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Abstract— We consider the problem of determining an optimal
transmission scheme for broadcasting a common message over
vector channels, given (perfect) channel knowledge at both the
receive and transmit ends. We provide an efficient method for
jointly designing a linear transmitter and and a set of linear re-
ceivers so as to minimize a weighted Mean Square Error (WMSE)
of the data estimates. The computational efficiency follows from
the convex formulations that we develop. These formulations
enable utilization of highly efficient interior point methods. For
diagonal channel matrices, which appear in multicarrier systems
that employ cyclic prefixing, we show that the optimal transmitter
is obtained by subcarrier allocation and power loading. The set
of minimum MSE transceivers for a vector broadcast system
is parametrized by a unitary matrix degree of freedom. For the
case of diagonal systems, we show how this unitary matrix can be
chosen so that the symbol error rate is minimized (over the given
set). This optimal unitary matrix ensures that for each receiver,
the subcarrier signal-to-noise ratios (SNRs) are all the same.
Simulations indicate that our designs can provide significantly
improved performance over standard designs.

I. INTRODUCTION

Several applications require the reliable transmission of a
common message from a single transmitter to multiple re-
ceivers. Examples include common control signals in cellular
communication systems and (subscription based) radio and
TV broadcast systems. In such systems, when the channel
varies relatively slowly compared to the transmission rate, the
receivers are able to estimate a sufficiently accurate model of
the channel without substantial sacrifice of the link throughput.
If the receivers feed this information back to the transmitter,
an optimal transmission scheme with respect to a prescribed
measure can be determined for the set of estimated channels.

In this paper, we focus on the design of vector transmission
schemes in which data is transmitted on a block-by-block,
rather than symbol-by-symbol, basis. Such schemes are often
effective for transmission over frequency selective channels;
e.g., Discrete MultiTone modulation (DMT) [1], and Orthog-
onal Frequency Division Multiplexing (OFDM) [2]. However,
they also appear naturally in communication systems with
multiple antennas at the transmitter and receiver. For single-
user vector communication systems, there are several mature
approaches to transceiver design (see, for example, [3] for
an insightful overview). Typically, the optimal transmission
scheme involves a decomposition of the channel into a set
of parallel subchannels and the allocation of power and
rate to each subchannel. For certain criteria, it may also be
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Fig. 1. Block diagram for the broadcasting system under consideration in
Section II.

beneficial for the transmitter to linearly combine the symbols
intended for transmission over different subchannels (see, for
example, [3]–[5]) .

In contrast to the single-user case, effective design methods
for vector broadcast systems are just beginning to emerge
(e.g., [6]–[9]). The goal of this paper is to contribute to the
development of such methods by providing a computationally
efficient method for jointly designing a linear transmitter
and a set of linear receivers so as to minimize a weighted
Mean Square Error (WMSE) measure of the received data
estimates. We show that this design problem can be cast as
a convex optimization program that can be efficiently solved
using Interior Point (IP) methods [10]. Furthermore, when
the channel matrices are simultaneously diagonalizable—as
they are in MultiCarrier (MC) schemes that employ cyclic
prefixing (e.g., DMT/OFDM)—optimal transmission can be
obtained by subcarrier allocation and power loading, and the
computational effort required to obtain the optimal transmitter
can be considerably reduced. We observe that the minimum
MSE solution provides a unitary matrix degree of freedom, and
then show how to find an optimal rotation that minimizes the
average bit error rate for MMSE power-loaded, cyclic prefix
based MC broadcast systems.

II. MMSE PROBLEM: PROBLEM STATEMENT AND

SOLUTION

A. Formulation

In the broadcasting scheme in Figure 1 a single transmitter
sends the same information vector s to K receivers. Each
data block s is assumed to be zero-mean and white with
identity covariance matrix. However, our results carry over
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to the colored data case as well, because a whitening matrix
R−1/2

s , where Rs is the covariance matrix of s, can readily be
absorbed into the precoder F. Each receiver in Figure 1 has a
channel matrix Hi, i = 1, . . . ,K which is of size q×n, where
q is the length of the received block, yi, and n is the length
of the transmitted block, x. The design problem is to jointly
design the linear transmitter F and K linear receivers Gi such
that the total (weighted) MSE is minimized and the transmitted
power remains below a prescribed level, p. (A related problem
is the design of linear transmitters and a single linear receiver
in a multiple access scenario [11].)

The received signal vectors yi, i = 1, . . . , K, in Figure 1
are given by:

yi = HiFs + νi,

where νi is the zero-mean Gaussian noise associated with the
ith receiver, which has a known covariance matrix Ri. The
equalizer output is

ŝi = GiHiFs + Giνi, i = 1, . . . , K. (1)

Let ei denote the error vector associated with the ith receiver,

ei = s − ŝi.

Then the weighted MSE is given by

WMSE =
K∑

i=1

αi Tr(E{eieH
i }), (2)

where the αi’s are non-negative weights assigned to different
users depending on their relative priorities and Tr(·) denotes
the trace operation. The covariance matrix of ei is

E{eieH
i } = (I − GiHiF)(I − GiHiF)H + GiRiGH

i

where, as stated earlier, the covariance matrices of the signal
and noise are E{ssH} = I and E{νiνH

i } = Ri respectively,
and the transmitted signal and receiver noise are uncorrelated;
i.e., E{sνH

i } = 0, i = 1, . . . ,K.

The problem of designing F and Gi so as to minimize the
weighted MSE subject to a bound on the transmitted power
can be cast as the following optimization problem:

min
F,G1,...,GK

K∑

i=1

αi Tr(E{eieH
i }) (3a)

subject to Tr(FFH) ≤ p. (3b)

Since the Gi’s are unconstrained variables, they can be elim-
inated from (3) by first minimizing the weighted MSE with
respect to Gi. This results in the MMSE equalizers,

Gi = FHHH
i

(
HiFFHHH

i + Ri

)−1 = FHHH
i Wi, (4)

where

Wi =
(
HiFFHHH

i + Ri

)−1
, i = 1, . . . , K. (5)

Substituting (4) into (3a) yields

WMSE = n
K∑

i=1

αi − Tr
( K∑

i=1

αiFHHH
i WiHiF

)

= n
K∑

i=1

αi − Tr
( K∑

i=1

αi(W
−1
i − Ri)Wi

)

= Tr
( K∑

i=1

αiWiRi

)
.

Noting that Ri and Wi are positive definite for all
i = 1, . . . ,K, and letting U = FFH , the optimal MMSE
transceiver design problem can be cast as:

min
U,Wi, i=1,...,K

Tr
( K∑

i=1

αiWiRi

)
(6a)

subject to Wi $ (HiUHH
i + Ri)−1, ∀i (6b)

Tr(U) ≤ p, (6c)

U $ 0, (6d)

where by X $ Y, we mean that X − Y is positive semidef-
inite. Using the Schur complement [10], the constraint (6b)
can be re-written in a linear matrix inequality (LMI) form as:

[
Wi I
I HiUHH

i + Ri

]
$ 0, i = 1, . . . ,K. (7)

Therefore, the formulation in (6) can be rewritten as:

min
U,Wi

Tr
( K∑

i=1

αiWiRi

)
(8a)

subject to (7), Tr(U) ≤ p, and U $ 0 (8b)

This problem is a semidefinite program (SDP) and can
be efficiently solved using interior point methods. Several
convenient implementations of these methods are available;
e.g., [12]. The arithmetic complexity of these methods is at
most O(n6.5 log(1/ε)), where ε > 0 is the solution accuracy.
Once an optimal U is obtained, we need to find an optimal F
such that FFH = U. The set of all WMSE optimal precoders
take the form

F = F̆Q, (9)

where F̆ is the Cholesky factor of the optimal U and Q is an
arbitrary unitary matrix.

B. Diagonal designs

For a multicarrier system employing cyclic prefixing, the
channel matrices Hi are circulant and hence can be simultane-
ously diagonalizable using Discrete Fourier Transform (DFT)
and Inverse Discrete Fourier Transform (IDFT) matrices. The
diagonal elements of the diagonalized channel matrices are
given by Hi(k, k) = Hi(k), where Hi(k) is the frequency
response of user i’s channel at the kth point on the DFT grid,
ωk = 2π(k−1)/n, k = 1, . . . , n. By associating the DFT and
IDFT matrices with the equalizer and precoder respectively, we
end up with a diagonal channel matrix. We will also assume
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in this section that the noise covariance matrices are also
diagonalized by the DFT matrix; i.e., Ri(k, j) = 0, j &= k
and Ri(k, k) = σ2

i (k). (This is a common assumption in
the design of single-user DMT schemes. See [11] for further
details.)

If we assume that the optimal matrices Wi and U are
diagonal, we can replace them in the formulation by vectors
wi and u that represent the diagonal elements of Wi and U
respectively. (We will argue below that the optimal Wi and U
are indeed diagonal.) With these new variables, problem (8)
can be cast as

min
u,wi

K∑

i=1

n∑

k=1

αiσ
2
i (k)wi(k) (10a)

subject to wi(k)
(
u(k)|Hi(k)|2 + σ2

i (k)
)
≥ 1, ∀i

(10b)
∑

k

u(k) ≤ p, (10c)

u(k) ≥ 0, ∀k = 1, . . . , n. (10d)

The constraints in (10b) amount to K sets of n Lorentz cones.
The optimization problem (10) is a rotated second order cone
program that offers significant computational advantage over
the SDP in (8). In particular, the arithmetic complexity of
obtaining a solution to the second order cone program is at
most O(n3.5 log(1/ε)), where ε > 0 is the solution accuracy.

In deriving the above formulation (10) we have assumed
that the optimal precoder is a diagonal matrix U. We now
show that the optimal U is necessarily diagonal. Suppose that
the optimal solution is given by U∗, where U∗ is assumed to
be not diagonal. Let Ū∗ be the diagonal part of U∗. Then,
Tr(U∗) = Tr(Ū∗). Therefore, Ū∗ satisfies (6c) and lies in
the feasible set of (6). Now, for any positive definite matrix
A,

Tr(A−1) ≥
∑

j

1
Ajj

, (11)

with equality holding iff A is diagonal [13]. For a given U,
let Ai(U) = R−1/2

i (HiU∗HH
i + Ri)R

−1/2
i , i = 1, . . . ,K,

where we have assumed that Ri ( 0. If the equalizers Gi are
chosen as in (4), then for a given U

WMSE =
K∑

i=1

αi Tr(Ai(U)−1). (12)

If we define A∗
i = Ai(U∗), and Ā∗

i = Ai(Ū∗), then using
(11) we have that

Tr
(
(A∗

i )
−1

)
> Tr

(
(Ā∗

i )
−1

)
, i = 1, . . . ,K (13)

where the strict inequality holds because (A∗
i )−1 is non-

diagonal since U∗ is non-diagonal. Using the strict inequalities
in (13) we have that

WMSE |U=U∗ > WMSE |U=Ū∗ .

Thus we have a contradiction to our assumption that U∗ was

optimal. Therefore, the optimal precoder F must be such that
U = FFH is diagonal.

C. Choice of Optimal Rotation

So far, we have shown how to design a linear precoder F
that satisfies an MMSE criterion. From an MMSE perspective,
it turned out that the design problem amounts to designing
U = FFH . However, as pointed out in (9), this solution offers
a unitary matrix degree of freedom. That is, in general we can
write F = F̆Q, where Q is an arbitrary unitary matrix to be
designed. In this section, we show how Q can be chosen to
essentially minimize the average bit error rate (over the class
of MMSE receivers). Our development will involve arguments
which parallel those in [4], [5] and [3], where minimum
BER transmitter-receiver design for the single-user case was
considered.

Consider a complex valued circularly symmetric signal
(e.g., M–ary QAM). The ith user equalized output signal
block given by (1) can be written as

ŝi = Diag(GiHiF)s + zi (14)

where

zi =
(
GiHiF − Diag(GiHiF)

)
s + Giνi (15)

denotes the interference plus noise term. By modifying the
analysis of MMSE multiuser detectors [14], [15], it can be
shown [5] that as the block size n increases, the ISI term
approaches a Gaussian distributed random variable almost
surely. Hence, the ith user’s noise plus interference term zi

can be approximated as a Gaussian process with zero mean
and covariance

Ci =
(
GiHiF−Diag(GiHiF)

)(
GiHiF−Diag(GiHiF)

)H

+ GiRiGH
i .

Using this result, we can compute the asymptotic bit error
rate as the block size grows for signals drawn from different
constellations. In the following, we will only consider QPSK
modulation. However similar results can be obtained for higher
order circularly symmetric modulation schemes.

For QPSK, the average bit error rate is given by

Pe ) 1
2Kn

K∑

i=1

n∑

k=1

erfc

(
[GiHiF]kk√

2[Ci]kk

)
, (16)

where, erfc(x) = 2√
π

∫ ∞
x exp(−z2)dz. The approximation in

the above expression follows from the assumption of Gaussian
ISI, and hence the error in the approximation decreases almost
surely as the block size, n, grows. Using the fact that for the
MMSE equalizers (4),

Gi

(
HiFFHHH

i + Ri

)
GH

i = GiHiF,

we can show that

[Ci]kk = [GiHiF]kk −
(
[GiHiF]kk

)2
.
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Substituting into the right hand side of (16), we get

Pe ) 1
2Kn

∑

i,k

erfc
((

2
[
(Diag(GiHiF))−1 − I

]
kk

)−1/2)

(17)

Applying the fact that erfc( 1√
2x

) is a convex function of x

for all x ≤ 1
3 [5], we observe that if

[GiHiF]rr ≥ 3
4
, ∀i = 1, . . . ,K and ∀ r = 1, . . . , n, (18)

then the probability of error defined in (17) is a convex
function of the diagonal entries of GiHiF. Hence, a tight
lower bound on the average error probability can be obtained
by applying Jensen’s inequality. That is,

Pe ≥ 1
2K

∑

i

erfc



 1√
2
n

∑
r

[(
Diag(GiHiF)

)−1 − I
]
kk





=
1

2K

∑

i

erfc



 1√
2
n Tr

(
Diag(GiHiF)

)−1 − 1



 .

(19)

The lower bound in (19) is achievable if for each i ∈ [1,K],
the following condition holds:

[GiHiF]rr = [GiHiF]"", ∀r, & ∈ [1, n]. (20)

We now design a precoder that minimizes (19). As in (9),
F = F̆Q. Hence, we can write

GiHiF = FHHH
i

(
HiF̆F̆HHH

i + Ri

)−1HiF
= QHΓiQ,

where Γi = F̆HHH
i

(
HiF̆F̆HHH

i + Ri

)−1HiF̆ is positive
definite and does not depend on Q. We now restrict our
attention to the moderate to high SNR region satisfying (18)
and will show how to find a unitary matrix Q that not only
minimizes the lower bound in (19) but also achieves it. We
start by observing that erfc(·) is a monotonically decreasing
function of its argument and hence minimizing (19) amounts
to solving the following optimization problem,

min
QQH=I

Tr
(
Diag(QHΓiQ)

)−1
, ∀i ∈ [1,K].

It can be shown that [5],

Tr
(
Diag(QΓiQH)

)−1 ≥ n2

Tr(Γi)
, (21)

with the lower bound achieved if and only if the diagonal
elements of QHΓiQ are all equal. One choice of Q that
satisfies this requirement is Q = XiV, where Xi is the
matrix whose columns are the eigenvectors of Γi and V is
the normalized DFT matrix. Since we have a single precoder
to optimize with respect to the transmission over K channels,
our argument will only hold when Xi are identical for all
i ∈ [1,K]. That is, all Γi’s share the same eigenvectors. A
special case where this happens naturally is in cyclic prefixed

multicarrier systems. In that case, the MMSE solution implies
diagonal Γi’s. Hence, Xi = I ∀i ∈ [1,K] and Q = V.
Therefore, with Q in (9) chosen to be the DFT matrix, the
lower bound in (21), and hence that in (19), are achieved. The
resulting minimized bit error rate is given by

Pe =
1

2K

∑

i

erfc



 1

2
√

n
[
Tr

(
Γi

)]−1 − 1



 . (22)

Interestingly, choosing Q = V results in each receiver
“seeing” identical SNRs on all its subcarriers. Our simulations
in the next section indicate that our choice of Q can generate
significant SNR gains.

III. NUMERICAL RESULTS

In the following examples, we consider a two user broad-
cast system which employs cyclic prefix based multicarrier
modulation with 32 subcarriers. The noise at each receiver is
assumed to be white with a common variance; i.e., Ri = σ2I.
Hence, each user has the same block SNR, p/σ2. In each of
the following examples the weights αi in (2) are chosen to be
equal.

(i) In this example, each user’s channel is a three-tap FIR
filter. The frequency responses of these filters are plotted
in Figure 2, along with the optimal power allocation. This
figure shows that optimal power loading, in the MMSE
sense, at an SNR of 10 dB, assigns power in a way
similar to the water-filling principle. That is, subcarriers
that “see” better channels are assigned higher powers and
vice versa.

(ii) In Figure 3, we consider the same channels as in Fig-
ure 2. We compare the bit error rate performance when
optimal and uniform power loadings are used. First, we
remark that simulation results agree with analysis. This
supports the fact that the ISI can be modeled accurately
by a Gaussian random variable even for the rather small
block length n = 32. When the unitary matrix degree
of freedom is not exploited, we observe that for a bit
error rate of 2× 10−2, a gain of about 3 dB is obtained
via optimal power loading. The potential performance
improvement from employing a proper rotation via a
DFT matrix at the precoder is also illustrated. The
optimal rotation introduces an additional gain of about
8 dB at a bit error rate of 10−2. When the optimal
rotation is employed with optimal power loading, a gain
of about 3 dB is achieved over the case of optimal
rotation and uniform power loading.

IV. CONCLUSIONS

In this paper we have addressed the problem of optimal
transmitter and receiver designs in a weighted MMSE sense for
vector broadcast systems with a common message. A convex
formulation was derived for general channel matrices, and an
alternative, significantly simplified, formulation was presented
for cyclic prefix based multicarrier modulation schemes. For
those applications, it was shown that the optimum linear
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Fig. 2. Optimal power loading in the MMSE sense at a block SNR of 10 dB.
The frequency responses of the two users’ channels are shown.
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Fig. 3. A comparison of the bit error rate performance of various systems:
Analytical and simulation results.

precoder problems performs subcarrier allocation followed by
power loading. For moderate to high SNR, we have also shown
how to optimally exploit the unitary matrix degree of freedom
provided by the MMSE solution.
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