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ABSTRACT
We consider the design of the linear precoder for a multiple-input
single-output (MISO) downlink in a system that employs limited
feedback using Grassmannian quantization. The goal is to mini-
mize the outage probability of a target signal-to-interference-and-
noise ratio (SINR) under a transmitted power constraint. By approx-
imating the outage constraint by a zero-outage region, employing a
semidefinite relaxation, and applying an extension of the S-Lemma,
the problem is converted into a quasi-convex problem. Insights into
the structure of the solution of that problem generate an alternate de-
sign formulation that provides greater robustness in the presence of
significant uncertainties and has a quasi-closed form solution.

Index Terms— Broadcast channel, beamforming, quality-of-
service, Grassmannian limited feedback, chance constraints.

1. INTRODUCTION

In the communication of inelastic data traffic from a base station
(BS) to multiple receivers, an effective strategy for the design of the
transmitter is to seek to minimize the transmission power required
to enable reliable communication to each receiver at the chosen data
rates. Given the complexity of implementing the optimal encoding
structure for the downlink [1], such quality-of-service (QoS) design
problems are typically formulated for linear transmitters; e.g., [2],
[3]. In scenarios in which the receivers have a single antenna and are
coherent, and the channels are memoryless, the linear QoS design
problem reduces to optimizing the BS’s precoding matrix so as to
minimize the power required to satisfy SINR constraints at the re-
ceivers [2–4]. In order to perform this design, the BS must be able
to determine the SINRs at the receivers as a function of the precoder.
However, doing so requires the BS to obtain accurate information
on the state of the channels to the receivers; i.e., accurate CSI. Ac-
quiring that CSI requires channel resources that are consequently not
available for the downlink communication task. As a result, in prac-
tice the BS has only estimates of the CSI and can only estimate the
SINR at each receiver. The precoder design must be performed in
the presence of this uncertainty.

One approach to dealing with the uncertainty in the BS’s CSI is
to develop a model for the uncertainty and incorporate that model
into the design problem. One way to do that is to model the ac-
tual channel as lying in a compact set around the channel estimate at
the BS, and to design the precoder so that the transmission power is
minimized subject to the SINR constraints holding for all channels
in the set; e.g., [5–8]. An alternative to that “worst-case” approach
is to model the uncertainties probabilistically, and to seek to mini-
mize the transmission power subject to the SINR constraints holding
with a given probability; i.e. minimizing the power subject to outage
constraints [9–11]. Although the techniques that we develop herein

are directly applicable to that problem, we will focus on the related
problem of minimizing the outage probability subject to a constraint
on the transmission power.

Many of the existing design techniques for probabilistic uncer-
tainty models are based on conservative convex restrictions of the
design problem that replace the outage constraint by a set of chan-
nels over which zero outage is to be guaranteed [9,10,12,13]. Doing
so enables the application of existing techniques for the worst-case
problem, but these techniques are inherently conservative and their
performance degrades significantly in the presence of larger uncer-
tainties or aggressive SINR targets. Furthermore, although the re-
sulting design problems are convex, they typically involve linear ma-
trix inequalities (LMIs), and the computational cost of solving them
can be quite substantial. Finally, most of the existing approaches to
this “zero-outage” conversion of outage-based problems have been
developed for cases in which the uncertainty can be modelled as be-
ing additive and Gaussian. In time-division duplexing (TDD) sys-
tems that exploit reciprocity, the Gaussian assumption is often quite
reasonable (e.g., [11]), but in frequency division duplexing (FDD)
systems that employ structured vector quantization schemes to feed
CSI back to the BS, the Gaussian model is not appropriate.

In this paper we address each of these issues. Although our ap-
proach can be applied to the case of Gaussian uncertainties, it is de-
veloped specifically for the case of limited feedback. Our approach
includes a variant of the “zero-outage” region approximation of the
outage constraints, but we also provide an alternative approach that
provides better performance outside the region for which zero out-
age can be obtained. That approach is particularly attractive as it
leads to a problem that has a quasi-closed form solution.

2. SYSTEM MODEL AND DESIGN APPROACH

We consider a K-user unicast MISO downlink in which a BS
equipped withNt antennas sends independent messages toK single
antenna users. The BS employs linear beamforming to construct the
transmitted signal at each channel use, x =

PK
i wisi, where si is

the normalized symbol intended for user i, and wi is the associated
beamformer. The signal received by the ith user is

yi = hHi wisi +
P
j 6=i h

H
i wjsj + ni, (1)

where hHi denotes the channel between the BS and receiver i, and ni
represents the additive zero-mean circular complex Gaussian noise at
that user. If receiver i has obtained hHi wi through a dedicated train-
ing step [14], then it can perform coherent detection. If, in addition,
the additive noise is uncorrelated in time and the interference term
in (1) is approximately Gaussian, then the key performance metric



of the link of user i is the SINR,

SINRi =
hHi Wihi

hHi (
P
j 6=iWj)hi + σ2

i

, (2)

where σ2
i is the noise variance and Wi = wiw

H
i . If the BS can be

provided with accurate estimates of the channels then, given SINR
targets γi for each user, the QoS problem can be written as:

min
{wi}Ki=1

P
i ‖wi‖2

subject to SINRi ≥ γi, i = 1, 2, . . . ,K.
(3)

In subsequent formulations we will leave it implicit that the con-
straints must be satisfied for all i ∈ {1, 2, . . . ,K} and that the opti-
mization is over the design variables associated with all users. The
formulation in (3) is not convex, but there are several efficient algo-
rithms for finding globally optimum solutions [2], [4].

In practice, the BS only has an estimate ĥi of hi. Although one
could attempt a mismatched design in which the estimates ĥi are
substituted for hi in (3), the sensitivity of the SINR to the channel
estimates suggests that it may be more effective to develop a model
for the uncertainty and incorporate that model into the design. One
way to do so is to postulate a conditional distribution pi(hi|ĥi), se-
lect an outage probability δi, then seek to minimize the transmission
power subject to the ith SINR constraint holding with probability
1− δi, or show that those specifications cannot be achieved; i.e.,

min
wi

P
i ‖wi‖2

subject to Prob(SINRi ≥ γi) ≥ 1− δi.
(4)

Although some of the techniques we will develop here apply to that
problem, we will focus on the related problem of minimizing the
outage probability subject to a power constraint P ; i.e.,

min
wi

max
i

δi (5a)

subject to Prob(SINRi ≥ γi) ≥ 1− δi, (5b)P
i ‖wi‖2 ≤ P. (5c)

In general, the problem in (5) is difficult to solve even for simple dis-
tributions. This is mainly due to the fact that even when deterministic
expressions for the probabilistic constraints can be obtained, they are
typically non-convex in the design parameters; e.g., [11].

One strategy for finding good solutions to the problem in (4) is
to find a regionRi in which the channel hi will lie with a probability
of at least 1−δi and ensure zero-outage in this region [9], [10], [12],
[13]. Although this method can be quite effective when the uncer-
tainties are small, it is, by its very nature, conservative and may have
no solution even when (4) does. The concept of the zero-outage re-
gion can also be applied to the problem in (5). Rather than designing
wi to minimize the maximum outage, we can seek to maximize the
volume of the zero outage region; i.e.,

max
wi

min
i

vol(Ri)

subject to SINRi ≥ γi, ∀hi ∈ Ri,P
i ‖wi‖2 ≤ P.

(6)

A weakness of this formulation is that it simply attempts to maxi-
mize the size of the zero-outage region without regard for the be-
haviour outside this region. One of the main contributions of this

paper will be to identify alternative strategies that enable the de-
signer to balance the performance obtained when the uncertainties
are small with the performance when the uncertainty is larger.

The specific techniques that we will develop in this paper are for
the case of an FDD downlink system with structured vector quan-
tization [15]. In these systems the receiver estimates the channel
based on training signals sent by the BS and separately quantizes
the gain and direction of the channel. More specifically, we let h̃i
denote the receiver’s estimate, the receiver quantizes αi = ‖h̃i‖2

using a scalar quantizer and quantizes h̃ni = h̃i/‖h̃i‖ using memo-
ryless vector quantization over a Grassmannian codebook [15]; i.e.,
if C = {v1,v2, ...,vM} denotes a Grassmannian codebook of M
elements in CNt , the subspace that characterizes the direction of the
channel is represented by hqi = arg minv∈C 1 − |h̃Hni

v|2. If we
assume that h̃i is estimated accurately, αi is quantized at a high res-
olution, and there are no errors in the feedback path, the transmitter’s
estimate is related to the actual channel by:

hi =
√
αi(hqi + ei), (7)

where the statistics of the error ei are dependent on the codebook
and the statistics of the channel. Given the intricate nature of the
statistics of ei, even in the context of randomized codebooks [16],
our initial development will be based on a model in which ei lies in
a region Ri that is a spherical cap on the Grassmannian manifold of
radius ε, centered at hqi . This region is characterized by:

‖ei‖ ≤ ε (8a)
‖hqi + ei‖ = 1. (8b)

We will assume that the scalars αi are perfectly known at the BS.
In the next section we will develop a robust downlink precoder

design for the above model that seeks to maximize the zero-outage
region; i.e. maximize ε, subject to a power constraint. That design
will form the basis of an alternative design, developed in Section
4, in which we seek to improve the overall outage performance by
allowing a non-zero outage probability for small errors and seeking
improved performance in the presence of larger errors.

3. ZERO OUTAGE REGION MAXIMIZATION

Under the uncertainty model in (8), the problem in (6) of maximizing
the zero-outage region subject to a power constraint is

max
Wi,ε

ε (9a)

subject to SINRi(ei) ≥ γi, ∀ei satisfying (8), (9b)P
i tr(Wi) ≤ P, (9c)

Wi � 0, rank(Wi) = 1. (9d)

This problem is difficult to solve for two reasons. First the rank con-
straint is non-convex. Second, the SINR constraints are non-convex
and there is an infinite number of them. We will address the first dif-
ficulty by removing the rank constraint, which results in a semidef-
inite relaxation of the problem. To address the second difficulty we
rewrite the SINR constraint as

(hqi + ei)
HQi(hqi + ei)− σ2

i /αi ≥ 0, (10)

where Qi = Wi/γi −
P
j 6=iWj , and we rewrite (8b) as ‖ei‖2 +

2Re{eHi hi} = 0. These reformulations enable us to obtain the



following precise finite representation of the infinite number of con-
straints in (9b): the constraint in (9b) holds for all admissible ei if
and only if there exist scalars λi ≥ 0 and µi such that„

Qi Qihqi

hHqi
Qi hHqi

Qihqi − σ2
i /αi

«
+ λi

„
I 0
0 −ε2

«
+ µi

„
I hqi

hHqi
0

«
� 0. (11)

This result can be viewed as an extension of the S-Lemma [17].
It can be established using techniques analogous to those used
in [18] to prove that strong duality holds for a class of complex
quadratically-constrained quadratic optimization problems with at
most two constraints.

Using this precise reformulation of (9b), the semidefinite relax-
ation of (9) becomes

max
Wi,λi,µi,ε

ε

subject to equation (11),P
i tr(Wi) ≤ P,

Wi � 0, λi ≥ 0.

(12)

Since (11) contains the bilinear term λi
“

I 0
0 −ε2

”
, the problem

in (12) is not convex in ε. However, it is convex in the other variables
and it is quasi-convex in ε. Therefore, an optimal solution can be
efficiently found by performing a bisection search on ε in which the
problem solved at each step is the feasibility problem that arrises
when ε is fixed in (12). Once a solution to (12) has been obtained,
the matrices Wi are used to generate vectors wi that correspond to
good solutions to (9); cf. [19]. When each Wi has rank one, the
vectors wi are optimal. Numerical evidence, and theoretical results
for closely related problems with small uncertainty sets [8], suggest
that such a solution almost always exists.

As mentioned earlier, a weakness in the formulation in (9) and
its relaxation in (12) is that it only attempts to maximize the zero-
outage region and does so conservatively without regard for the be-
haviour outside this region. In the case of Gaussian uncertainties, the
size of the zero-outage region is relatively small (e.g., [9], [10]), and
as we will see in Section 6, that is also true in the limited feedback
case. In the next section we will develop an approximation of (12)
that provides better performance for larger uncertainties.

4. OFFSET MAXIMIZATION ALGORITHM

In terms of the original chance constraints in (5b), what we are seek-
ing is a set of beamformers wi that ensure that SINRi ≥ γi with
high probability. Using the notation in (10), we can express that as

hHqi
Qihqi + 2Re(eHi Qihqi) + eHi Qiei − σ2

i /αi ≥ 0 (13)

holding with high probability. To gain some insight into how this is
achieved in (12), consider the “south east” block of the LMI in (11).
This ensures that any feasible point for (12) satisfies

hHqi
Qihqi − σ

2
i /αi − λiε2 ≥ 0. (14)

A comparison between (13) and (14) shows that for a zero-outage
region of a given size ε, the feasible points of (12) with larger values
of λi have larger values for hHqi

Qihqi − σ2
i /αi and hence greater

robustness to uncertainties of size larger than ε. In this section we

will use that insight to develop an alternate ad-hoc “offset maximiza-
tion” algorithm that may not have a zero-outage region, but provides
greater robustness against larger uncertainties.

The proposed approach is based on maximizing the offset values
ri = λiε

2 for some fixed small ε rather than maximizing ε. Using
this substitution in (12), the middle block of the LMI in (11) becomes“

(ri/ε
2)I 0

0 −ri

”
. By analyzing the Schur complement of the “north

west” block of this variant of the LMI, it can be shown that for a
given ε there is a δi > 0 such that satisfying the scalar constraint
hHqi

Qihqi − σ2
i /αi − ri − δi ≥ 0 is sufficient for the LMI to be

satisfiable. Furthermore, as ε → 0, δi → 0, which expands the
feasible set for ri. By exploiting that observation, we can consider
the following problem in which we seek to maximize the minimum
offset, ri, subject to (14),

max
Wi,ri,t

t (15a)

subject to
P
i tr(Wi) ≤ P, (15b)

hHqi
Qihqi − σ

2
i /αi − ri ≥ 0, (15c)

Wi � 0, ri ≥ t. (15d)

Analysis of this problem reveals that at optimality (15c) holds
with equality. Indeed if that were not the case, then we could choose
a larger ri and maintain feasibility. A larger ri would not decrease
the objective. Furthermore, at optimality all ris are equal. To show
that we observe that if, at optimality, r1 was smaller than the other
ris then we could decrease the power of any of Wk, k ≥ 2, which
would retain feasibility and yet allow for a larger value for r1. That
would contradict the assumed optimality. Having made those obser-
vations, we can write the following problem, which is equivalent to
(15), but is simpler:

max
Wi�0,r

r (16a)

subject to
P
i tr(Wi) ≤ P, (16b)

hHqi
Qihqi − σ

2
i /αi − r ≥ 0. (16c)

The SINR constraint in (16c) has an interesting interpretation. If
we recall that the BS’s estimate of hi is ĥi =

√
αihqi , the SINR

condition can be rewritten as

ĥHi Wiĥi

ĥHi (
P
j 6=iWj)ĥi + σ2

i + αir
≥ γi. (17)

That is, the problem in (16) obtains robustness to uncertainties in the
CSI by seeking, with a particular affine scaling, the largest noise
variances for which a mismatched design can satisfy the original
SINR constraints.

The connection between the problem in (16) and the mismatched
design problem also enables us to prove that the problem in (16)
has an optimal solution in which all Wi are rank 1, and hence the
semidefinite relaxation is tight. This can be shown by letting rmax
denote the optimal value for r in (16). The set of {Wi}Ki=1 for which
rmax is achieved is also an optimal solution for the problem

min
Wi�0

P
i tr(Wi)

subject to hHqi
Qihqi − σ

2
i /αi − rmax ≥ 0.

(18)

This problem takes the same form as the QoS problem in the perfect
CSI case; cf. (3). It has been shown that that problem has an optimal
solution in which all the Wis are rank one [2].



5. CLOSED FORM EXPRESSIONS

The connection of the problem in (16) to that in (18), and the fact
that (18) has a rank-1 solution for any r, enables us to construct a
quasi closed-form solution to (16). To derive that solution, we select
a value for r > 0, denoted by r0, and rewrite (18) as

min
wi

P
iw

H
i wi (19a)

s.t. hHqi

“
wiw

H
i /γi −

X
j 6=i

wjw
H
j

”
hqi − σ

2
i /αi ≥ r0. (19b)

Motivated by the analysis in [2], [4] of the perfect CSI problem, we
study the KKT conditions for (19). If we let νi denote the Lagrange
multiplier for the ith constraint in (19b), then a necessary condition
for optimality is

wi =
“νi
γi

hqih
H
qi
−
P
j 6=i νjhqjh

H
qj

”
wi, (20)

which is an eigen equation. Using (20), it can be shown that each
Lagrange multiplier νi satisfies a fixed point equation

ν−1
i = hHqi

“
I +

P
j νjhqjh

H
qj

”−1

hqi

“
1 + 1

γi

”
. (21)

To obtain an optimal solution to (19), we first find the values for
νi in (21) using the algorithm in [4]. Then, the normalized directions
w̄i = wi/‖wi‖ can be obtained from (20). What remains is to de-
termine the squared norm of wi, and the optimal value for r0. We
will denote the squared norm by βi; i.e., wi =

√
βiw̄i. Using the

fact that at optimality the constraints (19b) hold with equality, we ob-
tain a set of linear equations for the vector β = [β1, β2, ..., βK ] that
takes the form Aβ = b + r01, where 1 is a vector of all ones. (We
have left the definitions of A and b implicit.) Since the transmitted
power is

P
i βi, we obtain the following relationship between the

transmitted power and r0:
P
iw

H
i wi = 1TA−1b + r01

TA−11.
Using the fact that the power constraint holds with equality at opti-
mality, this provides a relationship between P and the optimal value
of r, namely rmax = (P − 1TA−1b)/(1TA−11). The inverse
of this relation, namely P = 1TA−1b + rmax1

TA−11 explicitly
states the additional power required to provide the robustness spec-
ified by rmax; the non-robustified case corresponds to r = 0, cf.
(17).

6. SIMULATIONS

We consider a downlink system consisting of a BS with 4 an-
tennas and 3 single antenna receivers, each with a noise variance
σ2 = 0.01, The channel vectors hi are modelled using standard
i.i.d. Rayleigh fading model, and the experiments are based on a
13-bit randomly generated Grassmannian codebook. To illustrate
the features of the proposed approaches to the outage minimization
problem, we generated many channel realizations, and quantized
each realization to an element in the codebook. We then randomly
selected three elements of the codebook to be the quantized chan-
nel directions for the receivers. For each of the three elements we
had about 5000 channels that were quantized to that element. The
scalers αi were assumed to be perfectly known at the BS. We then
constructed the zero-outage region precoder design in (12) and the
quasi-closed form solution to the offset maximization problem (in
Section 5) for the case of a power constraint P = 1. Finally we
evaluated whether the designs achieved the required SINRs, γi, of
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Fig. 1: Probability of satisfying the SINR constraints versus squared
Grassmannian distance for a BS with 4 antennas, 3 users, γ = 8dB,
σ = 0.1 and P = 1.
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Fig. 2: Outage probability versus the power constraint for a BS with
4 antennas, 3 users, γ = 3dB, σ = 0.1.

8dB on the actual channels that were quantized to the chosen code-
book elements. In Fig. 1 we plot the probability that SINRi ≥ γi
against the size of the quantization error, which is measured as the
squared Grassmannian distance between the quantized and actual
channels d2

i = minθ ‖ hie
jθ/
√
αi − hqi‖2. As expected, for small

uncertainties the design based on the zero-outage region does not
incur an outage. However for larger uncertainties, the performance
degrades quite rapidly. In contrast, the offset maximization algo-
rithm may incur outages for uncertainties of intermediate size, but
provides better performance in the presence of larger uncertainties.
For reference, Fig. 1 also includes the distribution of the size of the
quantization error.

In Fig. 2 we compare the performance of the proposed de-
signs against schemes that employ zero-forcing (ZF) [20] or regular-
ized channel inversion (RCI) [21] beamforming, with uniform power
loading. For a target SINR of 3dB, we plot the outage probability of
each method against the power constraint. The probability is cal-
culated over 1000 channel realizations, each of which is quantized
using the randomly generated codebook. As can be seen from the
figure, the proposed approaches provide significantly lower outage
rates than the ZF and RCI designs.
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