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Weighted-Sum-Rate Maximization in
Certain Half-Duplex Cooperative Systems

Wessam Mesbah, Member, IEEE, and Timothy N. Davidson, Member, IEEE

Abstract—In half-duplex cooperative systems the problem of
finding the jointly optimal power and channel resource allocation
that maximizes the weighted sum rate (WSR) can be difficult to
solve. Algorithms to solve that problem are provided herein for
two classes of orthogonal half-duplex systems. For a class of
systems in which the set of rates that can be achieved without
time sharing is convex, the WSR problem is decomposed into a
direct search in which a target rate problem is solved at each step.
The target rate problem involves maximizing one of the rates
subject to target values for the others, and can often be efficiently
solved. For a subclass of those systems, the notion of perspective is
used to transform the WSR problem into an efficiently-solvable
convex optimization problem. Numerical examples involving a
multiple access relay system and a pairwise cooperation scheme
show that joint optimization can result in significantly larger
weighted sum rates than optimization over the powers alone
with a fixed channel resource allocation.

Index Terms—Resource allocation; cooperative and relay sys-
tems; weighted sum rate; convex optimization.

I. INTRODUCTION

BY providing the opportunity for the nodes in a network
to cooperate with each other, or with dedicated relay

nodes, cooperative communication systems have the potential
to improve the quality of service that can be offered; e.g.,
[1]–[4]. A convenient framework for cooperation is that in
which the nodes operate in a half-duplex fashion and the
messages from each user are transmitted over orthogonal
channels. However, the extent of the quality of service gains
that can be obtained from such a framework is dependent
on the appropriate allocation of power (e.g., [5]), and of
the resources provided by the channel, such as time and
bandwidth; e.g., [6]. In this paper, we consider a scenario
in which the data traffic is tolerant of rate variations. Our
goal is to find the jointly optimal power and channel resource
allocations that maximize a weighted sum of the achievable
rates. For most cooperative systems, the natural formulation
of that problem is not convex and can be difficult to solve.
We derive algorithms for solving this problem for two classes
of orthogonal half-duplex systems.

First, we consider the class in which the region of rates that
can be achieved by power and resource allocation, without
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time sharing, is convex. For these systems, the weighted
sum rate (WSR) problem is decomposed into a convex outer
problem and an inner “target-rate” problem, in which one
seeks the joint allocation that maximizes the achievable rate of
one node subject to specified target rates for the other nodes
being achievable. We show that the outer problem is convex,
and the inner problem can be efficiently solved in a number
of cases, e.g., [7]–[9]. Hence, the globally optimal power and
resource allocation can be found using a provably-convergent
direct search method [10], in which the inner problem is solved
at each step. In the two user case, one can use a golden-section
search [11, p. 90]. The target rate approach has previously
proven to be an effective way to select the operating point
of some orthogonal half-duplex systems in scenarios in which
the data traffic from some of the nodes has minimum rate
requirements [7]–[9], but the approaches therein do not yield
effective algorithms for maximizing the weighted sum rate.

A subclass of the above class of systems is that in which
the achievable rates are concave functions of the powers.
For such systems, if the channel resource allocation is fixed,
the power allocation that maximizes the weighted sum rate
can be efficiently found; e.g., [5]. However, our goal is to
obtain an efficient algorithm for joint optimization over the
power and channel resource allocations. Although the direct-
search algorithm described above could be applied, we take a
different approach and use the notion of perspective to show
that the WSR problem can be transformed into a convex
optimization problem that can be efficiently solved.

II. SYSTEM MODEL

In order to state the proposed algorithms in a broad context,
we will consider a rather abstract system model. Examples of
systems admitted by this model are provided in Section V.
Consider a K-user multiple access system that employs half-
duplex relaying with the messages from each user being trans-
mitted on orthogonal subchannels. This framework enables
straightforward per-user decoding, yet still allows for coherent
combining at the receiver. The subchannels are synthesized
either in time or in frequency, and a fraction ri of the chosen
resource is allocated to the transmission of the message from
Node i, with

∑
i ri = 1. Let pi denote the vector that contains

the operating power levels used in the transmission of the
message of Node i, and let p = [pT

1 , pT
2 , . . . ,p

T
K ]T . The

average power transmitted by Node k will be constrained to
be less than p̄k. Since a given node may relay messages from
other nodes, the average power for Node k may depend on
elements of pi, i != k, as well as elements of pk. In the
case of subchannels synthesized in time, the average power
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constraint on Node k takes the form
∑

i riSi(k, :)pi ≤ p̄k,
where Si(k, :) denotes the kth row of a matrix Si whose
elements are non-negative. If Node k plays no role in the
transmission of the message from Node i, then all of the
elements of Si(k, :) are zero. In the case of subchannels
synthesized in frequency, the average power constraint takes
the form

∑
i Si(k, :)pi ≤ p̄k. To simplify our notation, we

will sometimes use the generic expression G(r)p ! p̄, where
r is a vector containing the channel resource allocations, and
the inequality is to be interpreted element-wise.

We will consider a quasi-static channel environment with
coherent reception in which each (scalar) link can be modelled
as a frequency-flat discrete-time channel of power gain |h|2
with additive white Gaussian noise of variance σ2 at the
receiver. Since we are considering systems with orthogonal
transmission, the achievable rate for Node i depends on the
allocation of the channel resource, ri, and the powers allocated
to that node’s message, pi. Indeed, for a given (r,p) pair, the
achievable rate region takes the form

R(r,p) =
{
(R1, R2, . . . , RK) | Ri " R̄i(ri,pi) ∀i

}
. (1)

For systems with subchannels synthesized in time, R̄i(ri,pi)
takes the form rifi(pi), e.g., [5], [8], and for systems with
subchannels synthesized in frequency, R̄i(ri,pi) takes the
form rifi

(
pi/ri

)
, e.g., [7]. Some examples of these functions

are provided in Section V. The region of rates that can be
achieved using joint power and channel resource allocation,
without time sharing between different operating points is

R(p̄) =
⋃

ri∈[0,1],
∑

i ri=1
{p|p!0,G(r)p"p̄}

R(r,p). (2)

In this paper we will develop algorithms for finding the pair
(r,p) that maximizes a weighted sum of the rates in R(p̄), for
certain classes of systems. This WSR problem can be written
as: Given weights µi ∈ [0, 1] with

∑
i µi = 1,

max
pi!0, ri∈[0,1]

K∑

i=1

µiR̄i(ri,pi) (3a)

subject to G(r)p ! p̄ and
K∑

i=1

ri = 1. (3b)

Unfortunately, for most of the considered systems, this natural
formulation of the WSR problem is not convex and can be
difficult to solve. Even in the case in which the functions
fi(·) that are implicit in (1) are concave in the powers, the
formulation in (3) is not necessarily convex.

III. SYSTEMS FOR WHICH R(p̄) IS CONVEX

For systems for which R(p̄) is convex, we will reformulate
the WSR problem in a hierarchical form with inner and outer
problems. First, we select one user, say user k, and introduce
auxiliary design variables Rj , j != k and define R̆j(rj) to be
the maximum achievable rate of Node j when it is allocated
the fraction rj of the channel resources. (This value can be
found by allocating all the available power to the transmission
of the message of Node j.) The hierarchical reformulation is
based on the observation that the problem in (3) is equivalent

to the “outer” problem: max{Rj∈[0,R̆j(1)]}j !=k
W ({Rj}j "=k),

where

W ({Rj}j "=k) = µkRk,max({Rj}j "=k) +
∑

j "=k

µjRj (4)

and Rk,max({Rj}j "=k) denotes the maximum achievable rate
for Node k for given rates for the other nodes; that is,
Rk,max({Rj}j "=k) is the optimal value of the “inner” target
rate problem:

max
p!0, ri∈[0,1]

R̄k(rk,pk) (5a)

subject to R̄j(rj ,pj) # Rj , ∀j != k (5b)

G(r)p ! p̄ and
K∑

i=1

ri = 1. (5c)

Although it has been obtained informally, this hierarchical
formulation is actually a simple decomposition; e.g., [12].

To show that the above reformulation can lead to an
effective algorithm, we first observe that the jointly opti-
mized achievable rate region in (2) is the intersection of the
hypograph of the function Rk,max({Rj}j "=k) and the non-
negative orthant. For the considered systems, that region is
convex, and hence Rk,max({Rj}j "=k) is a concave function
[13, p. 75], and so is W ({Rj}j "=k). However, we do not
have a closed-form expression for Rk,max({Rj}j "=k), and
conventional derivative-based algorithms cannot be applied.
Instead, there are a number of direct search techniques that
can be shown to converge to the (globally) optimal solution;
e.g., [10]. One simple example is “compass search”. At each
iteration of that method, steps are taken, alternately, along the
coordinate axes and the corresponding target rate problem is
solved until an improved value for W ({Rj}j "=k) is obtained.
If no improved value is found, the search is repeated with
steps of half the size. Most convergent direct search algorithms
generate a monotonically increasing sequence of values for
W ({Rj}j "=k), and typically make good progress toward the
optimal solution in the early iterations. As such, they provide
an effective approach to finding a “good” solution. However,
the rate of refinement of the good solution to the optimal
solution may be slow.

In the two-user case, the golden-section direct search tech-
nique (e.g., [11, p. 90]) can be used. At each iteration of
this bracketting technique, the optimal value for Rj is known
to lie within a given interval, say [Ra

j , R
b
j ]. The target rate

problem is then solved for a particular Rj ∈ [Ra
j , R

b
j ], and

based on W (Rj) a portion of the interval is removed. At each
iteration, the length of the interval is reduced by a factor τ =
2/(1 +

√
5) ≈ 0.618, and hence we obtain the optimal value

of Rj to within accuracy of ε in
⌈
log

(
R̆j(0)/ε

)
/| log(τ)|

⌉

iterations. Since the number of iterations is only logarithmic
in 1/ε, when the target rate problem can be efficiently solved,
e.g., [7]–[9], the golden-section search technique yields an
efficient algorithm for solving the two-user WSR problem.

IV. SYSTEMS FOR WHICH EACH fi(·) IS CONCAVE

If the functions fi(·) that are implicit in (1) are concave in
the powers, then the rate region in (2) is convex [14], and the
WSR problem can be solved using the method in Section III.
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Fig. 1. A simple multiple access relay system with two source nodes.

In this section, we take a different approach and show how
concavity of fi(·) in the powers can be used to reformulate
the WSR problem as a convex optimization problem that can
be solved using conventional interior point methods [13]. An
advantage of this approach over the more generally-applicable
direct search approach in Section III is that conventional
interior point methods exploit slope and curvature information.

For time-domain subchannels, the WSR problem takes the
form of the problem in (3), with rates R̄i(ri,pi) = rifi(pi)
and power constraint G(r)p =

∑K
i=1 riSi(k, :)pi ! p̄. This

natural formulation appears to be difficult to solve, due to
the bilinear nature of the power constraint and the products
rifi(pi) in the objective. However, if we restrict attention
to the case of ri ∈ (0, 1),1 and if we define p̃i = ripi,
which is the vector of average power components used in the
transmission of Node i’s message, then the WSR problem can
be reformulated as

max
p̃i!0, ri∈(0,1)

K∑

i=1

µirifi
(
p̃i/ri

)
(6a)

subject to
K∑

i=1

Sip̃i ! p̄ and
K∑

i=1

ri = 1. (6b)

In (6), the constraints are linear and hence convex. The objec-
tive is the weighted sum of functions of the form rifi

(
p̃i/ri

)
.

Functions of this form are said to be the perspective of fi(·),
and the perspective operator preserves the convexity properties
of fi(·), [13, p. 89]. Since we are considering systems in which
fi(·) is concave, the objective in (6a) is concave and hence
the problem in (6) can be efficiently solved.

In the case of frequency-domain subchannels, for ri ∈
(0, 1), the direct formulation of the WSR problem takes
the form in (6), with pi replacing p̃i, and hence it can be
efficiently solved. (A related observation was made in [15].)

V. EXAMPLES

A. Orthogonal Multiple Access Relay (OMAR) System

The OMAR system (cf. [4]) consists of a number of
users (Nodes i, i ∈ {1, 2, . . .N}) that independently transmit
their messages over orthogonal subchannels to a common
destination (Node 0) with the help of a relay node (Node R);
cf. Fig. 1. We will consider the case of time-domain subchan-
nels, in which the available time slot is partitioned into N frac-
tions, ri. In the first half of the ith fraction, Node i transmits
and in the second half the relay assists the transmission of
Node i’s message according to the chosen relaying strategy.
The maximum achievable rates for Node i under the regenera-
tive and non-regenerative decode-and-forward strategies (RDF

1The vertices can be considered separately, or as limiting cases.

and NDF) and the amplify-and-forward (AF) and compress-
and-forward (CF) strategies take the form rifi(pi), where pi

contains Pi, the power level at which Node i transmits, and
PRi, the relay power level for the transmission of the message
of Node i; e.g., [8, (2)]. For example, if we let γij = |hij |2/σ2

j

denote the effective gain of the channel from Node i to Node j,
then the rates for RDF and AF relaying are bounded by

R̄i,RDF(ri,pi) =
ri
2
min

{
log(1 + γiRPi),

log(1 + γi0Pi + γR0PRi)
}
, (7a)

R̄i,AF(ri,pi) =
ri
2
log

(
1 + γi0Pi +

γiRγR0PiPRi

1 + γiRPi + γR0PRi

)

(7b)

respectively. For the OMAR system, the average power con-
straint at each source node is rkPk/2 ≤ p̄k and the average
power constraint for the relay is

∑
k rkPRk/2 ≤ p̄R.

For the RDF and NDF strategies, some basic properties
can be used to show that the functions fi(·) are concave in
pi, [5], and hence that the jointly optimal allocations can be
found using either of the proposed algorithms. Actually, since
the transmissions are orthogonal, the optimal source operating
powers are P !

k = 2p̄k/rk, and this can be used to simplify
the algorithm. For the AF and CF strategies, this expression
for the optimal source powers can be used to show that the
achievable rates are convex in the remaining design variables
when γk0p̄k ≥ 1/2; cf. [8]. In that (common) case, a jointly
optimal allocation can be found using either algorithm.

Now that we have an efficient algorithm, we can evaluate
the advantage of joint optimization over power allocation alone
with a fixed resource allocation [5]. Consider a three-user
system with µ1 = 0.3 and µ2 = 0.2 in (3). For the power-
allocation-only case, we consider equal resource allocation,
ri = 1/3, and a resource allocation that is matched to the
weighting, r1 = 0.3, r2 = 0.2. In Fig. 2 we have plotted the
average weighted sum rate against the relay’s power budget,
p̄R, for the RDF and AF relaying strategies under the source
power constraint p̄k = 2. (The results for the NDF and CF
strategies have similar characteristics; cf. [14].) The average
was taken over 10,000 realizations of a Rician channel model
with a K-factor of 5 and average power gains of the specular
paths of αK/(K +1), with α1R = 1.2, α2R = 0.8, α3R = 1,
α10 = 0.3, α20 = 0.6, α30 = 0.4, αR0 = 0.4. (The noise
variances were normalized to one.) It can be seen from the
figure that joint optimization can provide a significant gain
in the weighted sum rate. In particular, for the RDF case the
gain over equal resource allocation is around 17% for small
relay power budgets and around 30% for large budgets. In
this example, the source node power constraints are p̄k = 2,
and hence as the relay’s power budget increases, the curves
in Fig. 2 saturate in the RDF case and exhibit diminishing
returns in the AF case.

B. Pairwise User Cooperation Systems

Whereas OMAR systems employ a dedicated relay node,
in cooperative systems the nodes themselves work as relays
for each other; e.g., Fig. 3. In this section we consider
the orthogonal pairwise user cooperation system that was
considered in [9], which is a block-based variants of a system
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Fig. 2. Average weighted sum rate for three-user RDF and AF OMAR
systems with µ1 = 0.3, µ2 = 0.2 in a Rician channel environment, against
the relay’s power budget, p̄R, with source power constraint p̄k = 2.
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Fig. 3. The pairwise user cooperation system.

in [2]. In the system in [9], time division is used to synthesize
the subchannels, and Node 1 transmits its own message for a
fraction r1/2 of the time slot and during a separate fraction
r2/2 = (1 − r1)/2 of the time slot it amplifies and forwards
the signals it received from Node 2. Node 2 acts in the
complementary way. The achievable rate region of this system
can be characterized [9] using (1) and (2) with

R̄i(ri,pi) =
ri
2
log

(
1 + γi0Pii +

γk0γikPiiPki

1 + γk0Pki + γikPii

)
,

(8)

where i != k ∈ {1, 2}, Pki is the operating power level allo-
cated by Node k to the message of Node i, and r2 = (1−r1).
In this case, pi = [Pii, Pki]T and the average power constraint
on Node k is r1Pk1/2 + (1 − r1)Pk2/2 ≤ p̄k. Although the
expression in (8) resembles that in (7b) for the AF OMAR
system, the power constraint is different, and this complicates
the analysis. However, it can be shown, using [9], that even
though the expression in (8) is not concave in the powers, for
this system the achievable rate region in (2) is convex and
that the target rate problem can be efficiently solved. Hence,
the golden section search algorithm in Section III provides an
efficient method for solving the WSR problem.

To illustrate the gain that can be obtained using the proposed
algorithm, consider a Rician channel model of the form used
in the previous example, with α10 = 0.3, α20 = 0.8, and
α12 = α21 = 1.2. For each of 10,000 channel realizations, we
maximized the weighted sum rate with µ = 3/4. In Fig. 4, we
have plotted the resulting average weighted sum rates against
the (equal) power budgets of the source nodes, p̄1 = p̄2. Fig. 4
demonstrates that the proposed joint optimization algorithm
can increase the high-SNR slope of the weighted sum rate
curve over that obtained using power allocation alone with
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Fig. 4. Average weighted sum rate for the pairwise AF user cooperation
system with µ = 3/4, in a Rician channel environment, against the source
nodes’ power budget.

fixed resource allocation (with r1 = 1/2 or r1 = 3/4). As a
result, with p̄1 = p̄2 = 10 dB the jointly optimized system
provides an average weighted sum rate that is at least 30%
higher than that of the power optimized system with r = 1/2.
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