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Rate-Optimal MIMO Transmission with Mean and
Covariance Feedback at Low SNRs

Ramy H. Gohary, Wessam Mesbah, and Timothy N. Davidson

Abstract—This paper considers a multiple-input–multiple-output
(MIMO) wireless communication scenario in which the channel follows a
block-fading model with a general spatially correlated complex Gaussian
distribution with nonzero mean. We derive an explicit characterization of
the (ergodic) rate-optimal input covariance for systems that operate at
low signal-to-noise ratios (SNRs). In particular, we obtain a closed-form
expression for the matrix whose principal eigenvector yields the optimal
beamforming direction. For the class of nonzero-mean channels with
Kronecker-structured covariance, we also derive a threshold on the input
signal power below which the low-SNR approximation is accurate. Our
numerical results show that significant improvements in the low-SNR
achievable rate can be obtained by (jointly) exploiting the mean and
covariance of the channel model. Our results also show that these
improvements can be extended to moderate-to-high SNRs by signaling
along the low-SNR optimal eigenbasis with optimized power allocation.

Index Terms—Correlated channel with nonzero mean, ergodic capacity,
low signal-to-noise ratio (SNR) signaling, multiple-input–multiple-output
(MIMO) systems, noncentral Wishart distribution, statistical channel state
information (CSI).

I. INTRODUCTION

The availability of channel state information (CSI) at the transmitter
of a multiple-input–multiple-output (MIMO) wireless communication
system that operates at low signal-to-noise ratios (SNRs) can have
a fundamental impact on the ergodic achievable rate (e.g., [1]–[4]).
However, it is often quite difficult to provide the transmitter with
accurate information about the actual channel realization (i.e., instan-
taneous CSI), and it may be more appropriate to consider systems in
which the transmitter has access only to statistical information about
the channel (e.g., [1]). Indeed, there have been several analyses of the
impact of channel correlation on low-SNR communication (e.g., [2],
[3], [5], and [6]). However, these analyses have been made under rather
restricted models for the channel statistics. The goal of this paper is to
provide an explicit characterization of the low-SNR rate-optimal input
covariance for an arbitrarily correlated channel model with nonzero
mean.

In some of the early work on (ergodic) rate-optimal signaling for
wireless systems with multiple antennas, optimal signaling strategies
for multiple-input–single-output systems were developed [7], [8] for
two classes of channels: one in which the channel mean is known at
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the transmitter and the channel covariance is assumed to be a scaled
identity and the other in which the channel covariance is known at
the transmitter and the mean is assumed to be zero. That work was
extended to MIMO systems in [9] and [10], where rate-optimal trans-
mission strategies were developed for the case in which the channel
has zero mean, correlated rows, and independent columns. For that
scenario, necessary and sufficient conditions under which the covari-
ance matrix of the optimal signaling scheme is of rank 1 (and, hence,
can be implemented by beamforming) were given in [9] and [10].
Using a similar technique to that in [9], rate-optimal signaling strate-
gies and necessary and sufficient conditions for the optimality of
beamforming for the case in which both the columns and the rows of
the channel matrix are correlated were developed in [11]. For that case,
a closed-form expression for the exact channel capacity was derived
in [12]. In addition, sufficient (but not necessary) conditions under
which beamforming is rate optimal for MIMO channels with nonzero
mean and scaled identity covariance were derived in [13].

While MIMO channel models with zero mean, correlated columns,
and correlated rows are sufficient to characterize some practical com-
munication scenarios, the extension of the aforementioned analyses to
the more general correlation models that typically occur in practice can
be quite unwieldy. A characterization of the structure that the optimal
input covariance matrix must possess for a zero-mean arbitrarily
correlated channel model was provided in [14], but that work did not
contain an explicit construction of this matrix.

In this paper, we consider the design of the rate-optimal input co-
variance for low-SNR signaling over an arbitrarily correlated channel
with nonzero mean. We derive an explicit closed-form expression for
the low-SNR ergodic capacity for this channel model, and we use
that expression to derive an explicit characterization of the optimal
input covariance. Similar to [2], we show that whenever the maximum
eigenvalue of a certain matrix is distinct, beamforming remains opti-
mal in the presence of a nonzero mean and an arbitrary correlation.
Computing the beam direction using the approach in [2] can be quite
difficult for general correlation models, and in [4], this direction was
computed only for the so-called Unitary-Independent-Unitary model.
The explicit characterization provided herein allows us to avoid these
difficulties and enables us to obtain a closed-form expression for the
matrix whose principal eigenvector yields the optimal beam direction
for general correlation models with nonzero mean. The closed-form
expression for this matrix also allows us to explore how the low-
SNR characterization can be used to synthesize high-rate signaling
strategies at moderate-to-high SNRs. In particular, we will show that
by optimally allocating power to all the eigenvectors of this matrix,
one can obtain higher ergodic rates than several existing schemes over
a broad range of SNRs.

II. SYSTEM MODEL

We consider MIMO systems with M transmit and N receive anten-
nas and a channel matrix H that follows a general complex Gaussian
block-fading model with mean H̄ and covariance Φ = EH{vec(H −
H̄)vec(H − H̄)†}, where vec(·) denotes the column-stacking
operator, and (·)† denotes the Hermitian transpose. Channel realiza-
tions from this model can be expressed as

vec(H) = Φ1/2vec(Hw) + vec(H̄) (1)

where Hw is a (white) matrix with independent identically distributed
circularly symmetric complex Gaussian entries with zero mean and
unit variance. While the key results in this paper are derived for the
general model in (1), in some cases, further insight can be obtained
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by considering the more tractable Kronecker model (e.g., [1]) and
its generalization in [14], in which the channel covariance matrix
is separable into transmitter and receiver components. Realizations
from a channel model with nonzero mean and a general separable
covariance take the form

H =

S∑
s=1

R1/2
s HwT 1/2

s + H̄ (2)

where {Rs}S
s=1 and {Ts}S

s=1 are sets of Hermitian positive semi-
definite matrices of sizes N × N and M × M that characterize the
correlation among the elements of the receiver and the correlation
among the elements of the transmitter, respectively. The covariance of
the channel model in (2) is Φ =

∑S

s=1
T T

s ⊗ Rs, and the Kronecker
model is obtained by setting S = 1.

III. LOW-SNR APPROXIMATION OF ERGODIC CAPACITY

Consider coherent communication over the channel model in (1)
in the presence of zero-mean additive white Gaussian noise (AWGN)
with normalized spatial covariance K = I . When only the mean H̄
and the covariance Φ are known at the transmitter, the ergodic capacity
is [15]

C = max
Q�0, Tr(Q)=P

EH

{
log det(I + HQH†)

}
(3)

where Q is the covariance matrix of the input signal, and P is the total
power budget. As is well known (e.g., [1]), the expression in (3) can be
applied to systems with an arbitrary nonsingular noise covariance K

by simply replacing H by H́ = K−1/2H . Since ¯́
H = K−1/2H̄ and

Φ́ = (I ⊗ K−1/2)Φ(I ⊗ K−1/2), the work herein is immediately
applicable in that case, but for simplicity, we will focus on the case
in which K = I .

To facilitate the analysis of (3), we observe that for a positive defi-
nite matrix X � 0, log det(X) = Tr(log(X)), where the log function
of a positive definite matrix is defined as the inverse of the matrix
exponential (cf. [16]). Using this result, for a Hermitian matrix A with
eigenvalues in (−1, 1), log det(I + A) can be expanded as

log det(I + A) =Tr (log(I + A))

=Tr(A) − 1

2
Tr(A2) +

1

3
Tr(A3) + · · · . (4)

The matrix HQH† is Hermitian and positive semidefinite, and
for sufficiently low input signal power, its maximum eigenvalue,
λmax(HQH†), satisfies λmax(HQH†) ≤ ε � 1 with a high proba-
bility. Using the fact that λmax(HQH†) ≤ λmax(Q)λmax(H

†H) and
that the power constraint implies that λmax(Q) ≤ P , it can be seen that
if the expansion in (4) is substituted into (3), then for sufficiently small
values of P , the resulting expression is dominated by the linear term.
That is, at low SNRs, one can approximate the capacity by

C ≈ max
Q�0, Tr(Q)=P

EH

{
Tr(HQH†)

}
. (5)

Since the nth term in (4) can be thought of as the nth derivative of
log det(I + tA) with respect to the scalar t at t = 0, the result in
[3, Sec. III] can be used to show that maximizing the term in (5) is
equivalent to minimizing (Eb/N0)min, which is the minimum energy
per bit required to communicate at a positive rate. In Section VI,
we will derive a (conservative) bound on P , below which, (5) is
reasonably accurate for a nonzero-mean channel with Kronecker-
structured covariance.

IV. EXPLICIT LOW-SNR ERGODIC CAPACITY

In this section, we obtain an explicit expression for the low-SNR
ergodic capacity in (5), and in Section V, we will use this explicit
expression to cast the problem of optimizing the input covariance
matrix as a linear program that can be solved analytically.

Using the model in (1) and defining H̃ = unvec(Φ1/2vec(Hw)),
where unvec(·) denotes the inverse of the vec(·) operator, the expres-
sion EH{Tr(HQH†)} in (5) can be written as

EH

{
Tr(HQH†)

}
= EHw

{
Tr

(
Q1/2(H̃† + H̄†)(H̃ + H̄)Q1/2

)}
= EHw

{
Tr(Q1/2H̃†H̃Q1/2)

}
+ Tr(H̄†H̄Q). (6)

We can write the first term on the right-hand side (RHS) of (6) as

EH̃

{
Tr(Q1/2H̃†H̃Q1/2)

}
= EH̃

{(
vec(H̃)

)†
(QT/2 ⊗ IN )(QT/2 ⊗ IN )vec(H̃)

}
(7)

= Tr
(
Φ

(
QT ⊗ IN

))
(8)

where AT denotes the transpose of the matrix A, respectively, and in
(7) we have used the identity Tr(A†B) = (vec(A))†vec(B). Using
(8), we have that for the general model in (1), the low-SNR rate-
optimal covariance matrix maximizes

Tr
(
Φ(QT ⊗ IN )

)
+ Tr(H̄†H̄Q) (9)

= Tr
(
Φ(QT ⊗ IN )

)
+

1

N
Tr(H̄T H̄∗ ⊗ IN )(QT ⊗ IN )

= Tr (X(Q ⊗ IN )) (10)

where X = (ΦT + (1/N)(H̄†H̄ ⊗ IN )). To simplify this expres-
sion, we observe that the ijth N × N block of the NM × NM
matrix (Q ⊗ IN ) is in the form of a scaled identity, i.e., [Q ⊗
IN ](i−1)N+r,(j−1)N+s = qijδrs, where qij denotes the ijth entry of
Q, and δrs is the Kronecker delta. Using this expression, we have

Tr (X(Q ⊗ IN )) =

M∑
i,j=1

N∑
r,s=1

qijδrsX(i−1)N+r,(j−1)N+s

=

M∑
i,j=1

qijTr
(
X[i,j]

)
(11)

where X[i,j] denotes the ijth N × N block of X . Now, we can write
(10) as Tr(ZQ), where

[Z]ij = Tr
(
X[i,j]

)
. (12)

Using the result in Appendix A, it can be shown that since Z is a matrix
whose elements are the traces of blocks of a positive semidefinite
matrix, it is positive semidefinite.

V. OPTIMAL INPUT COVARIANCE MATRIX

We now proceed to find the input covariance matrix that maximizes
the low-SNR ergodic achievable rate in (5). That is, we solve the
optimization problem

max
Q�0, Tr(Q)≤P

Tr(ZQ) (13)

where Z was defined in (12). For the separable channel model in (2),
the expression for Z simplifies to

∑S

r,s=1
Tr(R

1/2
r R

1/2
s )T

1/2
r T

1/2
s +

H̄†H̄ . The first step in the solution of (13) is to use the result in [17,
Example 7.4.13] to show that it is sufficient to consider matrices Q
with the same eigenbasis as Z (see [9] for a related derivation). That
is, if Z = UZΛZU†

Z denotes the ordered eigendecomposition of Z,
it is sufficient to consider matrices Q of the form UZΛQU†

Z , where
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ΛQ denotes the diagonal matrix of (nonnegative) eigenvalues of Q.
In that case, the optimization problem in (13) can be cast as the linear
program maxλQi

≥0,ΣM
i=1λQi

≤P

∑M

i=1
λZi

λQi
, where λZi

and λQi

denote the ith eigenvalues of Z and Q, respectively. If the maximum
eigenvalue of Z is distinct, the optimal eigenvalues of Q are λQ1 = P
and λQ2 = · · · = λQM

= 0. That is, beamforming along the principal
eigenvector of Z is sufficient for rate-optimal communication at low
SNRs. For the case in which the largest eigenvalue of Z has multi-
plicity greater than 1, any partitioning of power in the direction of
the eigenvectors corresponding to these eigenvalues is optimal up to
the first-order approximation. However, for up to the second-order
optimality, power may have to be carefully distributed across these
directions [3].

Remark: For the case of channels with Kronecker-structured co-
variance, the optimum beam direction is along the principal eigenvec-
tor of (Tr(R)T + H̄†H̄). If the channel is zero mean, the matrix R
does not affect the optimal beam direction, and in agreement with the
result in [11], this direction is along the principal eigenvector of T .
In contrast, if the channel is nonzero mean, this expression suggests
that Tr(R) acts as a weight that controls the relative impact of the
eigenvectors of T and that of the eigenvectors of H̄†H̄ on the optimal
beam direction.

VI. ACCURACY OF THE LOW-SNR APPROXIMATION

In this section, we derive a threshold on the input power be-
low which the low-SNR approximation of the ergodic capacity in
(5) is reasonably accurate. We consider the nonzero-mean channel
model with Kronecker-structured covariance with positive definite T
and R. Our strategy for computing this threshold is to ensure that
λmax(HQH†) ≤ ε with a high probability. To do that, we compute
a lower bound on Pr(λmax(HQH†) ≤ ε) and use this bound to
determine the required threshold.

We begin by observing that λmax(HQH†)≤λmax(Q)λmax(H
†H).

Substituting H̆ = R1/2Hw + H̄T−1/2 into this expression, we have

λmax(HQH†) ≤Pλmax(T
1/2H̆†H̆T 1/2)

≤Pλmax(T )λmax(R)λmax(R
−1H̆H̆†) (14)

and hence

Pr
(
λmax(HQH†) ≤ ε

)
≥ Pr

(
Pλmax(T )λmax(R)λmax(R

−1H̆H̆†) ≤ ε
)

. (15)

Therefore, a conservative approach for ensuring that the left-hand side
of (15) is greater than some γ ∈ [0, 1) is to restrict the input power so
that the RHS of (15) is greater than γ. In Appendix B, we show how a
result from [18] can be used to construct an explicit expression for the
RHS of (15).

VII. NUMERICAL EXAMPLES

In this section, we provide some numerical examples that illustrate
the utility of the explicit characterization of the optimal low-SNR
signaling strategy derived in Section V. We consider a MIMO system
with M = N = 5 and an identity noise covariance matrix.

We first consider an instance of the general channel model in (1).
The channel mean H̄ was randomly chosen, and its Frobenius norm
was set to be equal to 0.866. The matrix Φ in the general correlation
model in (1) was also randomly chosen, and its trace was set to 2.5.
The resulting matrix Z in (12) appears in (16), shown at the bottom
of the next page. In Fig. 1, we provide a plot of the ergodic achievable
rates for this channel model under different signaling strategies against
the transmitted signal power. To provide a benchmark for these results,
in Fig. 1, we also provide an upper bound that corresponds to the

Fig. 1. Achievable rates versus transmitted signal power for different trans-
mission schemes over an arbitrarily correlated channel model with nonzero
mean. The signaling schemes are as follows: isotropic signaling (Strategy 1),
mean-optimal signaling (Strategy 2), optimal signaling for low SNRs (beam-
forming, Strategy 3), and signaling along low-SNR optimal basis (Strategy 4).
The lower figure provides the details of the low-SNR region of the upper figure.

maximum rate that would be achievable had the channel realizations
been perfectly known to the transmitter (i.e., instantaneous CSI). The
signaling strategies considered in Fig. 1 are the following.

1) Uniform power loading [15]. The transmitter ignores all channel
information and transmits isotropically, i.e., Q = (P/M)I .

2) Mean-optimal signaling [15]. The transmitter ignores the chan-
nel covariance information and treats the mean as if it were
the actual channel. Hence, transmission takes place along the
eigenvectors of H̄†H̄ with the eigenvalues of Q chosen to
“water-fill” over those of H̄†H̄ . (At low SNRs, this results in
beamforming along the principal eigenvector of H̄†H̄ .)

3) Low-SNR optimal beamforming (proposed herein). The trans-
mitter employs the low-SNR rate-optimal strategy derived
herein, that is, beamforming along the principal eigenvector of
Z [cf. (13)].

4) Signaling along the low-SNR optimal basis (proposed here).
The transmitter signals along the eigenvectors of Z without
restricting the input covariance matrix to be rank 1.1 For each

1The development of this strategy was motivated by the fact that for zero-
mean channels with Kronecker-structured covariance, the set of optimal sig-
naling directions is the same for all SNRs [11] and can be obtained from the
low-SNR analysis.
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input power constraint, the eigenvalues of Q are found by
solving the optimization problem in (3) (with UQ = UZ ) us-
ing a gradient-based stochastic optimization technique [19]. In
Appendix C, we provide a brief description of the technique and
an analytic expression for the stochastic gradient. (At low input
powers, this strategy reduces to Strategy 3.)

As shown in Fig. 1, at low SNRs, Strategies 3 and 4 provide higher
achievable rates than Strategies 1 and 2. In particular, at an input
power of 0 dB, Strategies 3 and 4 yield near identical rates2 of about
0.5 bits per channel use (bpcu), whereas Strategies 1 and 2 yield rates
of about 0.27 and 0.4 bpcu, respectively. At higher SNRs, Strategy 4
yields higher rates than those yielded by Strategies 1–3. For instance,
at an input power of 20 dB, Strategies 1 and 2 yield approximately the
same rate of 9 bpcu, whereas Strategy 4 yields a rate of 10 bpcu. For
this input power, Strategy 3 yields about 5.8 bpcu, which illustrates the
impact of restricting the input covariance to be rank 1 at high SNRs.

While we cannot claim optimality of Strategy 4, we have performed
numerous experiments, all of which suggest that Strategy 4 is capable
of achieving rates that are higher than those that can be achieved
under the considered signaling strategies. It is worth noting that since
Strategy 4 is based on stochastic optimization, it involves greater
computational effort than Strategies 1–3. However, because this opti-
mization is only over the M eigenvalues of Q, it requires significantly
less computational effort than computing the optimal input covariance,
which involves stochastic optimization over the M2 real parameters
that define Q.

We now provide a second numerical example that illustrates the
range of input powers for which the low-SNR expansion is guaranteed
to be accurate. We consider a nonzero-mean Kronecker model for
the channel, in which the matrices T , R, and H̄ were randomly
chosen. The resulting matrices are given in (17a)–(17c), shown at

2This is consistent with the low-SNR optimality of Strategy 3.

the bottom of the page. In Fig. 2, we have plotted the cumulative
distribution function (cdf) of Pλmax(T )λmax(R)λmax(R

−1H̆H̆†)
[cf. (14)] for different values of P . From this plot, it can seen that
the condition λmax(HQH†) � 1 is satisfied with a high probability
for input powers of up to about −15 dB. In Fig. 3, we have plotted
the achievable rates using Strategies 1–4. Since, in this figure, we
are considering the Kronecker model, we also consider two additional
strategies.

5) Covariance-optimal signaling [11]. The transmitter ignores the
mean information and signals along the eigenvectors of the
transmit covariance matrix. Similar to Strategy 4, in this strategy,
the transmitter uses stochastic optimization to determine the
eigenvalues of Q.

6) Capacity-achieving signaling [20]. The optimal input covariance
is generated using the fixed-point algorithm in [20]. As each iter-
ation involves an expectation that is numerically evaluated using
Monte Carlo integration, this algorithm is rather computationally
expensive.

The low-SNR beamforming curve in Fig. 3 suggests that the guidance
provided by Fig. 2 is rather conservative. While Fig. 2 suggests that the
low-SNR approximation of the ergodic capacity will be accurate for
up to −15 dB, Fig. 3 suggests that the designs based on the low-SNR
approximation are at least as good as the other considered strategies for
up to about 0 dB. Fig. 3 also shows that, similar to the case in Fig. 1,
using Strategy 4 yields rates that are consistently higher than the rates
yielded by the other signaling strategies. In fact, Fig. 3 shows that the
rate yielded by Strategy 4 almost coincides with the ergodic channel
capacity obtained using the (computationally expensive) technique in
[20] (see Strategy 6).

VIII. CONCLUSION

We have provided an explicit characterization of the low-SNR
rate-optimal input covariance for nonzero-mean arbitrarily correlated

Z =

⎡
⎢⎢⎣

0.0970 0.0067 − j0.0163 −0.0041 + j0.0091 0.0054 − j0.0125 −0.0215 + j0.0244
0.0067 + j0.0163 0.0397 −0.0143 + j0.0088 0.0047 − j0.0173 0.0284 + j0.0036
−0.0041 − j0.0091 −0.0143 − j0.0088 0.0595 −0.0035 − j0.0114 −0.0140 − j0.0436
0.0054 + j0.0125 0.0047 + j0.0173 −0.0035 + j0.0114 0.1163 −0.0535 + j0.0177
−0.0215 − j0.0244 0.0284 − j0.0036 −0.0140 + j0.0436 −0.0535 − j0.0177 0.1765

⎤
⎥⎥⎦ (16)

T =

⎡
⎢⎢⎣

0.4150 −0.0606 − j0.0305 −0.0535 − j0.0178 0.0404 − j0.0184 −0.2058 + j0.1730
−0.0606 + j0.0305 0.0865 −0.0172 + j0.0356 0.0184 − j0.0598 0.0962 + j0.0047
−0.0535 + j0.0178 −0.0172 − j0.0356 0.2249 −0.0088 − j0.0056 −0.0258 − j0.2195

0.0404 + j0.0184 0.0184 + j0.0598 −0.0088 + j0.0056 0.3733 −0.3320 + j0.1602
−0.2058 − j0.1730 0.0962 − j0.0047 −0.0258 + j0.2195 −0.3320 − j0.1602 0.7874

⎤
⎥⎥⎦ (17a)

R =

⎡
⎢⎢⎣

0.2197 −0.1465 − j0.1521 −0.0121 − j0.0365 0.0445 − j0.1153 −0.0381 − j0.0692
−0.1465 + j0.1521 0.7203 0.1110 − j0.1539 0.1769 + j0.2591 0.0204 + j0.1715
−0.0121 + j0.0365 0.1110 + j0.1539 0.3686 −0.0231 + j0.0377 0.1018 + j0.0161

0.0445 + j0.1153 0.1769 − j0.2591 −0.0231 − j0.0377 0.2663 0.0668 + j0.0577
−0.0381 + j0.0692 0.0204 − j0.1715 0.1018 − j0.0161 0.0668 − j0.0577 0.1648

⎤
⎥⎥⎦ (17b)

H̄ =

⎡
⎢⎢⎣
−0.0242 − j0.1315 −0.0921 − j0.2263 0.0056 + j0.1380 0.0057 + j0.0212 −0.1058 − j0.1823
−0.0359 + j0.0077 0.0179 + j0.0287 −0.0009 − j0.0549 0.1140 − j0.2008 0.0827 + j0.0295

0.0335 + j0.1153 0.0580 − j0.0103 −0.1038 + j0.0373 −0.1933 + j0.1363 0.1324 + j0.2397
−0.0109 − j0.0186 −0.0051 − j0.0679 −0.0829 + j0.0435 0.0887 − j0.0296 0.0892 + j0.1579

0.0982 + j0.2349 0.1348 + j0.0578 −0.0655 + j0.1762 0.2438 − j0.1231 −0.0164 − j0.0169

⎤
⎥⎥⎦ (17c)
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Fig. 2. CDF of Pλmax(T )λmax(R)λmax(R−1H̆H̆†) for different
values of P .

Fig. 3. Achievable rates versus transmitted signal power for different trans-
mission schemes over a correlated channel model with Kronecker-structured
covariance and nonzero mean.

MIMO channels. We have also provided a method for determining a
threshold on the input power below which the low-SNR approximation
is accurate. For higher input powers, we proposed a signaling strategy
whereby the transmitter retains the low-SNR signaling directions but
optimizes the power allocation to these directions to maximize the
ergodic rate. We have shown that this novel strategy can lead to
achievable rates that are close to the ergodic capacity.

APPENDIX A
POSITIVE DEFINITENESS OF Z IN (12)

To show that Z is positive semidefinite, it is sufficient to prove the
following lemma.

Lemma 1: Let A be an MN × MN positive semidefinite matrix,
and partition it into M × M blocks, each of size N × N . The matrix
constructed by replacing each block by its main diagonal (see the
illustration in Fig. 4) is positive semidefinite. Moreover, the M × M
matrix constructed by replacing each block by its trace is also positive
semidefinite.

Proof: Let Ei denote the MN × MN all-zero matrix with
the ith entry on the main diagonal replaced by 1, and let the
matrix constructed by replacing each block by its main diag-
onal be denoted by G. Then, G can be expressed as G =∑N

i=1
(
∑M

j=1
E(j−1)N+i)A(

∑M

j=1
ET

(j−1)N+i). Since A is positive

Fig. 4. Pictorial view of the replacement of each N × N block of A by its
main diagonal.

semidefinite, then so is (
∑M

j=1
E(j−1)N+i)A(

∑M

j=1
ET

(j−1)N+i). In-
voking the fact that the sum of positive semidefinite matrices is also
positive semidefinite completes the proof of the first statement of
the lemma. To prove the second part, let F denote the M × M
matrix constructed by replacing each block by its trace, and let 1N

be the N × 1 vector in which all entries are equal to unity. Then,
F = (IM ⊗ 1T

N )G(IM ⊗ 1N ). Since we now know that G is positive
semidefinite, then F is also positive semidefinite. �

APPENDIX B
COMPUTATION OF THE BOUND IN (15)

To provide an explicit expression for the RHS of (15), we will make
use of the follow lemma.

Lemma 2 [18, Th. 1]: Let X be an m × n matrix whose columns
are independent m-variate complex Gaussian vectors with covari-
ance matrix Σ and mean E{X} = X̄ . Let s = min{m, n}, t =
max{m, n}, and 0 < φ1 · · · < φs be s nonzero eigenvalues of SX =
Σ−1XX†. If X̄†Σ−1X̄ has s nonzero distinct eigenvalues 0 <
θ1 · · · < θs, then the cdf of the largest eigenvalue φs of SX is given by

Pr(φs ≤ x) =
e−Σiθi

det(V ) (Γ(t − s + 1))s det (Ψ(x)) (18)

where Γ(·) denotes the Gamma function, det(V ) is the determinant of
the Vandermonde matrix

V =

⎡
⎣ θs−1

1 θs−2
1 · · · 1

...
...

. . .
...

θs−1
s θs−2

s · · · 1

⎤
⎦ (19)

and Ψ(x) is an s × s matrix function of x ∈ (0,∞), whose entries are
given in the following equation:3

[Ψ(x)]ij =Γ(t − i + 1)1F1(t − i + 1; t − s + 1; θj)

− e−θj Γ(t − s + 1)

s−i+1∑
�=1

(s − i)!

(	 − 1)!

×
(

t − i

s − i − 	 + 1

)
θ�−1

j Qt−s+�(
√

2θj ,
√

2x)

− e−xΓ(t − s + 1)

s−i∑
�=1

s−i−�∑
k=0

2−�−k

× (s − i − 1 − k)!

(	 − 1)!

(
t − i

s − i − 	 − k

)

× (
√

2θj)
s+�−t−1(

√
2x)t−s+2k+�+1

× It−s+�−1(2
√

θjx), i, j = 1, . . . , s. (20)

3The expression for Ψ(x) given in [18, eq. (4)] contains a number of
typographical errors that have been corrected herein.
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In (20), 1F1(·; ·; ·) is the confluent hypergeometric function, Qp(·, ·)
is the pth-order generalized Marcum Q-function, and Ip(·) is the
pth-order modified Bessel function of the first kind. �

To use Lemma 2 to derive a bound on Pr(λmax(HQH†) ≤ ε),
we observe that E{H̆} = H̄T−1/2. Furthermore, the matrix H̆ has
independent columns and correlated rows. The covariance matrix of
the ith column of H̆ , [H̆]i is given by

E
{(

H̆i − H̄[T−1/2]i
) (

H̆i − H̄[T−1/2]i
)†}

= E
{
R1/2[Hw]i[Hw]†i R

1/2
}

= R. (21)

Using this observation, it is now apparent that H̆ satisfies the condi-
tions of Lemma 2 with Σ = R and X̄ = H̄T−1/2. Hence, one can use
(14) along with the result in (18) to obtain an explicit expression for
the bound in (15).

APPENDIX C
STOCHASTIC OPTIMIZATION OF THE EIGENVALUES

OF Q IN STRATEGY 4

The optimization problem to be solved in Strategy 4 is
maxΛQ

EH{log det(I + ȞΛQȞ†)}, where Q = UQΛQU†
Q, Ȟ =

HUQ, and UQ = UZ . We will solve this problem using stochastic gra-
dient ascent [19], in which the iteration is updated by taking a step in
the direction of the gradient associated with a single realization of the
channel, i.e., the stochastic gradient. The realization is independently
chosen at each iteration, and the algorithm converges if the step size is
progressively reduced using the techniques outlined in [19].

To efficiently implement the stochastic gradient-ascent algorithm,
we now derive an explicit expression for the stochastic gradient. The
kth entry of the stochastic gradient is

∂

∂λQk

log
(
det(I + ȞΛQȞ†)

)

=

N∑
i,j=1

∂[ȞΛQȞ†]ij
∂λQk

∂ log det(W )

∂wij

∣∣∣∣
W=I+ȞΛQȞ†

= Tr

(
∂(ȞΛQȞ†)

∂λQk

∂ log det(W )

∂W

∣∣∣∣
W=I+ȞΛQȞ†

)
(22)

where λQk
is the k diagonal entry of ΛQ, and wij is the ijth entry

of W . Now, if we use ȟr to denote the rth column of Ȟ , the partial
derivative of the quadratic term in the trace can be expressed as
(∂(

∑N

r=1
λQr ȟrȟ

†
r)/∂λQk

) = ȟkȟ†
k. The partial derivative in the

second term in the trace evaluates to (I + ȞΛQȞ†)−1. Substituting
these expressions into (22) and simplifying, we can write the kth entry
of the stochastic gradient as ȟ†

k(I + ȞΛQȞ†)−1ȟk.
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