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ABSTRACT 

We propose a new approach to solving the problem of blind 
separation of BPSK signals. Using the constant modulus 
property of the signal, we formulate this problem as a con- 
strained minimization problem that can be solved efficiently 
using an extended Newton’s method on the Stiefel mani- 
fold. Compared with the existing separation methods, the 
proposed method is quite robust to additive noise, achieves 
a low bit error rate, and enjoys a quadratic convergence 
rate and a low computational complexity. Simulation re- 
sults show that our method is a competitive blind separation 
method. 

1. INTRODUCTION 

The blind signal separation (BSS) problem consists of re- 
covering a set of statistically independent sources from a 
group of sensor observations. The challenge of this prob- 
lem lies in the fact that the separation is attempted “blindly”; 
that is, without the knowledge of the sources nor the mixing 
environment. This paper considers a digital communication 
scenario in which d independent binary signals are trans- 
mitted to an antenna array of M antennas (d < M ) .  We as- 
sume that the sources are synchronized and the delay spread 
is negligible. The received signals at the antenna array can 
then be modelled as 

~ [ n ]  = As[n] + ~ [ n ] ,  (1.1) 

where ~ [ n ]  is the sequence of vectors of the received sig- 
nals at the antenna array, A is the channel (mixing) matrix, 
s[n] is the sequence of vectors of the transmitted signals, 
and v[n] is the sequence of vectors of additive noise at the 
antenna array. The goal is to blindly determine a separating 
matrix B such that Bx[n] resembles s[n].  By ‘resemble’ 
we mean that as the influence of noise decreases, Bx[n] ap- 
proaches s[n] up to a permutation and change of signs. 
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In the general problem of blind signal separation from 
a linear mixture ( l . l ) ,  the sources are arbitrary indepen- 
dent signals and higher-order statistics are usually required 
to determine the separating matrix B. However, for dig- 
ital communication signals, the sources are constrained to 
a finite alphabet and more efficient separation algorithms 
can be designed by exploiting this property [ l ,  4,5,8-101. 
Unfortunately, the iterative least squares method in [8] and 
the ‘hypercube’ method in [4,5] require the solution of 
non-convex optimization problems and hence these meth- 
ods must include careful detection and management of lo- 
cally optimal solutions. The clustering-based method in [ I] 
is sensitive to mis-classification caused by additive noise, 
the analytic constant modulus method in [9] suffers from 
sensitivity to noise and occasional divergence and the ‘poly- 
hedral’ method in [IO] is quite sensitive to the direction of a 
randomly chosen initial vector. In this paper, we use the 
constant modulus property of the signal to formulate the 
BSS problem as a constrained optimization problem over 
the Stiefel manifold and solve it using Edelman’s extended 
Newton’s method [31. Our method enjoys a quadratic con- 
vergence rate, and simulation results show that it is robust to 
additive noise and that it achieves a low hit error rate (BER). 

2. PROBLEM FORMULATION 

For clarity in the exposition, we will restrict our discussion 
to the case of binary phase shift keying (BPSK) for which all 
elements of s[n] are f l .  However, our method can be easily 
generalized to the general M-ary PSK modulation case. We 
consider the model given in (I . I )  and assume that the mix- 
ing matrix A bas full column rank. Suppose N vectors of 
data samples have been collected at the antenna array. Then 
the model (1.1) can be re-written in matrix form as 

X = A S + V ,  (2.1) 

where X = (x[l], . . . ,x[N]) and V = (v[l], . . . ,v[N]) 
are A4 x N matrices, and S = (s[l], . . . , S I N ] )  is a d  x iV 
matrix. 
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In common with many other BSS algorithms, our 
method starts with the pre-processing step of pre-whitening 
the received signals. By doing so, the cross-correlations 
among the received signals are removed, and the proh- 
lem dimension is reduced to d x d. Let the signal cross- 
correlation matrix be denoted by R = (l/N)XXT. The 
pre-whitening step can be carried out by first computing the 
eigen-decomposition of R 

where U is orthonormal, the (nonnegative) diagonal ele- 
ments of A are arranged in nonincreasing order, Ad and 
h n n - d  consist of the first d and last ( M  - d)  diagonal ele- 
ments of A, respectively, and U is partitioned conformally 
with A to form u d  and Uh,-,j. The pre-whitening matrix 
can be chosen as W = h~%T. The pre-whitened signal 
is then given by 

Y = wx = cs i v ,  

where C = Ad'"UzA and V = A,1'2UTV. Since 
the BPSK sources are assumed to be zero-mean, of unit- 
variance and statistically independent, the matrix C is or- 
thonormal. Our goal is then to determine an orthonormal 
separating matrix Q such that 

S = Q Y = Q C S + Q V  (2.3) 

resembles the source signal S .  Mathematically, by 'resem- 
ble' we mean 

QC = DP (2.4) 

where D is a diagonal matrix with diagonal entries being 
f l ,  and P is a permutation matrix. Consequently, we have 
S = DPS + QV, implying that in the noise free case, S 
and S are identical up to a row permutation and change of 
signs. Now the separated signals S should he il. Using 
fe, to denote the ( e ,  m)th element of a matrix F, we can 
write ~ i j  = EL, q i s y k j .  We propose to solve the BSS 
problem using the following constant modulus formulation: 

The following proposition indicates that every optimal solu- 
tion of problem (2.5) is a separating matrix when N is large 
enough. Therefore, we can solve this minimization problem 
(2.5) for the separating matrix Q. 

Proposition 1 Suppose the noise power is zero. Let S be a 
d x 2d matrix containin gall 2d possible combinationsoffl 
in i f s  columns. Let Q be an optimal solution of(Z.5) .  Then 
Q is a separating matrix: i.e. (2.4) holds. 

Proof Let E = QC. Then S = ES. Since Q is the 
optimal so!ution of (2.5), Q must be orthonormal and the 
entries of S are f l .  Since C is onhonormal, it follows that 
E is also orthonormal. We will show that there is only one 
non-zero element on each row and column of E, and this 
element can only be f l .  Then E = DP. To show this, we 
only need to show that there is only one non-zero element 
on each row of E. Once this is established, we can use 
the property EE" = I to conclude that all other elements 
on the same column as this non-zero element must be zero, 
and this non-zero element can only be il. 

Let eT be a row of matrix E. In the absence of noise, 
the corresponding row in S is 

gT = e T s ,  or S = s T e ,  (2.6) 

We will use induction on d to show that there exists only 
one non-zero entry in e. In the case of d = 1, (2 .6)  reduces 
to 1 = se, where S and s are 2 x I vectors, and e is a scalar. 
Since the entries of 1 and s are z t l ,  e can only be fl. The 
proposition holds true in this case. 

Suppose that the proposition holds true f o r d  = k; i.e., 
i f  S k  = STek, then ee has only one non-zero element. Now 
we will prove that the statement is true f o r d  = k + 1 case; 
i.e., for 

(2.7) T 
&+I = Setlek+l, 

there is only one non-zero entry in vector en+l. Rewrite 
(2.7) as 

where 0' and 6' are 2k x 1 vectors, 1 is a Z k  x 1 vector with 
all its entries being 1's. el is the first element of ehtl, and 
e2 contains the remaining entries of e k + l .  If el = 0, the 
first row of (2.8) becomes 6' = S;fez .  From the inductive 
hypothesis we know that there is only one non-zero entry in 
ea. Therefore, only one element in er+l can he non-zero, 
proving the proposition in this case. If el # 0, subtracting 
the second row of (2.8) from the first, we have 

5' - S2 = 2e11. (2.9) 

Since the entries of S' and 5' are il, el can only be i l .  
Suppose el = 1, then from (2.9) we know there can only be 
0' = 1 and 0' = -1. Substituting el = 1 and 1' = 1 into 
the first row of (2.8). we get 1 = 1 + STez. This implies 
e2 = 0 because ST has full column rank. Therefore, vector 
en+l has only one non-zero entry, namely e l ,  proving that 
the proposition is true in this case. The case el = -1 can 
be treated similarly. This completes the induction on d and 
the proof of proposition. Q.E.D. 

Notice that the objective function in (2.5) is smooth in 
Q. This makes it possible to apply existing optimization 
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techniques to solve (2.5). However, the orthonormal con- 
straint QTQ = I is cumbersome to handle computation- 
ally. Geometrically, the feasible set defined by QTQ = I 
corresponds to the so called Stiefel manifold. Our approach 
is to apply the extended Newton’s method over the Stiefel 
manifold [3] to this problem by following the geodesic di- 
rections (i.e.,  the shortest curve between two points on the 
manifold). Since the iterates are confined to the Stiefel man- 
ifold, the problem is effectively reduced to an unconstrained 
one [3]. (See [6] for an alternative algorithm which does not 
take geodesic steps and [7] for the application of that algo- 
rithm to a different BSS problem.) If we let 4(Q) denote the 
objective in (2.5), the application of Edelman’s algorithm to 
our blind signal separation problem is as follows: 

1: Choose an initial separating matrix Q such that QTQ = 
I; 

2: Compute the gradient of +(Q) at point Q, which is given 
by G = @Q - Q@gQ, where @Q is the d x d matrix of 
partial derivatives of $(Q) with respect to the elements 
of Q; i.e. [@q]ij = z; 

3: Compute the Newton direction A such that QTA = 
-ATQ and 

+,,(A) - Qskew(+;A) ~ skew(A+G)Q 
1 
2 

- -IIAQT,PQ = -G, 

where skew(X) = (X - XT)/2,  II = I - QQT and 
BQQ (A) is defined by 

4: Move along the Newton direction A from Q to Q(t)  
using the geodesic formula, Q(t) = Qexp(tQTA), 
where the step size t is determined via an Annijo-type 
line search [2]; 

5:  Repeat from step 2 until the norm of the Newton direc- 
tion A is smaller than a pre-set threshold. 

3. SIMULATION RESULTS 

We now compare the performance of our method with two 
methods which exploit the geometry of the pre-whitened 
BPSK signal separation problem, namely Hansen’s hyper- 
cube method [4,5] and Xavier’s polyhedral method [IO]. 
The scenario we consider is that in [I]; i .e.,  d = 3 BPSK 
signals, M = 5 antennas and N = 100 data samples, 
with the elements of the mixing matrix A being indepen- 
dent zero-mean Gaussian random variables of the same vari- 
ance. As in [4] the columns of A are normalized to have 

Fig. 1. Raw bit error rates 

unit norm, and matrices with a correlation between a pair 
of columns greater than 0.95 are excluded. A total of 5000 
Monte Carlo runs were performed for each SNR point, and 
the ambiguity in the BSS problem (2.4) was resolved via 
differential encoding and best fit selection. Since these three 
blind methods are ’zero-forcing’ in nature, we provide re- 
sults for a ‘zero forcing’ separator with full channel knowl- 
edge as a benchmark. In that case, S = S + AtV, where 
At is the pseudo inverse of the matrix A. 

Fig. 1 shows the raw bit error rates (BERs) of the three 
blind methods of interest and the reference zero-forcing 
method, from which it is clear that our method is much 
closer to the benchmark than the other two methods. How- 
ever, the raw BER can be distorted by ‘failures’ of the blind 
methods; i.e., when QC is not close to DP [see (2.4)]. By 
computing the Frohenius norm of the difference between 
QC and the nearest matrix of the form DP we can identify 
such failures and remove the corresponding records. The re- 
sulting BER curves are shown in Fig. 2 and the correspond- 
ing failure rates are shown in Fig. 3. Again our method 
appears to have a clear advantage. 

Finally, we compare the number of floating point oper- 
ations (FLOPS) required to calculate Q in our implemen- 
tations of the blind methods (see Fig. 4). Our method ap- 
pears to have a significant advantage here too. It is inter- 
esting to note that Hansen’s hypercube methods requires 
more FLOPS at higher SNR. This is because the hypercube 
method employs an SNR dependent statistical test to deter- 
mine whether a globally optional solution to the embedded 
non-convex optimization problem has been achieved. If the 
test is negative, the optimization routine is repeated, at ad- 
ditional computational cost. 
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