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Abstract—In this paper, we describe a formulation of the
minimum mean square error (MMSE) joint transmitter-receiver
design problem for block-based multiple access communication
over intersymbol interference (ISI) channels. Since the direct
formulation of this problem turns out to be nonconvex, we develop
various alternative convex formulations using techniques of linear
matrix inequalities (LMIs) and second-order cone programming
(SOCP). In particular, we show that the optimal MMSE trans-
ceiver design problem can be reformulated as a semidefinite
program (SDP), which can be solved using highly efficient interior
point methods. When the channel matrices are diagonal (as in
cyclic prefixed multicarrier systems), we show that the optimal
MMSE transceivers can be obtained by subcarrier allocation
and optimal power loading to each subcarrier for all the users.
Moreover, the optimal subcarrier allocation and power-loading
can be computed fairly simply (in polynomial time) by the relative
ratios of the magnitudes of the subchannel gains corresponding
to all subcarriers. We also prove that any two users can share no
more than one subcarrier in the optimal MMSE transceivers. By
exploiting this property, we design an efficient strongly polynomial
time algorithm for the determination of optimal powerloading
and subcarrier allocation in the two-user case.

Index Terms—Frequency division multiple access, intersymbol
interference, orthogonal frequency division multiplexing, time di-
vision multiple access.

I. INTRODUCTION

THE communication of data through intersymbol interfer-
ence (ISI) channels can often be simplified by transmitting

the data in a block-based fashion [6]. In particular, if the blocks
are designed so that they do not interfere with each other at
the receiver, then effective detection can be performed on a
block-by-block basis. Within this family of block-by-block
communication schemes, the most commonly used schemes are
the multicarrier modulation based discrete multitone (DMT)
[1], [4], [16] and orthogonal frequency division multiplexing
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(OFDM) [20], [21] schemes. These schemes employ the (in-
verse) fast Fourier transform [(I)FFT] at the transmitter and the
receiver (along with a cyclic prefix) to effectively diagonalize
the channel matrix, resulting in a lowcost, high-performance
implementation. Many of the digital subscriber line (xDSL)
systems for wired media use DMT, while proposed digital
audio broadcasting (DAB) and digital video broadcasting
(DVB) wireless systems use OFDM.

To achieve the capacity of a spectrally-shaped Gaussian
channel in a single user multicarrier system, it is well known
[3] that one must use appropriate bit and power allocation
among the subcarriers in a way that corresponds to the classic
water-filling distribution [7]. However, achieving capacity
in the multiuser case requires more sophisticated resource
allocation [2], [18]. In particular, simply using time division
(TDMA) or frequency division (FDMA) nonoverlapping
resource allocation schemes in an arbitrary fashion will result
in multiuser rates far below capacity [25]. Unfortunately, the
optimal resource allocation can be difficult to compute exactly
[26]. Furthermore, to attain reliable performance at the rates
predicted in [2] and [18], we may need to employ joint (or at
least successive) detection at the receiver, which may result
in an unacceptably high computational load. To simplify the
receiver, one can impose a structure, such as frequency division,
on the transmitted signals and retain high rates [24] (see also
[22] for a dual problem of minimizing the transmitted power
for given data and error rates). The alternative approach taken
in this paper is to devise optimal transmitter resource allocation
for multiple access systems with a linear receiver. To do so, we
jointly optimize the transmitter and receiver (the “transceiver”)
to minimize the mean square error (MSE) of the receiver
output, under the constraint of finite transmission power.

We will adopt the general framework of block-based
symbol-spread multicarrier communication schemes [12].
This framework includes as special cases many of the popular
communication schemes such as direct sequence code divi-
sion multiple access (DS-CDMA), multicarrier DS-CDMA
(MC-DS-CDMA), and orthogonal frequency division mul-
tiple access (OFDMA). Within this framework, the optimal
single-user transmitter design problem, in terms of information
rate, was studied recently in [12], under the assumption that
maximum likelihood detection was computationally feasible.
The single-user joint transmitter and linear receiver design
under the minimum mean square error (MMSE) criterion has
also been addressed [13], [14], where it was shown to lead to an
analytic solution for the optimal linear precoder and equalizer
pair. The joint MMSE transmitter and receiver design was also
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considered in [23] in the context of the multi-input multi-output
(MIMO) channel. The system considered in [23] is essentially
a multiplexing system in which the users’ data sequences are
jointly precoded and transmitted over a common channel.
The power of this multiplexed transmission is controlled by a
single power constraint. In contrast, the system we consider
is a block-based multiple access system in which the users’
data sequences are precoded separately and transmitted over
distinct channels, and the transmission power of each user
can be independently controlled. In fact, the system in [23] is
algebraically equivalent to a single-user version of our scheme.
Therefore, our work can be considered the multiuser extension
of the work in [23].

In this paper, we present various formulations and algorithms
for the MMSE transceiver design problem for a general block-
based multiple access communication system. In particular, we
consider the joint design of an optimal transmitter/receiver pair
under the constraint of fixed finite transmission power. It turns
out that the direct formulation of this problem is nonconvex,
making it difficult to solve in practice. We develop herein an al-
ternative convex formulation of the MMSE transceiver design
problem using the linear matrix inequality (LMI) technique.
When the channel matrices are diagonal (or jointly diagonaliz-
able), as in the generalized OFDMA or DMT type systems [21],
we show that the optimal MMSE transmitters can be realized
by appropriately allocating subcarriers and power to each user.
This result generalizes a result in [23] for what corresponds to
the single-user case in our framework. One major consequence
of this result is that it allows us to simplify the semidefinite pro-
gramming (SDP) formulation of the transceiver design problem
to a second-order cone program (SOCP), which can be solved
by highly efficient interior point methods [11]. In addition, we
show that any pair of users can share no more than one subcar-
rier in an optimal MMSE scheme. By exploiting this property,
we design an efficient strongly polynomial time algorithm for
the determination of optimal power loading and subcarrier allo-
cation in the two-user case.

Throughout this paper, we assume that the channel matrices
of all the users and the noise correlation [collectively known as
the channel state information (CSI)] are known. This informa-
tion is usually tracked and estimated by most practical receivers
in order to facilitate decoding. For example, in xDSL and digital
cable TV systems, the channel does not vary very often, and it
is possible for the “central office” to acquire the CSI. The CSI
can also be obtained by the base station in a quasistatic wireless
multiple access scheme, where the channels undergo only slow
changes. A recent work [9] on channel-adapted precoder design
also assumed full knowledge of CSI and demonstrated improved
system performance for an uplink CDMA system. Similarly, the
methods presented in this paper are designed to exploit the CSI
to efficiently determine how the users should adapt their trans-
mission to the current environment in a jointly optimal manner.
Our simulation results indicate that this joint adaptation results
in a substantial improvement in the performance of the multiple
access scheme. In the applications we have envisioned, the op-
timization of the transmitters will be performed at the central
office or base station and will be communicated to the users via
control channels.

The rest of this paper is organized as follows. Section II
gives two convex formulations (SDP and SOCP) of the optimal
MMSE transceiver design problem in the two-user case. The
structure of optimal MMSE transceivers is analyzed when the
channel matrices are all diagonal in Section III. This optimal
structure gives rise to a strongly polynomial time algorithm for
the determination of optimal power/subcarrier allocation. Sec-
tion IV presents the generalization of the results of Section II
to the case of more than two users. Section V presents some
simulation results that compare the performance in a fading
environment of the jointly optimal MMSE transceivers with
that of an OFDMA scheme, which does not require CSI, and
that of a scheme in which the CSI is used to design MMSE
transceivers on a user-by-user basis. The simulation results
indicate that the performance advantage of the jointly optimal
scheme is substantial [a signal-to-noise ratio (SNR) gain of
around 7 dB]. The final section (Section VI) contains some
concluding remarks and suggestions of future work.

Our notational conventions are as follows: The -dimensional
Euclidean space is denoted by Re , and the non-negative orthant
of Re is denoted by Re . Vectors and matrices will be rep-
resented by bold lowercase and uppercase letters, respectively,
and the superscript will denote the Hermitian transpose. The
elements of these structures will be denoted with appropriate in-
dices, e.g., and , whereas the rank
of will be denoted by . For a random vector , will
denote its mean, and will denote its correlation matrix.
Moreover, for any symmetric matrix , the notation (or

) signifies that is positive semidefinite (or positive
definite respectively), and the notation tr denotes the trace
of .

II. JOINT MMSE TRANSMITTER-RECEIVER DESIGN:
TWO-USER CASE

Consider a quasisynchronous vector multiple access scheme
with two users whose data vectors and are uncorrelated
(see Fig. 1). The channel matrices and , which are of
size , are assumed to be known, and is a zero mean ad-
ditive Gaussian noise vector that is uncorrelated with and
and has known correlation matrix . With square
transmitter precoding matrices and , the received signal
takes the form

(2.1)

In our development, each data block will be treated as white
with identity correlation matrix. However, our results carry over
to the colored case as well, because a whitening matrix

can be readily absorbed into the precoder , as long as
the corresponding source correlation matrix is known (and
full rank). From the received signal , we wish to extract the
transmitted signals , , 2. This can be accomplished in
various ways. A popular (and arguably the simplest) approach
is to use a linear receiver , whereby the equalized signal
is quantized according to the finite alphabet of , e.g., for BPSK

sign

where , , 2 is the block (matrix) equalizers. Of course,
nonlinear receiver structures (for example, DFE type receivers)
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Fig. 1. Two-user multiple access scheme (uplink).

are also possible, but we will not discuss them in this paper. The
objective of this section is to obtain efficiently solvable formu-
lations for the (joint) optimization of , , , and to
minimize the MSE at the equalizer output.

Since the precoder matrices are nominally square, and
are nominally of length , corresponding to a (maximum)

symbol rate of symbols per block per user. After the ma-
trices and are designed, we usually have
and , where denotes the rank of a matrix. Since
(at most) symbols from user can be reliably recovered
using the linear equalizer , the actual symbol rate of user
will be reduced to symbols per block, resulting in a trans-
mission redundancy of and a coding rate of .
In other words, we do not set the coding rates before the de-
sign process. Instead, the coding rates are (implicitly) optimized
along with the explicit optimization of the transceivers using the
MMSE criterion. We will explain that point in more details in
Section III-A.

The above vector multiple access channel model arises nat-
urally in the so-called generalized multicarrier block transmis-
sion scheme [21]. In such block transmission, the input signal
streams for the two users are divided into blocks or vectors
via a serial-to-parallel converter, whereas at the receiver, the
output signal block is processed on a block by block basis and
then parallel-to-serial converted before decoding. To avoid inter
block interference at the receiver, the precoded symbol vectors
are usually either zero-padded or coded with a cyclic prefix. In
the case of cyclic prefixing, the channel matrices are cir-
culant. By applying IFFT and FFT transformation to the data
vectors , , and , as well as to the transmitter filter ma-
trices, we can further diagonalize the channel matrices , in
a way much like the well known single-user OFDM system.
This process is illustrated in Fig. 2. In the case of zero-padding,
the channel matrices are tall, Toeplitz, and full column rank. If
an appropriate time-aliasing operation is used at the receiver,
the channel matrix is again circulant, and the IFFT/FFT diago-
nalization procedure can be carried as in the cyclic prefix case.
The model in (2.1) is also applicable in multiple input, multiple
output (MIMO) block transmission schemes, and some of the
techniques developed herein extend naturally to that case. How-
ever, for simplicity, we will focus our attention on the single

input, single output case and merely observe the MIMO exten-
sions in the conclusion. In the following section, we develop an
SDP formulation of the MMSE transceiver design problem for
general and . In Section III, we will develop a more effi-
ciently solvable SOCP formulation for the case of diagonal
and . Before we do so, we point out that similar models to that
in Fig. 1 have been considered in [25], where the capacity re-
gion for the above multiaccess communication channel is evalu-
ated using the tool of linear matrix inequalities and semidefinite
programming.

A. SDP Formulation of MMSE Transceiver Design

For the system in Fig. 1, let denote the error vector (before
making the hard decision) for user , , 2. Then

This further implies that

where we have used the fact that the signals , and the noise
are mutually uncorrelated:

and

that the noise correlation matrix is known and that the source
correlation matrices are normalized:

and

Similarly, we have

Introducing the matrix

(2.2)
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Fig. 2. OFDM communication system.

which can be seen as the inverse of the covariance matrix of
in (2.1), we can rewrite the error covariance matrices for users
1 and 2 as

(2.3)

(2.4)

As is always the case in practice, there are power constraints
on the transmitting matrix filters:

tr tr (2.5)

where and are user-specified bounds on the
transmitting power for each user. Our goal is to design a set of
transmitting matrix filters satisfying the power constraints
(2.5) and a set of matrix equalizers such that the total MSE
tr tr is minimized. In other words, we
aim to solve

minimize tr tr

subject to tr

tr (2.6)

where tr and tr are given by (2.3) and
(2.4), respectively. The receiver filters and in (2.6) are
unconstrained. The objective function of (2.6) is a fourth-order
polynomial in , , , 2. It can be easily checked (even
for the case where the block length is one; i.e., each , is
a scalar) that the Hessian matrix of this fourth-order polynomial
is not positive semidefinite. Therefore, the objective function of
(2.6) is nonconvex, and hence, it can be difficult to minimize due
to the usual difficulties with local solutions and the selection of a

stepsize and starting point. In what follows, we will reformulate
(2.6) as a convex semidefinite program.

As the first step, we can eliminate and in (2.6) by first
minimizing the total MSE with respect to and , assuming

and are fixed. The resulting receivers are the so-called
linear MMSE receivers. More specifically, the linear MMSE
equalizer is defined as a matrix that, given the transmitting
matrices , , minimizes the MSE for user 1 (or, equivalently,
the total MSE since tr is independent of ). By
minimizing tr with respect to , we can obtain the
linear MMSE equalizer for user 1 in a standard manner:

(2.7)

Substituting the MMSE equalizer (2.7) into (2.3) results in the
following minimized (with respect to ) MSE:

(2.8)

Similarly, the MMSE equalizer for user 2 is given by

(2.9)

and the resulting minimized (with respect to ) mean square
error for user 2 is given by

(2.10)

Substituting (2.8) and (2.10) into the total MSE gives rise to

MSE tr tr

tr tr

tr tr

tr

tr

tr (2.11)
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where the second to last step follows from the definition of in
(2.2). Thus, by eliminating the variables and , we obtain
a formulation equivalent to (2.6)

Design a pair of transmitting matrix filters

satisfying the power constraints (2.5) such that the

total mean squared error given by (2.11) is minimized.

Now, let us define two new matrix variables

and

Then, the MMSE (2.11) can be expressed as

MSE tr

and the power constraints (2.5) can be expressed as

tr and tr

Consequently, the optimal joint MMSE transmitter-receiver de-
sign problem can be stated as

minimize tr

subject to tr tr

(2.12)

Using the auxiliary matrix variable (2.2) and the nature of
our minimization problem, we can rewrite (2.12) in the fol-
lowing alternative (but equivalent) form:

minimize tr

subject to tr tr

(2.13)

The equivalence of (2.12) and (2.13) can be argued as fol-
lows: First, we recall the simple property from linear algebra
that tr for all and . Since

is Hermitian symmetric and positive definite, we have
tr tr whenever

. Since we are
minimizing tr , a monotonicity argument ensures that the
equality must hold at
optimality. Notice that the constraint

can be rewritten, via Schur’s complement [10, Th. 7.7.6, p. 472],
as the following linear matrix inequality:

(2.14)

Therefore, we obtain the following semidefinite programming
(SDP) formulation [19]:

minimize tr

subject to tr tr

satisfies (2.14)

(2.15)

This SDP formulation makes it possible to efficiently solve the
optimal transmitter design problem using interior point methods

[19]. The advantage of the SDP formulation (2.15) over the for-
mulation (2.6) is that the former is convex, whereas the latter
is not. The convexity of (2.15) is due to the linear cost func-
tion and the fact that the constraints are in the form of linear
matrix inequalities, which are also convex [19]. The convexity
of (2.15) ensures that its global optimum can be found in poly-
nomial time without the usual headaches of step size selection,
algorithm initialization, or the risk of local minima. The arith-
metic complexity of the interior point methods for solving the
SDP (2.15) is , where is the solution
accuracy [19].

We remark that solving the optimization problem (2.15) re-
quires CSI knowledge, i.e., one needs to have available ,

, and the noise correlation matrix . Since these quantities
are usually estimated and available at the central office or base
station, a natural implementation would be to perform the opti-
mization there. Once the optimal and have been deter-
mined, they can be factorized (using, e.g., Cholesky factoriza-
tion) as

and

to obtain optimal MMSE transmitter matrices and . The
corresponding optimal MMSE equalizers and can then
be computed by substituting and into (2.7) and (2.9). The
optimal transmitter matrices and can then be sent to the
transmitters over control channels.

III. DIAGONAL DESIGNS

When the channel matrices and are diagonal (as in
OFDM systems) and the noise covariance matrix is also di-
agonal, we can show (see Theorem 3.1 below) that the optimal
transmitters are also diagonal and can be computed more effi-
ciently [faster than solving the SDP (2.15)].

Theorem 3.1: If the channel matrices and are diag-
onal and the noise covariance matrix is diagonal, then the op-
timal transmitters and are also diagonal. Consequently,
the MMSE transceivers for a multiuser OFDM system can be
implemented by optimally allocating power to each subcarrier
for all the users.

Proof: The proof proceeds via a contradiction argument
based on the fact [8, p. 402] that for a positive definite matrix

tr (3.1)

holds, with equality holding if and only if is diagonal. Let
and be the optimal solution to (2.12), and suppose that

they are not both diagonal. Let and be the diagonal parts
of and , respectively. Then, tr tr and
tr tr , and therefore, and are in the
feasible set of (2.12). Let

, where , , and are diagonal. Then, the diagonal part
of , which is denoted , is given by

Using the inequality (3.1), we obtain tr tr ,
where the strict inequality holds since and are not both
diagonal. Since tr and
tr , it follows that , which
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contradicts the assertion that the (nondiagonal) matrices and
were optimal. Hence, when , and are diagonal, the

optimal and are diagonal.
Theorem 3.1 should be good news to practitioners since it

says that in “diagonal” scenarios, there is no need to imple-
ment full precoder matrices because diagonal precoders are
optimal. Notice that diagonal precoders simply represent power
loading/subcarrier allocation at the transmitters. Therefore,
Theorem 3.1 implies that the MMSE transceivers for a multiuser
OFDM system can be implemented by optimally assigning
subcarriers and allocating power to them. In applications where
the noise correlation matrix is not diagonal, one may wish to
approximate the true noise correlation matrix with a diagonal
one (by setting the off diagonal elements to zero) to enjoy the
benefits of reduced implementation complexity, as predicted
by Theorem 3.1. In particular, such an approximation will lead
to simplified (i.e., diagonal) transmitter/receiver design at the
expense of reduced performance (e.g., with increased overall
MSE error). (An analogous approximation is typically used
in the design of single-user DMT schemes in the presence of
colored noise.)

Another important implication of Theorem 3.1 is the signif-
icant simplification in the computation of the optimal MMSE
transceivers. In particular, Theorem 3.1 suggests that we only
need to search among all the diagonal transmitters in order to
achieve the minimum MSE. Therefore, if , , and are
diagonal, it is only necessary to solve (3.2) below rather than
the SDP (2.15). Before we state this formally, we point out that
when the channel matrices have been diagonalized using the
FFT and IFFT, the th diagonal element is , where
is the frequency response of user ’s channel at the th point on
the FFT grid . Define the diagonal entries of ,

by diag , diag . Then, using , as
the new variables to be optimized, and letting diag ,
the reduced optimization problem becomes

minimize

subject to

(3.2)

Introducing an auxiliary vector , we can transform (3.2) into
the following (rotated) second-order cone program:

minimize

subject to

(3.3)

There exist highly efficient (general purpose) interior point
methods [11] to solve the above second-order cone program
with total computational complexity of ,
where is the solution accuracy. This is a significant
improvement from the complexity of if we
solve the MMSE transceiver design problem as an SDP (2.15).

A. Interpretation of Our MMSE Design Criterion

Let diag , diag be the di-
agonal transmitters designed for the two users. It is possible
that some entries of , are zero, indicating that no power
are allocated to the corresponding subcarriers. For example, if

for some subcarrier , then user 1 does not allocate
power to this subcarrier . If user 1 still sends information sym-
bols along subcarrier , then the receiver will not be able to de-
tect any signal of user 1 on subcarrier , resulting in loss of in-
formation symbols and a large symbol error rate.

To ensure a low symbol error rate, it is natural not to send
any information symbols along a subcarrier where no power
has been allocated. This results in a reduction of the symbol
rate. Specifically, let (respectively, ) denote the set of in-
dices for which (respectively, ). Then,
during each transmission slot, user sends exactly one infor-
mation symbol per each subcarrier indexed by . Consequently,
the symbol rate for user becomes symbols/transmission,
whereas the symbol rate loss is given by . On the
other hand, the total MSE is given by

MSE (3.4)

where denotes the complement of with respect to the set
. The second and fourth terms on the right-hand

side of (3.4) represent the MSE in the transmitted symbols, and
the first and third terms represent the additional MSE incurred
by not transmitting on all subcarriers. Since we have assumed
that

MSE

(3.5)

In this way, the total MSE can be interpreted as a sum of the
symbol rate loss for each user and the MSE of the symbols that
are actually transmitted. As a result, when we design a system
to minimize the total MSE, we are, in fact, optimizing the com-
bined effects of high symbol rates and high fidelity (low MSE)
for the symbols that are actually transmitted. To put it in an-
other way, even though we appear to be optimizing a mixture
between rates and MSE errors, we are actually minimizing the
total MSE. This is because and in (3.5) are not artificially
chosen a priori; they are a consequence of the MSE based de-
sign. If the terms and were not taken into account or chosen
differently, (3.5) would no longer represent the total MSE, and
hence the “ ” sign in (3.5) would be invalid.

B. Structure of Optimal Power Loading Scheme

In this subsection, we will establish some important prop-
erties for the optimal transceiver design obtained from solving
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(3.3). These properties suggest, among other things, that the op-
timal power loading [as stipulated by (3.2)] is always achieved
by an appropriate allocation of subcarriers according to the rel-
ative subchannel gains for the two users.

Theorem 3.2: Let , be the optimal solution of
(3.2). Let us define the four index sets:

where and denote the set of subcarriers allocated to user
1 and user 2, respectively, whereas and denote the set of
subcarriers shared and unused by the two users, respectively.
Then, we have the following:

1) The four index sets , , , and form a partition of
.

2) For each and , we have

3) For all , , we have

4) For any and any , we have
. Similarly, for any

and any , we have .
Proof: The fact that forms a partition

is obvious. By the standard optimality condition [5, Th. 9.1.1,
p. 200] for (3.2), there exist two Lagrangian multipliers ,
such that for all , the first equation at the bottom
of the page holds. Using the definitions of the index sets , ,

, and , we can further refine the above optimality condition
as (3.6), shown at the bottom of the page. From the first pair of
relations in (3.6) we obtain

(3.7)

whereas the second pair of relations in (3.6) implies

(3.8)

Combining (3.7) with (3.8) gives

for all and

which proves part 2 of the theorem. In addition, the third pair of
relations in (3.6) shows that

so the ratio is independent of . This
proves part 3 of the theorem.

Finally, for any and any , we have from
(3.6) that

where in the last step, we have used the fact that .
Thus, we have , as desired.
Similarly, we can show for all

and . This completes the proof of the
theorem.

It is important to note from Theorem 3.2 that the optimal
power loading is dependent on the magnitude of the subchannel
gains only. This is good news for practitioners since the phases
of the subchannel gains are usually more difficult to estimate.
In addition, Theorem 3.2 has an intuitively appealing interpreta-
tion. From the MMSE transceiver design standpoint, we should
allocate a subcarrier to user 1 and a subcarrier to user 2 only
if

In other words, the subcarriers are allocated to the two users
according to the relative ratios of the subchannel gains. In

(3.6)
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Fig. 3. (a) Structure of general linear transceiver for a multiuser cyclic-prefixed multicarrier scheme. (b) Structure of the optimal MMSE transceiver.

particular, the subcarriers for which is high
should be assigned to user 1, whereas the subcarriers with small
values of (or, equivalently, large values of

) should be assigned to user 2. For all the
subcarriers that are shared by both users (i.e., for all ), the
subchannel gain ratio must be the same. In
a fading environment, the subchannel gains ,
are random (for example, Rayleigh or Rice distributed);
therefore, the probability of having two equal subchannel gains
is zero. This implies that from the MMSE transceiver design
standpoint, at most one subcarrier should be shared by the two
users. Of course, there may also be subcarriers in the index
set that are not used by either user. These subcarriers have
small subchannel gain to (subcarrier) noise ratios for both
users (i.e., both and are small), and
according to Theorem 3.2, they should not be used by either
user. In other words, they are useless subcarriers. Fig. 3 shows
the implication of Theorem 3.2 in schematic form. In Fig. 3(a),
we have the general transceiver structure for a diagonalized
system, which involves full matrix precoders and equalizers.
In Fig. 3(b), we have the optimized structure that consists of
subcarrier allocation and power loading. The shaded boxes
indicate the carriers allocated to that user. They emphasize
the dramatic reduction in implementation complexity of the
optimized system over the general system.

Notice that the rank of the optimally designed (diagonal) pre-
coder matrices are given by the cardinalities of and , de-
noted and respectively, when there is no commonly

shared subcarrier . As a result, the optimized code
rates for the two users are and , respectively. When

, then the code rates become and
.

C. Strongly Polynomial Time Algorithm for Optimal Power
Loading

Theorem 3.2 completely characterizes the structure and the
properties of the optimal MMSE multiple access transceiver de-
sign for an OFDM (or DMT) type system. In what follows, we
will use these properties to devise an efficient algorithm to de-
termine the optimal MMSE solution. For simplicity, we will as-
sume that the subchannel gains as well as their ratios for the two
users are distinct:

(3.9)

By the random nature of the subchannel gains, the above as-
sumption is (almost) without loss of generality since it merely
represents the generic state of the subchannels and is expected
to hold with probability 1. After all, it is straightforward to in-
stall some simple control mechanism in any practical subcarrier
allocation algorithm so that if the assumption (3.9) fails, the al-
gorithm will simply find a reasonable suboptimal solution. We
will also assume, again for simplicity, that the noise is white,
i.e., . The extension to the case where diag
is straightforward.

Authorized licensed use limited to: McMaster University. Downloaded on July 18,2010 at 19:51:30 UTC from IEEE Xplore.  Restrictions apply. 



LUO et al.: TRANSCEIVER OPTIMIZATION FOR BLOCK-BASED MULTIPLE ACCESS 1045

Before we proceed, we need to set up some extra notation. For
convenience, let us assume that the ratios of subchannel gains
are sorted:

(3.10)
Since the subchannel gain ratios are distinct (3.9), there is no
loss of generality in the above ordering. In addition, we intro-
duce two index mappings and such that

the ranking of in

for and (3.11)

and

the ranking of in

for and (3.12)

In addition, for any , we define the index set

(3.13)

and for any , we define the index set

(3.14)

In other words, represents the set of the subcarriers
in with the largest subchannel gains for user 1,
whereas consists of the set of the subcarriers in

with the largest subchannel gains for user 2. Notice
that the cardinality of and is exactly equal to
. In addition, and

. We will also need some notation and expressions for
the Lagrangian multipliers when the index sets , are fixed.
These expressions are developed from the optimality condition
(3.6). We will need to consider two cases. First, when
(empty set), then the system (3.6) decouples, and the multi-
pliers can be computed explicitly. In particular, for each index
set , we can solve the following system of op-
timality equations [obtained from (3.6)] in the variables

and , subject to the power normalization con-
straints in (3.2):

The resulting solution is given by

(3.15)

Similarly, for each index set , we can solve
the following system of optimality conditions in and

, subject to the power normalization constraints
in (3.2):

The resulting solution is given by

(3.16)

The above expressions of and are the Lagrangian
multipliers when , , and . When is
a singleton, say, for some , then we can ob-
tain in a similar way the expressions of multipliers denoted by

, . [Notice that the multipliers now depend
on both index sets and as well as , since the optimality
conditions (3.6) are no longer decoupled due to the subcarrier
shared by the two users.] In particular, for each pair of disjoint
index sets , , we have (3.17)–(3.19),
shown at the bottom of the page. Here, we adopt the convention
that in case for user and subcarrier .

(3.17)

and

(3.18)

and

(3.19)
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Now, we are ready to describe the new algorithm for MMSE
optimal transceiver design. By Theorem 3.2, the optimal MMSE
transceiver design is characterized by the four index sets , ,

, and . By the assumption (3.9) and the preceding discus-
sion, the index set can have at most one element. Thus, there
are two cases.

Case 1: . In this case, we have from Theorem 3.2 that
and . We can search for

the index sets and iteratively. In particular, notice that the
subcarriers in are either in or in . Moreover, by
part 4 of Theorem 3.2, with ,
whenever and . Thus, if there are
subcarriers in being allocated and used by user 1
(i.e., has subcarriers), then these subcarriers must have
the largest subchannel gains (for user 1) among the subcar-
riers in . Consequently, [see the def-
inition (3.13) above]. This implies that to search for the index
set in , we only need to consider the following
possibilities:

(3.20)

Similarly, there are only possibilities when searching
for in , namely

(3.21)
Now, for each given by (3.20) and each given by (3.21), we
can compute , , and ,
according to (3.15) and (3.16), respectively. Once these values
are computed, we can check if the conditions

(3.22)

and

(3.23)

are satisfied. If they are, then we have found the index sets
and and ,

together with a set of multipliers , and power levels
, , and , that satisfy the optimality condi-

tion (3.6), and the search terminates. If (3.22) and (3.23) are not
satisfied, we search for a different pair of and , and the algo-
rithm continues until either the search terminates successfully
with a set of optimal index sets , , , and , or all possible
pairs of and , as specified by (3.20) and (3.21), have been
exhausted. In the latter case, we will increment , and the pro-
cedure will be repeated. Notice from (3.15) that (3.22) is equiv-
alent to

(3.24)
and by the definition of , , (3.23) is equivalent to

(3.25)

With the help of (3.10) and the index mapping and , the
above two conditions can be checked easily in operations
(assuming and are known).

Case 2: , for some . In this case, we
have from Theorem 3.2 that and

. By a similar argument as in Case 1, we can con-
clude that has possibilities, which are given by (3.20),
and has possibilities given by (3.21). For each
and specified, respectively, by (3.20) and (3.21), we can com-
pute , , and ,

, , according to (3.17)–(3.19), respectively. Once
these values are computed, we can check if the conditions

(3.26)

and

(3.27)

are satisfied. If they are, then we have found the index sets
, , and ,

together with a set of power levels , , and
, that satisfy the optimality condition (3.6),

and the search terminates. If (3.26) and (3.27) are not satisfied,
we search for a different pair of and , and the algorithm
continues until either the search terminates successfully with a
set of optimal index sets , , , and , or all possible pairs of

and , as specified by (3.20) and (3.21) have been exhausted.
In the latter case, we will increment , and the procedure will be
repeated. Similar to Case 1, (3.26) is equivalent to

(3.28)

and by the definition of , , (3.27) is equiv-
alent to

(3.29)
Again, with the help of (3.10) and the index mapping and ,
the above two conditions can be checked easily in opera-
tions (assuming and are known).

Notice that the main computational steps in the above search
algorithm are divided in three parts:

1) computing the index mappings and [cf. (3.11) and
(3.12)];

2) computing the multipliers , [or ,
] for each choice of and according to

(3.15)–(3.19);
3) checking the validity of the conditions (3.22)–(3.27).

Part 1) can be carried out efficiently via any of the classical
sorting algorithms and certainly takes no more than arith-
metic operations. Part 2) takes operations since, as
varies, there can be in total at most different pairs of
candidate index sets and of the form (3.20) and (3.21),
and for each fixed and , computing the multipliers takes
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at most operations. The latter is because, as changes
from to [or as changes from

to ], we can recursively up-
date the multipliers in operations using (3.15)–(3.19). Part
3) takes as well, since for each and pair checking the
conditions (3.22)–(3.27), which is equivalent to checking (3.24),
(3.25) and (3.28), (3.29), takes operations, and there are at
most different and pairs.

In summary, the algorithm has a strongly polynomial (i.e.,
independent of solution accuracy ) complexity of , and
it terminates finitely with an exact optimal MMSE transceiver
design. This is in contrast to the interior point algorithm for
solving, say, the formulation (3.2), which is iterative and termi-
nates with an approximate solution in arith-
metic operations, where is the solution accuracy.

The schematic description of the algorithm is given below.

An Algorithm for Computing the MMSE
Transceiver Design

Step 1) Index mappings. Use a sorting
algorithm to compute the index
mappings and according to
(3.11) and (3.12).

Step 2) Iteration . For each
choice of and given by (3.20)
and (3.21):

2.1. Consider the case :
— Compute the multipliers and

according to (3.15) and
(3.16);

— Check if the conditions (3.24)
and (3.25) are valid. If yes,
set , , and

, and
terminate the algorithm. Else, con-
tinue to step 2.2.

2.2 Consider the case :
— Compute the multipliers and

according to (3.17) and
(3.18);

— Check if the conditions (3.28),
(3.29) are valid. If yes, set

, , and
, and termi-

nate the algorithm. Else, continue
to step 3.

Step 3 Repeat. Return to Step 2 with
.

In practical situations, we can expect the above subcarrier and
power allocation algorithm to be much faster than , since
it is possible that in the optimal design, i) no subcarrier is shared
by the users , and ii) no subcarrier is wasted ,
or the set of “bad” subcarriers can be fixed in advance. If this
is the case, then we will only need to search for the index sets

and , which forms a partition of . It follows
from part 2) of Theorem 3.2 that and

for some . Thus, there are
only possible choices for and . With this simplification,
the resulting search procedure will take only operations.

We remark that (single-user) DMT transmissions (such as
DSL or digital cable TV) entail power loading and bit loading.
Power loading is achieved by varying the amplitudes of dif-
ferent subcarriers. However, it is not known how one should
optimally allocate power and subcarriers in a multiple access
communication system. Some heuristic subcarrier/power allo-
cation schemes (such as cyclic allocation) have been proposed
in the literature; see, e.g., [21]. The work reported in this section
provides means to achieve optimal power/subcarrier allocation
in the MMSE sense for a two-user communication system.

IV. MULTIPLE-USER CASE

So far, we have only presented results for the two-user case.
It is possible to extend some of our results to the general -user
case. In particular, the formulations in Section II and the analysis
therein as well as the diagonal designs can all be generalized to
the general -user case. In this section, we will state (mostly
without proofs) the type of extensions that can be made in the
general -user case.

Consider the general -user vector multiple access commu-
nication system (see Fig. 4) modeled by

(4.1)

where and are the th user’s signal and channel matrix,
respectively, is the th precoder matrix to be designed, and

. Let be the linear MMSE matrix equalizer at
the th receiver, and generate the estimate of by quantizing

, according to the alphabet of , e.g., for BPSK

sign

Let denote the error at the output of the th
equalizer. It can be shown (similar to the analysis in Section II)
that the total MSE is given by

tr tr

Let us introduce a set of new matrix variables .
Then, the power constrained optimal MMSE transmitter design
problem can be described as

minimize tr

subject to tr

(4.2)

Using the auxiliary matrix variable
and a Schur complement argu-

ment analogous to that in Section II, we can rewrite (4.2) as the
SDP formulation of the MMSE transceiver design problem in
(4.3), shown at the bottom of the next page. This SDP formula-
tion makes it possible to solve the optimal transmitter design
problem using the highly efficient interior point methods for
arbitrary channel matrices and noise correla-
tion matrix . The total computational complexity of this ap-
proach is [19]. Once the optimal solutions

Authorized licensed use limited to: McMaster University. Downloaded on July 18,2010 at 19:51:30 UTC from IEEE Xplore.  Restrictions apply. 



1048 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 4, APRIL 2004

Fig. 4. Multiuser multiple access system.

are determined from solving (4.3), we can first fac-
torize (using, e.g., Cholesky factorization) these matrices as

for some transmitter matrices , and then, compute the corre-
sponding optimal MMSE equalizers as

In the case, where the channel matrices are diagonal (e.g.,
in the cyclic-prefixed GMC-CDMA scheme of [21]) and
diag , it is possible to simplify (4.3) substantially. In par-
ticular, it can be shown that the optimal transmitter matrices are
also diagonal. As a result, the SDP formulation (4.3) can be sim-
plified to the following rotated SOCP formulation:

minimize

subject to

(4.4)

There exist highly efficient (general-purpose) interior
point methods (e.g., [11]) to solve the above SOCP with

complexity, where is the solution
accuracy.

It is possible to characterize the optimal power loading [as
stipulated by the formulation (4.4)] in much the same way as the
two-user case. Indeed, it can be shown that the optimal power
allocation is always achieved by an appropriate allocation of
subcarriers according to the relative subchannel gains for the
users.

Theorem 4.1: Let , be the optimal so-
lution of (4.4). Let us define the index sets, shown at the bottom
of the page, where denotes the set of subcarriers allocated to
user , whereas denotes the set of subcarriers shared by at
least two users, and is the set of subcarriers not used by any
user. Then, we have the following.

1) The index sets , , and form a partition of
.

2) For each and , we have

3) Suppose , , and they are shared by users and ;
then

4) For any and any subcarrier used by user , we
have .

minimize tr

subject to tr

(4.3)

for all and
for some and

for all
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The proof of Theorem 4.1 can be modeled after that of
Theorem 3.2. In practice, we (almost) always have

and (4.5)

Under (4.5), part 3) of Theorem 4.1 implies that each pair of
users can share at most one subcarrier, even though a subcar-
rier can be shared by any number of users. As a result, we can
bound the size of by . It is not clear if one can use
Theorem 4.1 to directly design a fast combinatorial algorithm
for optimal subcarrier and power allocation. In the two-user
case, this has been done in Section II. Without such a direct al-
gorithm, we will need to use interior point algorithms to solve
the second-order cone program (4.4) to determine the optimal
subcarrier and power allocation.

V. EXAMPLES

In this section, we demonstrate the effectiveness of our
method through three examples.

Example 1: To demonstrate the power loading performed
by formulation (3.3) (or, equivalently, by the combina-
torial algorithm in Section III-C), we consider a two-
user scenario in which each user encounters a three-tap
channel. The impulse response of the channel for user one is

, where
, and the impulse response of the channel for user two

is .
Each user employs multicarrier modulation with 32 subcarriers
and a cyclic prefix of length 2, and the noise is white with

. The users transmit the same power , and
the block SNR was chosen to be low (5 dB) in order to
enhance the visual clarity of the figure. The results of the mul-
tiuser MMSE power loading algorithm are shown in Fig. 5 in
a form reminiscent of “waterfilling.” (The height of each stem
denotes the power allocated to that subcarrier.) Note that in this
scenario, 19 subcarriers have been allocated to user 1 alone,
12 to user 2 alone, and subcarrier 25 is shared. In addition,
note that subcarriers 5–7 are allocated to user 2, even though

for , 6, and 7. This illustrates the fact
that the ratios of the subchannel gains determine the optimal
MMSE subcarrier allocation and that intuitively reasonable,
but ad hoc, subcarrier assignment schemes can be suboptimal
in the MSE sense. We also point out that over certain groups of
subcarriers that are allocated to one user, the subcarrier power
allocation exhibits the “smile” shape observed for single-user
MMSE power loading [16, p. 198].

Example 2: In this example, we compare the performance
of the jointly optimal MMSE transceiver with that of an orthog-
onal frequency division multiple access (OFDMA) scheme that
does not require channel state information (CSI) to design the
transmitter and that of a scheme in which CSI is used to design
MMSE transceivers on a user-by-user basis. The scenario is a
multiple access scheme with 16 active users. Each user encoun-
ters a three-tap (frequency-selective) Rayleigh channel in which
each tap is a zero-mean complex Gaussian random variable with
variance 0.5 per dimension. The noise is white with .

Fig. 5. Multiuser power allocation for Example 1. The curves are
for (solid) and (dash-dot) . The stems are of length (where
this is nonzero) for (“ ”) and (“ ”).

Each user employs a multicarrier modulation scheme with an-
tipodal signalling. There are 128 available subcarriers that are
to be allocated amongst the users and power loaded according
to the following schemes.

1) OFDMA: In the OFDMA scheme, the th user is allo-
cated subcarriers with frequencies

, , each of which is allocated the
same power (as no CSI is used).

2) Individually MMSE power-loaded OFDMA: In this
scheme, each user is allocated the same subcarriers as in
the OFDMA scheme but knows the (magnitude) gain of
each of its allocated subchannels. Since each user knows
these gains, it can perform (single-user) optimal MMSE
power loading over these subchannels. Although that can
be done with a single-user version of the SOCP in (3.3),
an analytic expression is available [13], [15].

3) Multiuser MMSE power loaded OFDMA: In this case,
we use the SOCP formulation (3.3) to jointly optimize
both the number and placement of the subcarriers allo-
cated to each user and the power loading for each sub-
carrier. The SOCP was solved using the [17]
toolbox for MATLAB. On average, this required around
half a second of CPU time on an 800 MHz Pentium III
workstation. For the subcarriers that are not shared, we
simply allocate one bit for the subcarrier, as in schemes 1
and 2. However, a little more care is needed to deal with
subcarriers that are shared, because (diagonal) linear de-
tection can reliably detect at most one symbol per sub-
carrier. In order to avoid having to implement more so-
phisticated (and computationally expensive) detection for
the shared subcarriers, each shared subcarrier was allo-
cated to the user with the largest received signal power

, and that user alone. Again, one bit was al-
located to each such subcarrier. The power loading for the
other users that had previously shared the subcarrier can
then be recalculated by applying the individual MMSE
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Fig. 6. Performance comparison between the three methods of Example 2. (Dash-dot) OFDMA. (Dashed) Individual power loading. (Solid) Multiuser power
loading. (a) MSE per bit. (b) Bit error rate.

power loading method in scheme 2 to the subcarriers that
are assigned to that user alone. An approximation of this
reweighting that was implemented in the simulation is to
simply rescale the power allocated to the unshared sub-
carriers so that the transmitted power bound is reached.
(The performance of a scheme with this approximation is
indistinguishable from one with the full recalculation at
the scale of Fig. 6.) For a given block, the number of sub-
channels assigned to each user, and hence the data rate
for that user, depends of the channel realization, but the
average rate is 8 bits per block.

In our simulations, we computed the average MSE of the
transmitted bits and the bit error rate (BER) for different SNRs
for the three schemes above for a scenario in which each user
was transmitting with the same power . The averages
were calculated over 100 independent channel realizations with
1000 blocks being transmitted per channel realization. The re-
sults are plotted in Fig. 6 against SNR per bit. For the OFDMA
and individually power loaded OFDMA schemes, the SNR per
bit is , and for the multiuser power loaded OFDMA
scheme, the average SNR per bit is

where is the number of subcarriers assigned to user
for the th channel realization, and is the number of channel
realizations. It is clear from Fig. 6 that the multiuser MMSE
scheme provides a significant reduction in MSE per bit over
both OFDMA and individually power loaded OFDMA and a
substantial “coding gain” (around 7 dB) over a broad range of
BERs.

Example 3: Our MMSE transceiver design technique has
been developed under the assumption that the channel models
used in the design were precise. In this example, we demon-
strate that in the scenario of Example 2, our design technique
is quite robust to mismatch in the design models. In order to
focus on the effects of channel mismatch in the design, we

Fig. 7. Performance comparison of the three methods of Example 2 in the
presence of the mismatched design models in Example 3. Legend—Solid
and dotted with “ ” multiuser MMSE power-loaded OFDMA with precise
and mismatched design models, respectively. Dashed and dotted with “ .”
Individually MMSE power-loaded OFDMA with precise and mismatched
design models, respectively. Dash-dot: OFDMA.

assume that when the data is detected, the receiver has a precise
channel model. However, the transmitters are designed using
the following set of mismatched impulse responses of the
users’ channels:

Re Im
(5.1)

where , is the actual impulse response of the
th user’s channel, and are independent zero-mean

white Gaussian processes of standard deviation 0.5, and Re
and Im denote the real and imaginary parts, respectively. That
is, the channel models used in the design have a Gaussian rela-
tive error with a standard deviation of 50%. This represents quite
a severe mismatch.
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The BER curves for the individually MMSE power-loaded
and multiuser MMSE power-loaded OFDMA schemes with
these mismatched design models are compared with those
for the precise design model in Fig. 7. The curves for the
precise design model also appeared in Fig. 6(b). Of course,
the OFDMA scheme is unaffected by the quality of the design
model, as its design is channel independent. It is clear from
the performance of the multiuser MMSE power-loaded OFDM
scheme in Fig. 7 that our design scheme is quite robust to the
rather large mismatch in the design models.

VI. CONCLUDING REMARKS

We have presented several convex formulations and efficient
algorithms for MMSE transceiver optimization for multiple
access through ISI channels. The work reported in this paper
clearly demonstrates the potential of applying convex opti-
mization techniques in the design and management of modern
communication systems. While the initial formulation of
the transceiver design problems turns out to be nonconvex
(thus difficult to solve), we have succeeded in transforming
the problem into an equivalent convex second-order cone
program that can be efficiently solved using general purpose
interior point codes (e.g., [17]). Our initial computer
simulations verify that our optimal power loading/subcarrier
allocation scheme indeed offers superior performance over the
standard (but ad hoc) subcarrier allocation schemes.

Throughout our development, we assumed that the exact
channel state information is known. This assumption can be
quite realistic in multiuser approaches to digital subscriber line
(DSL) systems where the channel characteristics are essentially
constant. It is also a realistic assumption in certain quasistatic
wireless applications where reasonable channel state estimates
can be obtained by use of training sequences. Furthermore, our
simulations have shown that the system performance is rather
insensitive to transceivers designed using inexact channel
estimates. This is because the key component of the design is
the subcarrier selection rather than the power allocated to the
selected subcarriers, and our subcarrier selection scheme is
robust to channel estimation error.

There are several possible extensions one can pursue. For
example, our approach easily generalizes to the case where each
user has multiple transmitting antennae and the base station has
multiple receiving antennae. In this multi-input-multi-output
case, each second-order cone constraint in (3.3) becomes an
LMI of the size of the number of receive antennas with a matrix
variable of the size of the number of transmit antennas. In
addition, we are exploring other important system design issues
such as quality of service in our formulation. We plan to report
these generalizations in subsequent work.
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