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Abstract—In this paper, we formulate the problem of blind
equalization of constant modulus (CM) signals as a convex
optimization problem. The convex formulation is obtained by
performing an algebraic transformation on the direct formulation
of the CM equalization problem. Using this transformation, the
original nonconvex CM equalization formulation is turned into
a convex semidefinite program (SDP) that can be efficiently
solved using interior point methods. Our SDP formulation is
applicable to baud spaced equalization as well as fractionally
spaced equalization. Performance analysis shows that the expected
distance between the equalizer obtained by the SDP approach
and the optimal equalizer in the noise-free case converges to zero
exponentially as the signal-to-noise ratio (SNR) increases. In
addition, simulations suggest that our method performs better
than standard methods while requiring significantly fewer data
samples.

Index Terms—Blind equalization, constant modulus, convex op-
timization.

I. INTRODUCTION

CONVENTIONAL equalization and carrier recovery algo-
rithms generally require an initial training period during

which a known data sequence is transmitted over the channel
and synchronized at the receiver. In applications involving the
transmission of long data packets over a time-invariant channel,
the consequent reduction in the data throughput of the system
is negligible because only one training period is required. How-
ever, in applications in which the data packets are short or the
time-variation of the channel is significant, such as in distributed
networks and mobile systems, training can be rather inefficient,
particularly at low signal-to-noise ratios (SNRs) [1]. In such ap-
plications, it may be preferable to equalize the communication
channel in an unsupervised (blind) manner. The essence of blind
equalization rests on the exploitation of structure of the channel
and/or the properties of the input. For man-made signals, such
as those encountered in wireless communications, the signal
properties are often well known. Many digital communications
schemes involve the transmission of constant modulus (CM)
signals; hence, several schemes for blind equalization of CM
signals have been developed [2]. Typically, they are based on
gradient descent minimization of a specially designed cost func-
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tion [3]–[5]. However, due to the nonconvexity of the cost func-
tions, these gradient descent-based algorithms can experience
undesirable local convergence problems, which may result in
insufficient removal of channel distortion [2], [6]–[10]. In fact,
depending on the initialization and the choice of stepsize, these
algorithms suffer local minima and slow convergence. Unfortu-
nately, no suitable default initial points or stepsizes are known.
In this paper, we formulate the problem of blind equalization

of CM signals as a convex optimization problem. We first
consider the case of baud spaced equalization of quadrature
phase shift keying (QPSK) symbols transmitted through a com-
plex-valued channel. We perform an algebraic transformation
on the direct formulation of the CM equalization problem.
As a result of this transformation, the original nonconvex CM
equalization formulation is converted into a convex semidefi-
nite program (SDP). Semidefinite programs consist of a linear
(convex) objective function and (convex) linear matrix in-
equality constraints and can be efficiently solved using interior
point methods [11]. We then present a natural extension of
our SDP method to the class of Fractionally spaced equalizers
(FSEs).
There are two major advantages of convex formulations of

CM equalization. First, they do not suffer from local minima,
and there is a well-developed theory of algorithm initialization
and the choice of stepsize. This makes the convex optimiza-
tion approach to blind equalization robust to the uncertainties of
practical communication environments. As a result, our convex
optimization-based blind CM equalization algorithms require
far fewer data samples than the standard blind adaptive equal-
ization methods in [3]–[5], which are not globally convergent
[2],[6], [8]. The second major advantage of our convex formu-
lation is that there are highly efficient algorithms for its solu-
tion. Our simulation results indicate that our convex approach
performs better than the standard methods, even when we use
some a priori knowledge of the channel impulse response to
aid initialization of the standard methods of [3]–[5]. In addi-
tion, our simulations confirm that the convex approach requires
significantly fewer samples, thus making it attractive in appli-
cations where convergence times requiring thousands of input
samples are undesirable. Our simulations also indicate that our
formulation is more reliable than the analytical constant mod-
ulus algorithm (ACMA) [12], [13].
This paper is organized as follows. In Section II, we introduce

blind equalization of CM signals. In Section III, we develop the
convex formulation of baud spaced blind CM equalization for
the case of a QPSK signal transmitted through a complex-valued
channel. Section IV contains a performance analysis of our al-
gorithm. In Section V, we extend the framework to the class of
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Fig. 1. Block diagram of the system.

fractionally spaced equalizers, and in Section VI, we present
our simulation results. Section VII contains some concluding
remarks. In Appendix A, we give a brief overview of convexity,
semidefinite programming and the interior-point methods that
are used to efficiently solve convex optimization problems. Ap-
pendix B contains a detailed analysis of the perturbation theory
used in Section IV.
A few remarks on our notations are in order. All vectors are

in boldfaced lowercase letters. Boldfaced upper case letters are
used to denote matrices. Matrix transposition is denoted by a su-
perscript , whereas the Hermitian transposition for a complex
matrix is represented by the superscript . Moreover, the nota-
tion signifies the semidefiniteness ( ) of
a (Hermitian) symmetric matrix . The matrix inner product is
defined as , where , are two square
matrices of the same dimension, and the superscript denotes
complex conjugation.

II. BLIND CM EQUALIZATION

Consider the digital communication system shown in Fig. 1,
where represents the CM input signal, and is additive
white Gaussian noise. The output of the equalizer can be
expressed as

(2.1)

where , is an -dimensional
(complex) weight vector, and is the length of the equalizer. If
perfect equalization is achieved, the sequence will be of the
CM type, just like the input signal . Consequently, a natural
formulation of the CM equalization problem is [3]

minimize (2.2)

where is the length of the sequence . Here, we have as-
sumed that the magnitude of the CM signal is equal to one, but
there is no loss of generality in this assumption since a different
magnitude will only result in a rescaling of the optimal equal-
izer. Using (2.1) and (2.2), we can rewrite the CM equalization
problem as

minimize (2.3)

Since

we have the following optimization problem:

minimize (2.4)

where .
Various gradient descent algorithms have been proposed to

solve the minimization problem in (2.4). However, the objec-
tive function in (2.4) is a fourth-order multivariate polynomial
that is nonconvex. This makes the gradient based algorithms
vulnerable to the traps of local minima, as has been well rec-
ognized in the literature [7], [8]. In the subsequent sections, we
will show how (2.4) can be reformulated as a convex optimiza-
tion problem. In particular, the problem can be formulated as
the minimization of a linear objective function subject to linear
and semidefiniteness constraints, that is, as an SDP. SDPs can
be efficiently solved using interior point methods [11].

III. CONVEX REFORMULATION: BAUD SPACED EQUALIZERS

In this section, we present our SDP reformulation for the baud
spaced blind equalization of QPSK symbols transmitted through
a complex-valued channel. The framework can be extended di-
rectly to fractionally spaced equalization, as will be shown in
Section V.

A. SDP Formulation
From (2.4), we see that our optimization problem can be

written as

minimize (3.1)

Notice that is a fourth-order polynomial in , which is
a complex-valued -dimensional vector. It is important to note
that although is a vector containing complex entries,
is always real-valued (since is Hermitian). The above opti-
mization problem can be recast as

maximize
subject to for all (3.2)

We can think of as a horizontal hyperplane that lies beneath
for every value of . Instead of minimizing , we lift

up (maximize) the hyperplane while requiring it to always lie
below . At the optimal solution, equals to the optimal
(minimum) value of . The formulation in (3.2) has a linear
objective and linear constraints in ; hence, it is convex. How-
ever, (3.2) remains difficult to solve because the constraint is in-
finite dimensional, i.e., there is one constraint for each .
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Furthermore, extraction of a corresponding equalizer (i.e., a
such that ) can be problematic. In this section,
we derive an efficiently solvable convex formulation of (a re-
striction of) the problem in (3.2), and in Section III-B, we will
determine an efficient post-processing procedure to determine
the corresponding equalizer. Performance issues are discussed
in Sections IV and VI.
In order to transform (2.4) into a convex problem, we first de-

fine two convex cones of real-valued fourth-order polynomials
of , and :

is a real valued fourth-order polynomial of

and

with each

being a real-valued second-order polynomial of

In other words, is the convex cone of nonnegative real-valued
polynomials of degree 4, and is the convex cone of all fourth-
order polynomials that can be represented as the sum of squares
of some real-valued quadratic polynomials. Obviously, is a
subset of , i.e., . We can express our optimization
problem (3.2) in terms of as follows:

maximize
subject to (3.3)

Now consider a “restriction” of (3.3) in which the feasible set is
constrained so that lies in the cone :

maximize
subject to (3.4)

Let be the optimal value of (3.4). In general, the optimiza-
tion problem (3.4) is not necessarily equivalent to the one in
(3.3) since the latter restricts the feasible set to a subset of the
original feasible set. [The formulation (3.4) will later be shown
to be a convex semi-definite programming problem, hence, effi-
ciently solvable.] Since (3.4) is a restriction of (3.3), it provides
a lower bound on the optimal value of in (3.3), i.e.,

. From the definition of , it is also clear that . If
the optimal equalizer of (3.3) satisfies (as is
the case under certain ideal conditions), then the optimal value

of (3.3) is zero. In this case, we find that the optimal value
of (3.4) is also zero. In other words, we have the following

proposition.
Proposition III.1: If perfect constant modulus equalization is

achieved in (3.3) by the equalizer in the sense that
, then the optimal equalizer obtained from the for-

mulation (3.4) also achieves perfect constant equalization with
the optimal value .

Proof: Although a proof can be simply derived for the in-
equality , the following proof illustrates the
structure of the restriction in (3.4). Let

. If perfect constant mod-
ulus equalization is achieved with , then we have

, for all . Therefore, , and .
We can then write

which is clearly in the form of sum of squares of quadratic poly-
nomials. Therefore, , implying that is
a feasible point of the formulation (3.4). Consequently, perfect
constant equalization is achievable through the formulation in
(3.4), and hence, . Q.E.D.
It has been shown [23] that under the spatio-temporal

diversity assumption and in the absence of channel noise,
linear equalizers can achieve perfect equalization. In this case,
according to Proposition 3.1, the restricted set retains the op-
timal equalizer. In other words, in the noise-free case and with
spatio-temporal diversity, solving the optimization problem
(3.4) will yield perfect CM equalization. In the absence of these
assumptions, we can still use the formulation (3.4) (instead
of the formulation (3.3)) for blind CM equalization, with the
expectation that the presence of noise will only mildly perturb
the optimal equalizer. This is indeed the case, as we will show
later in Section IV.
An advantage of formulation (3.4) is that it can be converted

into a (convex) semi-definite programming problem that can be
solved via highly efficient interior point algorithms. This is what
we will show next. To perform this transformation, we need the
following lemma, which is a special case of a more general re-
sult of Nesterov [14].
Lemma III.1: Given any fourth-order polynomial , the

following relation holds:

for some Hermitian matrix (3.5)

where

(3.6)

with and and being vectors whose
components are the products and

, respectively, arranged in the usual lexicographic order,
and .

Proof: First, we notice that the components of the vector
form a basis for quadratic polynomials in . Since the cost

function in (3.1) is a fourth-order polynomial that does not
have the third- and the first-order part, it is possible to specialize
Lemma III.1 to the case at hand and omit in the definition of
. This will, in turn, decrease the complexity of our algorithm.

However, we decided to include in our analysis since it al-
lows our algorithm to be applied to more general scenarios, i.e.,
when the cost function is an arbitrary fourth-order polynomial.
By definition, the set contains all fourth-order polynomial

functions that can be written as

(3.7)

Since each is a quadratic polynomial function in
, we can represent using the basis in the form

Authorized licensed use limited to: McMaster University. Downloaded on July 18,2010 at 20:00:40 UTC from IEEE Xplore.  Restrictions apply. 



808 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 3, MARCH 2003

, where is a vector of
coefficients. Hence, we have

which further implies

with (3.8)

Conversely, if (3.8) holds for some Hermitian positive semidef-
inite matrix , then we can factorize as the sum of Hermi-
tian rank one matrices, i.e., . (For example, the
eigen-decomposition of generates such a factorization.) Now,
if we define the quadratic polynomials , then we
have (3.7), as desired. This completes the proof of the lemma.
Q.E.D.
Notation: In the subsequent development, it will be conve-

nient to denote the entries of according to the ordering of .
We partition the matrix as

(3.9)

where corresponds to the coefficients for the product terms
between entries of and . In particular, the submatrices

, are vectors, and the submatrix is actually a scalar
because it corresponds to the product with itself, which
is the constant term.Wewill further denote the entries of by

since the notation naturally signifies the coefficient
for the product term between entries and in ,
where , . Similarly, we use and to
denote the entries of and . Since , the entries
of and will be denoted by and , respectively.
Lemma III.1 implies that the convex cone can be equiva-

lently characterized by

for some

Using this characterization in (3.4), we obtain an alternative for-
mulation of (3.4) as

maximize

subject to for all

and (3.10)

Notice that the constraint

for all (3.11)

signifies that the two fourth-order polynomials are identical.
This is possible if and only if the corresponding coefficient vec-
tors, when expressed over an appropriate basis of the fourth-
order polynomials, are equal. We will use this property to relate

the entries of to the data matrices . In particular, notice
that the components of the vector

(3.12)

form a basis of the vector space of all fourth-order com-
plex coefficient polynomials of , where , , ,
and are vectors whose components are given by the
products ,

,
and , respectively, arranged in the usual lexicographic
order and, as previously defined, . Thus, an
arbitrary fourth-order polynomial of , can be written as

for some coefficient vector .
To simplify the constraint (3.11), we represent the left- and

the right-hand side polynomials using the basis vector . Let us
define the sample fourth-order cumulant of the channel output
sequence as

Cum

where for , and
otherwise ( denotes complex conjugation). For finite , the
above expression involves data samples whose indices
are out of range; when this happens, we always assume

. We also define the sample covariance matrix
of the (zero mean) sequence , where

as in (2.1), as

(3.13)

Moreover, for all , we let
denote the set of all distinct 4-tuples that are permutations of
( ). For example

We further define a subset of :

and (3.14)

Similarly, for , we let (respectively,
) denote the set of distinct triples (respectively, pairs) that

are permutations of ( ) [respectively, ( )]. Then, we define
the index set

and (3.15)

For example, we have
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Now, we can define the symmetric fourth-order cumulant as

Cum (3.16)

Then, we have

(3.17)

where is the ( )th element of the sample covariance ma-
trix in (3.13). On the other hand, using the notation ,
we can rewrite the polynomial as

(3.18)

Now, we have represented the left- and right-hand side poly-
nomials in (3.11) over the basis [see (3.17) and (3.18)]. We
can compare the coefficients of both representations to obtain
the set of linear constraints on in (3.19), shown at the bottom
of the page, where is the usual Kronecker delta function,
the notations , , , , and
were defined after (3.9) and the index sets and
are defined in (3.14) and (3.15).
Finally, we can use (3.19) to replace the constraint in (3.10)

and obtain the following equivalent formulation:

maximize
subject to satisfies (3.19)

(3.20)

Problem (3.20) has a linear objective function, and the variables
and are subject to linear equality constraints and a linear

matrix inequality constraint. Hence, (3.20) is an SDP [albeit in
a mildly nonstandard form] and can be efficiently solved using
interior point methods [11]. (We have used the SeDuMi imple-
mentation [15].) By substituting the constraint into
the objective function to remove , the linear objective function
becomes equal to , and the problem can be formulated in
the standard form of a SDP problem:

maximize
subject to

(3.21)

where is a sparse matrix with only one nonzero element, and
denote all the linear constraints

in (3.19) except the last one . In the next section,
we will show how to find an optimal equalizer corresponding
to the optimal solution of the SDP in (3.20) [or, equivalently,
(3.21)].

B. Post-Processing
The solution of (3.20) provides the optimal value of , which

we denote by . It remains to determine an optimal equalizer
from . To this end, we note that is

contained in (3.6); thus, once we have , it is straightforward
to obtain and ultimately . Therefore, we will endeavor to
find first. According to Proposition III.1, if
perfect constant modulus equalization is achieved, then there is
an optimal vector such that

(3.22)

Since is positive semidefinite, it follows from (3.22)
that lies in the null space of . If the null space of

has dimension 1, then we can determine uniquely
(up to a scaling factor). When perfect constant equalization
is not achievable, then we should look for the eigenspace

corresponding to the almost zero eigenvalues of
. Again, if has dimension 1, then can be

computed uniquely (up to a scaling). When the dimensionality
of is greater than 1, then we must look among the
vectors in for a vector that has the specific structure
defined by (3.6).
Let denote the set of vectors of the form

(3.23)

where and are vectors whose components are the prod-
ucts and ,

(3.19)
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respectively, arranged in the usual lexicographic order. Com-
paring (3.23) and (3.6), we see that a vector is of the form
(3.6) for some if and only if
and . Since must be of the form (3.6), we know

, where denotes the hyperplane in ,
which consist of all vectors whose last component is equal to 1.
To summarize, lies in the intersection
. This motivates the use of an alternating projection algo-

rithm to find . Before we present the algorithm, it is impor-
tant to notice that any vector in can be viewed naturally
as a Hermitian rank one matrix of size .
In particular, there is a one-to-one correspondence between the
vector given by (3.23) and the matrix , where

, that is

...
...

. . .
...

... (3.24)

In particular, each element in is mapped to a unique element
in the upper triangle of the (Hermitian) matrix . For an ar-
bitrary vector (not necessarily in ), we can
use the same mapping to construct a Hermitian matrix . Ob-
viously, is not necessarily a rank-one matrix, unless .
Therefore, to project a given vector onto the
set , we need only construct the matrix and then perform
a rank-one approximation of . The rank-one approximation
of the Hermitian matrix is given by , where
is the largest eigenvalue of , and is the corresponding nor-
malized eigenvector. If denotes the projection of onto ,
then can be obtained by arranging the components of the upper
triangle of in the order implied by (3.23) and (3.24).
Alternatively, one can recognize that if is partitioned as

, where is scalar, then can be assembled using
(3.23). We are now ready to state the algorithm.

An Alternating Projection Algorithm for
Computing
Step 0: Initialization. Given , select
a small threshold . Select an arbi-
trary vector (say the vectors of all
ones) as the starting vector.
Step 1: Eigendecomposition. Given ,
compute its eigen decomposition. Form the
matrix whose columns are the eigenvec-
tors corresponding to eigenvalues of
that are smaller than .
Step 2: Projection to . Given

for some . Notice that
is an affine subspace [27]; therefore,
the projection of onto
is straightforward. An even simpler (and
equally effective) approximate projec-
tion procedure is to premultiply by
the projection matrix and then
rescale the resulting vector so that its

last component becomes 1. Let the re-
sulting vector be .
Step 3: Projection to . Form the matrix

from the vector using the mapping
described in the preceding paragraph.
Compute the largest eigenvalue and
the corresponding (normalized) eigen-
vector of the symmetric matrix . Let

, where is scalar, and

synthesize using (3.23).
Step 4: Repeat. Return to Step 2 with

until convergence.

IV. PERFORMANCE ANALYSIS

Proposition 3.1 showed that the restriction over the cone
retains the optimal equalizer whenever the perfect equalization
can be achieved. The latter condition is known to be satisfied
if noise is absent and spatio-temporal diversity exists [23]. (In
Section V, we extend our convex SDP method to the class of
fractionally spaced equalizers.) In the presence of channel noise
however, the data vector in (3.21) will be perturbed, which
will in turn cause a perturbation of the optimal solution. In this
section, we use an error analysis result of SDP [24] to bound
the distance between the noise-free and noise-present optimal
solution. Furthermore, we express the bound as a function of
the SNR and the data block length .
Lemma IV.1: Consider a system of mixed linear and positive

semidefinite constraints:

(4.1)

where is a givenmatrix in (the subspace of all
Hermitian matrices), is a linear subspace of , and
is the Hermitian positive semidefinite matrix cone. The dis-
tance from a given matrix to the feasible set in (4.1) is at most

, where the constant in the big notation is indepen-
dent of , and is the amount of constraint violation defined
as the sum of the distances to the cone and the affine space

. The non-negative integer is the so-called degree of
singularity of the system and is bounded by

(4.2)

where is the size of a positive semidefinite matrix in the cone
(in our case, , with being the equalizer

length), and denotes the smallest linear subspace containing
, i.e.,

for some

A detailed proof of Lemma IV.1 in the case of real symmetric
matrices is given in [24], but the technique is easily extended
to complex Hermitian matrices. Let us now apply Lemma IV.1
to our SDP formulation in (3.21). Notice that in the noise-free
case, we have so that we can write the optimal solution
set of (3.21) as

(4.3)
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where is the noise-free data vector. Similarly, in the presence
of noise, we can write the solution set of (3.21) as

(4.4)

where represents the data vector in the presence of noise, and
is the corresponding optimal value of (3.21). Fix any

optimal solution . By applying Lemma IV.1 to the
system (4.4), we conclude that there exists an optimal solution

such that

(4.5)

where denotes the amount of constraint violation of in
the linear matrix inequality system (4.4) defining . Since

and , the only constraints in
(4.4) violated by are the linear constraints. Therefore, the
constraint violation is . Notice that the constant
associated with the big notation in (4.5) is independent of
(thus independent of noise or data length). Consequently, we

obtain

(4.6)

Since as the SNR and the data block length increase,
the above bound (4.6) explains why our method is robust to the
presence of some channel noise and the lack of perfect equal-
ization, as will be shown by simulation in Section VI.
We now give an explicit estimate of as a function of the

SNR and the data block length . For simplicity, we consider
the case of real channels and equalizers. In that case, ,
i.e., . The complex case can be ana-

lyzed in a similar fashion. Notice that the cost function
in (3.1) is a fourth-order polynomial that does not have the
third- and first-order parts, and the coefficients of are
given by the data vector . We can partition the data vector as

, where and contain polyno-
mial coefficients corresponding to the fourth- and second-order
parts, respectively, and . Accordingly, we partition

as . InAppendix B, we show that
, , and ,

where is the channel noise variance and is related to the
ratio of the transmitted signal power to the received noise power
(SNR) as

(4.7)

assuming that the magnitude of the CM signal is equal to one.
Therefore, we have that

(4.8)

which implies that the expected value of the amount of con-
straint violation can be bounded as a function of noise power or,
equivalently, as a function of the SNR.
Next, we need to compute since we will bound

by . This can be done
in a similar fashion as preceding analysis and is relegated to
Appendix B. The final estimate is in the form

(4.9)

Recall that , where is the equalizer length.
The above estimate (4.9), together with (4.5), further implies
that

(4.10)

where we have used (4.7) and (4.2). Therefore, we have shown
that the distance between the noise-free and noise-present op-
timal solution in (3.21) can be bounded and that the bound is a
(decreasing) function of the SNR.
Let be the noise-present optimal equalizer obtained by

our new equalization algorithm described in Section III, and let
be the optimal noise-free equalizer that is closest to .

Now, it remains to bound in terms of
. In the absence of noise, lies in the intersection

. Such intersection can be described
with a system of equalities:

(4.11)

where is the length of , is the
equalizer length, and represents the th component of

. The first equality, which we will refer to as
, corresponds to the null-space ; the second set of
equalities, which we denote by , ,
corresponds to the rank-one manifold ; and the last equality,
which we write as , , corresponds
to the hyperplane . We need the following lemma.
Lemma IV.2: Consider a set defined by

(4.12)

where , and each is a real-valued ana-
lytic function defined on some open set . Then, for any

, there exist some constants and such
that the following error bound relation holds:

dist (4.13)

A detailed proof of Lemma IV.2 is given in [26].
Recall is the noise-present optimal equalizer obtained by

our new equalization algorithm described in Section III. Since
is bounded by a constant , we are in a position to apply

Lemma 4.2 to obtain

(4.14)

where . Since lies in the
intersection , we have that , for .
Moreover

(4.15)
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wherewe used the fact that is bounded and that lies in the
subspace spanned by those eigenvectors of whose eigen-
values are no more than . Here, denotes the threshold value
used by the alternating projection algorithm. Suppose the null
space of is denoted by . Since is a perturbed
version of , will have a set of small eigenvalueswhose
corresponding eigenvectors span a “noise” subspace closely ap-
proximating . Assume that is chosen such that the
“noise” subspace of is correctly identified and then that
is in the order of the small eigenvalues of ; we then have

. Combining this with (4.15) yields

As a result, we have from (4.14)

where the third step follows from Jensens inequality for the
concave function , and the last step follows
from (4.10). This shows that the expected distance between
the noise-free and noise-present optimal equalizer converges to
zero exponentially as the SNR increases.

V. FRACTIONALLY SPACED EQUALIZERS

In this section, we briefly present an extension of our convex
SDP method for blind equalization of CM signals for the case
of fractionally spaced CM equalization. It is well known that
baud spaced linear equalizers (TSEs) can be inefficient or even
ineffective when applied to linear channels with zeros on or
near the unit circle and that fractionally spaced linear equalizers
(FSEs) are often more appropriate for such scenarios. In partic-
ular, it has been shown [16] that constant modulus FSEs (CMA-
FSEs) can efficiently and effectively equalize certain channels
for which constant modulus TSEs (CMA-TSEs) are ineffec-
tive. In fact, under some mild identifiability conditions on the
channel, the CMA-FSE has been shown to converge globally
to a perfect CM equalizer in the absence of noise, provided
that the equalizer is longer than a threshold dependent on the
channel length and the oversampling factor [16]. Furthermore,
the CMA-FSE has been shown to possess “good” local minima
in the presence of noise [2], [9], [10]. However, in Section VI-D,
we will present simulation results suggesting that the extension
of the SDP formulation to the class of FSEs (developed below)
performs even better than the standard iterative CMA-FSEs.
The multichannel representation of the CMA-FSE is shown

in Fig. 2. The FSE consists of subequalizers , ,
each of which operates on one of the subchannels at the baud

Fig. 2. Multichannel vector representation of the blind adaptive FSE.

rate, . The output sequences are given by

(5.1)

and is a subchannel impulse response. We can express the
equalized sequence as

(5.2)

where is a data snapshot vector. Thus, we can view FSE as
a TSE with the actual equalizer being the concatenation of the
filters

(5.3)

By defining the combined channel output vector as

(5.4)

we can write the equalizer output (5.2) as

Substituting (5.3) and (5.4) into (2.3), we can apply the SDP
formulation and the post-processing technique presented in Sec-
tion III to the class of fractionally spaced equalizers.

VI. IMPLEMENTATION AND SIMULATION

We demonstrate the effectiveness of our algorithm through
several simulation examples. The value for the threshold in
the alternating projection algorithm was chosen to be 10 . We
compared our method, which is block based, with the algo-
rithms given in [3]–[5], which are iterative algorithms. From [4],
we used an iterative algorithm that minimizes the cost function

. For our method, we process and
decode blocks of data samples at a time in order to solve for
the equalizer, i.e., we need only one block to estimate the equal-
izer and use it to decode the block. The larger the blocks are,
the better the equalizer estimate is. Moreover, by processing the
larger data blocks, we can reduce the overall complexity of our
algorithm since in that case, the equalizer estimation occurs less
frequently. However, if the channel is highly nonstationary, or if
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the input signal consists of short data packets, onemay be forced
to work with shorter data blocks. The complexity and compu-
tational time of a SDP does not depend on the size of a data
block because different block sizes will just give different coef-
ficients in (3.21). In our simulations, we have used blocks of

– samples, although for some applications (e.g.,
a good quality telephone channel with a moderate-to-high SNR
ratio), the block size can be reduced to – samples.
We define the intersymbol interference (ISI) as follows:

ISI

where is a vector containing the combined channel-equalizer
impulse response, denotes the vector obtained by taking the
component wise absolute value of , denotes the th com-
ponent of the vector , and is a vector with 1 in the position

and zeros elsewhere. For the class of fractionally
spaced equalizers, we compared our method with the (iterative)
CMA-FSE method of [16] and the (block-based) analytic CMA
(ACMA) method presented in [12], [13].
For a length equalizer, the size of thematrix variable in the

SDP in (3.21) is , and in the worst case, solving
anSDPofthissize requires arithmeticoperations.How-
ever, thegivenbound is fullygeneral. In theoptimizationcommu-
nity, it is generally accepted that these algorithms performmuch
better inpractice, i.e., thegivenworst casebound is loose. In addi-
tion, this estimate does not take into account the fact that the SDP
(3.21) is extremely sparse. It is quite conceivable that a specially
tailored SDP solver for this problem could be developed. For in-
stance, sincethecost function in(3.1) isafourth-orderpoly-
nomial that does not have the third- and the first-order part, it is
possible to omit in the definition of in (3.6). This will, in
turn, significantlydecrease thecomplexityofouralgorithm. Inall
our examples, theSDPswere solvedusingageneral purpose inte-
riorpointoptimizationcodeSeDuMi[15]developedinMatlab. In
our simulations, all theSDPswere solvedona600-MHzPentium
III PC. The solution of each SDP required a CPU time ranging
from a few seconds to a fewminutes, depending on the equalizer
length and signal constellation. Finally, in all of our simulations,
we found that at most five alternating projection iterations were
needed in the post-processing step.

A. Good Quality Telephone Channel
In this example, we consider the transmission of BPSK sym-

bols through the channel with impulse response vector

which is a typical response of a good-quality telephone channel
[17]. The length of equalizers was chosen to be 11, and the
step size parameter for the iterative equalization algorithms was
chosen to be 5 10 , which turned out to give the best results.
We allowed 2000 samples for the adaptation of weight coeffi-
cients for the methods in [3] and [4], while we processed and
decoded blocks of 500 samples at a time for our method. We
can see from Fig. 3 that the performance of the iterative methods
in [3] and [4] depends on the initialization of the equalizer pa-

(a)

(b)

Fig. 3. Intersymbol interference and probability of error versus SNR.

rameters. The curve denoted by CMA corresponds to the case
when we use partial knowledge of the channel impulse response
for initialization, i.e., we initialize the equalizer with a single
“spike” time-aligned with the center of mass of the channel re-
sponse. However, if such a knowledge is not available and the
spike does not coincide with the channel responses center of
mass, the iterative algorithms may degrade in performance, as
is shown with the curves CMA1 and CMA3. These curves were
generated using equalizers initialized with a spike in the first
and third element of the vector, respectively. In all cases, the
simulation results indicate that our method achieves better av-
erage ISI suppression and a lower bit-error rate. This improved
performance is achieved while requiring fewer samples than the
algorithms in [3] and [4]. In general, the performance of the
adaptive methods in [3] and [4] depends on the step size pa-
rameter. For this particular good telephone channel, fine tuning
of the step size parameter is not necessary (step size tuning is
required for channels with severe ISI), but some approximate
channel knowledge is still needed to initialize the equalizer.
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Fig. 4. Probability of error versus SNR for a channel with severe ISI.

B. Channel With Severe Intersymbol Interference
Here, again from [17], we consider the case of a BPSK signal

transmitted through a channel with impulse response vector
. This channel corresponds to a channel

with severe ISI. This time, we have used 12-tap equalizer for
all methods, and we processed 1000 samples at a time for our
method. Results shown in Fig. 4 correspond to the case where
the iterative equalizers in [3] and [4] are initialized with a single
spike time-aligned with the center of mass of the channel re-
sponse. Again, we see that our method achieves a lower average
bit-error rate. If an erroneous initial point is chosen for the it-
erative methods, the equalizer parameters converge more often
to undesirable local minima, which results in poor performance.
At the same time, for this particular channel fine-tuning of the
step size parameter in the iterative algorithms is necessary to
achieve the illustrated performance. In particular, the range of
desirable values of the step size parameter is SNR dependent.

C. Non-Minimum Phase Channel
In this example we compare our method with the method

proposed in [5]. We consider the case where a communication
source transmits a sequence of QPSK symbols through an un-
known nonminimum phase channel with impulse response

.
(6.1)

In our test scenarios, the channel was of length 7. We have used
a six-tap equalizer and processed 1000 samples at a time for our
method and six- and 12-tap equalizers (denoted by Shalvi6 and
Shalvi12, respectively) for the iterative method proposed in [5].
The iterative method was initialized with a single spike in the
middle of the equalizer. The value of the step size parameter was
set to 7 10 , which turned out to give the best performance.
The final values of the objective function (averaged over
1000 Monte Carlo runs) for different levels of SNR are shown
in Table I.
From Table I, we can see that our method achieves a lower

value of the objective function. This leads to better intersymbol

TABLE I
OBJECTIVE VALUES VERSUS SNR

TABLE II
BIT-ERROR RATE VERSUS SNR

interference suppression and better bit-error rate performance
(averaged over 1000 Monte Carlo runs), as shown in Table II.
[The symbol “ ” implies that all transmitted bits were recov-
ered successfully during the 1000Monte Carlo runs.] If we were
to initialize the iterative method with a spike set at the beginning
of the equalizer (‘Shalvi6-ini’), its performance would degrade
dramatically. From Table II, we can also see that a 12-tap equal-
izer performsworse than a six-tap equalizer (denoted by Shalvi6
and Shalvi12, respectively). This is due to the fact that longer
equalizers for the iterative method proposed in [5] require more
data samples for the initial “training” period.

D. Fractionally Spaced Equalizer
In this section, we compare the performance of several frac-

tionally spaced equalizers with an oversampling factor of .
We consider the transmission of BPSK symbols through the
baud spaced channel that has severe
ISI caused by a deep spectral null. In simulation, the fraction-
ally spaced subchannels are obtained by linearly interpolating
the baud spaced channel . For the baud-rate CMA equalizer
(CMA-TSE), we used an equalizer of length 12, whereas for
the fractionally spaced equalizers, we used shorter equalizers
(length 3). For our method and the (block-based) ACMA pro-
posed in [12] and [13], we processed blocks of 1000 samples
at a time. For the CMA method [3], the selected step size was
5 . We can see from Fig. 5 that the CMA-FSE outper-
forms the CMA-TSE, as might be expected [16]. (In this sce-
nario, the CMA-FSE is globally convergent to a perfect CM
equalizer in the absence of noise.) However, our SDP based
CM equalization method achieves better performance with a
lower bit-error rate (BER). The ACMA method proposed in
[12] seems to have very similar performance to our method.
However, it is important to note that in calculating the BER for
ACMA, we have counted only the successful runs for ACMA.
The percentage of cases in the 2000 Monte Carlo runs where
ACMA failed to equalize the channel is defined as the recovery
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(a)

(b)

Fig. 5. Probability of error and recovery failure rate versus SNR.

failure rate. These cases were omitted from the BER statis-
tics but are recorded in the right half of Fig. 5. It is quite nat-
ural to use the result of ACMA to initialize the iterative least-
squares with enumeration algorithm (ILSE) [18], which is a
fixed-point iterative algorithm. If successful, ILSE is a condi-
tional maximum likelihood estimator. However, depending on
the initialization, ILSE can converge to a local minimum, and
restarts are needed, resulting in a higher recovery failure rate,
as shown in the right half of Fig. 5. Once again, the cases of
recovery failure have been excluded from the BER statistics of
CMA-FSE, ACMA, and ILSE. In contrast, our SDP-based CM
equalization method did not fail in any of our 2000 trials; there-
fore, the corresponding BER curve in Fig. 5 represents the true
BER statistics for our method.

VII. CONCLUSION

In this paper, we have shown that blind equalization of con-
stant modulus signals can be expressed as a convex optimization
problem. A semidefinite programming formulation was made

possible by performing an algebraic transformation on the di-
rect formulation of the equalization problem. The average per-
formance of our method is almost the same as the optimal per-
formance of classical CMA equalization methods proposed in
[3]–[5]. Here, by optimal performance, we mean that we have
used a priori knowledge of the channel impulse response en-
velope to aid the initialization and that we have used the op-
timally tuned stepsize value for those stochastic descent-based
CMA equalization methods. Our simulations suggest that the
SDP-based CMA equalization method requires fewer samples,
which makes our method useful for applications where conver-
gence times requiring thousands of input samples are undesir-
able.
We point out that our (block-based) method does incur a

higher computational cost than the iterative equalization algo-
rithms proposed in [3]–[5]. In order to solve the semidefinite
program, we have used the SeDuMi [15] implementation,
which is a polynomial-time primal-dual path-following inte-
rior-point algorithm. While this Matlab code is an efficient and
robust general purpose SDP solver, it does not explicitly exploit
the sparsity in our CMA formulation (3.21). For instance, since
the cost function in (3.1) is a fourth-order polynomial
which does not have the third- and the first-order part, it is
possible to omit in the definition of in (3.6). This may in
turn significantly reduce the computational time and memory
requirements. In addition, we expect that some of the recently
proposed first-order methods [19]–[21] can be efficiently
implemented to exploit the sparsity of the SDPs formulated in
this paper. We plan to explore this issue in our future research.

APPENDIX A

In this section, we provide a brief description of convexity,
semidefinite programs and interior-point methods.
Convex set:A set is convex if the line segment between any

two points in lies in . That is, for any and any
with , we have

Convex function:A function is convex if is
a convex set and if for all and with ,
we have

(8.1)

where denotes the domain of . Geometrically, this
means that the line segment between ( ) and ( )
lies “above” the graph of .
A convex optimization problem is an optimization problem

of the form

minimize
subject to

(8.2)

where are all convex functions, and the equality con-
straint functions are affine. A fundamental property of a convex
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programming problem is that any locally optimal point is also
globally optimal.
SDPs are an important class of convex optimization prob-

lems. These problems have the following form:

minimize
subject to (8.3)

where the inequality

(8.4)

is called a linear matrix inequality (LMI). The problem
data are the vector and symmetric
matrices and the variables are

. There are good reasons for studying
semidefinite programming. First, positive (or positive definite)
constraints arise, either directly or indirectly, in a number of
important applications. Second, many convex optimization
problems, e.g., linear programming and (convex) quadratically
constrained quadratic programming, can be cast as semidefinite
programs so that semidefinite programming offers a unified
way to study the properties of and derive algorithms for a wide
variety of convex optimization problems. Most importantly,
however, semidefinite programs can be solved very efficiently
using recently developed interior-point methods, which are
general concepts for transforming constrained into uncon-
strained optimization problems.
Interior-point methods solve the original constrained opti-

mization problem as a sequence of smooth unconstrained prob-
lems. They replace the constraints by a “barrier” function that
is smooth and convex over the feasible set and approaches in-
finity at the boundaries of the feasible set. There are many bar-
rier functions for the semidefinite cone ,
but the following one enjoys many special properties:

if
otherwise. (8.5)

The interior point methods based on the central path are by far
the most useful in theory and the most used in practice. For

, we define

(8.6)

where we assume that minimizer exists and is unique. This as-
sumption reduces the complexity of the development but does

not cause an important loss of generality sincemost of the theory
can be developed without it [22]. The curve described by
is called the central path and is defined as the set of points

, , which we call the central points. Points on the
central path are characterized by the necessary and sufficient
optimality condition . Given a strictly fea-
sible starting point, we can compute by solving a smooth,
unconstrained minimization problem. At each iteration , we
compute the central point starting from the previously
computed central point and then increase by a factor

, i.e., . The parameter gives a relative weight
of the objective and barrier function. As , con-
verges to an optimal value. Several methods for finding ini-
tial strictly feasible points exist [22]. Almost all interior-point
methods approach the optimal point by following the central
path, either literally, by returning to the central path periodically,
or by keeping some measure for the deviation from the central
path below a certain bound.

APPENDIX B

In this section, we give an explicit estimate of the amount
of constraint violation as a function of the SNR. Recall, we
partition the constraint violation vector as

. Obviously, since .
Since the received data vector can be written as
, where is the output of the channel, we can write

and as in (9.1), shown at the bottom of the page, where
. Therefore, will have terms

(where is the equalizer length) of the form

(9.2)

and terms of the form

(9.3)
Since the sequence is an additive white Gaussian noise with
zero mean and variance , the expected value of is equal
to

(9.4)

(9.1)
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In a similar fashion, we can bound by partitioning it into
five groups:

(9.5)

each corresponding to the coefficients of the terms , ,
, , , and , respectively

(recall that we are considering the case of a real-valued equal-
ization so that ). The first group consists of terms
of the form

(9.6)

where

(9.7)

The expected value of (9.7) is

(9.8)

Using the fact that the are i.i.d Gaussian random variables
with zero mean and variance , we have that

(9.9)

The same analysis can be done for the remaining four groups,
resulting in

(9.10)

which implies that the expected value of the amount of con-
straint violation can be bounded as a function noise power or,
equivalently, as a function of the SNR.
Next, we need to estimate since we will bound

by . This is done in a similar
fashion as above. Here, we give an explicit analysis only for
the part of the vector. The same analysis can be done for
the remaining parts. According to (9.6), we have the following:

(9.11)

For the ease of exposition, we denote by . Then, we can
write

where . According to (9.7), we have that

Using the fact that the are i.i.d Gaussian random variables
with zero mean and variance , we have that

A similar analysis can be done to show that
, implying

The same estimates can be established for the remaining parts of
. Therefore, assuming is bounded, we obtain the final result

(9.12)
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