tightness of the inner bound
when the rate of the common message is set to zero; that
is, R0 = 0. In that case, the SPCGS region coincides with
the capacity region, and can be precisely (and efficiently)
computed using the formulation in Section 5.2. In Figure 5,
the difference between the SPCGS rate region and the
proposed inner bound is illustrated using an intensity plot.
It can be seen from this plot that the maximum difference
is about 4.5 × 10−3, which demonstrates the utility of the
proposed inner bound.

7. Conclusion

In this paper we have provided a general characterization
of the rate region that can be achieved by superposition
coding and Gaussian signalling (SPCGS) on a K-user N-
subchannel Gaussian broadcast system in which a common
message and particular messages are transmitted to the users.
We have also expressed the boundary points of this region
as the solution of an optimization problem. Although that
problem is not convex in the general case, it was used to
obtain efficiently computable inner and outer bounds on the
SPCGS rate region. In addition, we have provided precise
convex formulations for some important special cases of the
general problem, including two cases in which the SPCGS
rate region is known to be the capacity region (the 2-user
case and the K-user case with particular messages only), and
the K-user N-subchannel case in which only the SPCGS sum
rate is maximized.
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Appendix

Equivalent Optimization Problem for
the 3-User 2-Subchannel Case

Using the transformation in (11), the rate region described
in (6a)–(6n) can be cast as

max
K∏

k=0

t
μk
k

subject to

t0
(
N1

1 +Q1
1 +Q2

1

)(
N3

2 +Q1
2 +Q2

2

)(
S1 − Δ1

1

)−1
S−1

2 ≤ 1,

t0
(
N2

1 +Q1
1 +Q2

1

)(
S1− Δ2

1

)−1(
N2

2 +Q1
2 +Q2

2

)(
S2− Δ2

2

)−1 ≤ 1,

t0
(
N3

1 +Q1
1 +Q2

1

)
S−1

1

(
N1

2 +Q1
2 +Q2

2

)(
S2 − Δ1

2

)−1 ≤ 1,

N1
1 t0t1

(
N3

2 +Q1
2 +Q2

2

)(
S1 − Δ1

1

)−1
S−1

2 ≤ 1,

t0t2
(
N2

1 +Q1
1

)(
N2

2 +Q1
2

)(
S1 − Δ2

1

)−1(
S2 − Δ2

2

)−1 ≤ 1,

N1
2 t0t3

(
N3

1 +Q1
1 +Q2

1

)
S−1

1

(
S2 − Δ1

2

)−1 ≤ 1,

N1
1 t0t1t2

(
N3

2 +Q1
2 +Q2

2

)(
N2

2 +Q1
2

)(
S1 − Δ1

1

)−1

× S−1
2

(
N2

2 +Q1
2 +Q2

2
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(A.1)
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Xavier Mestre (CTTC)

Technical Program Co Chairsapplications as listed below. Acceptance of submissions will be based on quality,
relevance and originality. Accepted papers will be published in the EUSIPCO
proceedings and presented during the conference. Paper submissions, proposals
for tutorials and proposals for special sessions are invited in, but not limited to,
the following areas of interest.

Areas of Interest

• Audio and electro acoustics.
• Design, implementation, and applications of signal processing systems.
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Technical Program Co Chairs
Javier Hernando (UPC)
Montserrat Pardàs (UPC)

Plenary Talks
Ferran Marqués (UPC)
Yonina Eldar (Technion)

Special Sessions
Ignacio Santamaría (Unversidad
de Cantabria)
Mats Bengtsson (KTH)

Finances
Montserrat Nájar (UPC)• Multimedia signal processing and coding.

• Image and multidimensional signal processing.
• Signal detection and estimation.
• Sensor array and multi channel signal processing.
• Sensor fusion in networked systems.
• Signal processing for communications.
• Medical imaging and image analysis.
• Non stationary, non linear and non Gaussian signal processing.

Submissions

Montserrat Nájar (UPC)

Tutorials
Daniel P. Palomar
(Hong Kong UST)
Beatrice Pesquet Popescu (ENST)

Publicity
Stephan Pfletschinger (CTTC)
Mònica Navarro (CTTC)

Publications
Antonio Pascual (UPC)
Carles Fernández (CTTC)

I d i l Li i & E hibiSubmissions

Procedures to submit a paper and proposals for special sessions and tutorials will
be detailed at www.eusipco2011.org. Submitted papers must be camera ready, no
more than 5 pages long, and conforming to the standard specified on the
EUSIPCO 2011 web site. First authors who are registered students can participate
in the best student paper competition.

Important Deadlines:

P l f i l i 15 D 2010

Industrial Liaison & Exhibits
Angeliki Alexiou
(University of Piraeus)
Albert Sitjà (CTTC)

International Liaison
Ju Liu (Shandong University China)
Jinhong Yuan (UNSW Australia)
Tamas Sziranyi (SZTAKI Hungary)
Rich Stern (CMU USA)
Ricardo L. de Queiroz (UNB Brazil)

Webpage: www.eusipco2011.org

Proposals for special sessions 15 Dec 2010
Proposals for tutorials 18 Feb 2011
Electronic submission of full papers 21 Feb 2011
Notification of acceptance 23 May 2011
Submission of camera ready papers 6 Jun 2011


