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Optimized Power Allocation for Pairwise
Cooperative Multiple Access
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Abstract—Multiple access schemes in which the transmitting
nodes are allowed to cooperate have the potential to provide
higher quality of service than conventional schemes. In the class
of pair-wise cooperative multiple access schemes in which channel
state information is available at the transmitters, the allocation
of transmission power plays a key role in the realization of these
quality of service gains. Unfortunately, the natural formulation of
the power allocation problem for full-duplex cooperative schemes
is not convex. It is shown herein that this non-convex formulation
can be simplified and recast in a convex form. In fact, closed-form
expressions for the optimal power allocation for each point on the
boundary of an achievable rate region are obtained. In practice,
a half-duplex cooperative scheme, in which the channel resource
is partitioned in such a way that interference is avoided, may be
preferred over a full-duplex scheme. The channel resource is often
partitioned equally, but we develop an efficient algorithm for the
joint allocation of power and the channel resource for a modified
version of an existing half-duplex cooperative scheme. We demon-
strate that this algorithm enables the resulting scheme to attain a
significantly larger fraction of the achievable rate region for the
full duplex case than the underlying scheme that employs a fixed
resource allocation.

Index Terms—Achievable rate, convex optimization, cooperative
communications, decode-and-forward, resource allocation.

I. INTRODUCTION

I N CONVENTIONAL multiple access schemes each node
attempts to communicate its message directly to the desti-

nation node; e.g., the base station in a cellular wireless system.
While such schemes can be implemented in a straightforward
manner, alternative schemes in which nodes are allowed to co-
operate have the potential to improve the quality of service that
is offered to the transmitting nodes by enlarging the achiev-
able rate region and by reducing the probability of outage; e.g.,
[1]–[4]. The basic principle of cooperative multiple access is
for the nodes to mutually relay (components of) their messages
to the destination node, and hence the design of such schemes
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involves the development of an appropriate composition of sev-
eral relay channels [5]–[7]. In particular, power and other com-
munication resources, such as time-frequency cells/dimensions,
must be allocated to the direct transmission and cooperation
tasks. The realization of the potential improvement in quality
of service provided by cooperation is contingent on this alloca-
tion (among other things), and the development of efficient al-
gorithms for optimal power and resource allocation for certain
classes of cooperative multiple access schemes forms the core
of this paper.

We will focus on cooperative multiple access schemes in
which the transmitting nodes cooperate in pairs and have access
to full channel state information. The transmitting nodes will
cooperate by (completely) decoding the cooperative messages
transmitted by their partners, and hence the cooperation strategy
can be broadly classified as being of the decode-and-forward
type. We will consider an independent block fading model
for the channels between the nodes, and will assume that the
coherence time is long. This enables us to neglect the com-
munication resources assigned to the feeding back of channel
state information to the transmitters, and also suggests that an
appropriate system design objective would be to enlarge the
achievable rate region for the given channel realization.

We will begin our development with the derivation (in
Sections II and III) of closed-form expressions for optimal
power allocations for cooperative schemes that are allowed to
operate in full-duplex mode; i.e., schemes that allow each node
to simultaneously transmit and receive in the same time-fre-
quency cell. Although the demands on the communication
hardware required to facilitate full-duplex operation, such as
sufficient electrical isolation between the transmission and
reception modules and perfect echo cancellation, are unlikely
to be satisfied in wireless systems with reasonable cost, the
full-duplex case represents an idealized scenario against which
more practical systems can be measured. It also provides a
simplified exposition of the principles of our approach. The
performance required from the communication hardware can
be substantially relaxed by requiring each node to communicate
in a half-duplex fashion; e.g., [1]–[4]. However, half-duplex
operation requires the allocation of both power and the channel
resource. In Section V, we will develop an efficient jointly op-
timal power and resource allocation algorithm for a (modified)
block-based version of the half-duplex scheme in [2, Sec. III].
(The scheme in [2, Sec. III] employs a fixed, and equal, re-
source allocation.) We will demonstrate that the ability of the
proposed scheme to partition the channel resource according
to the rate requirements of each node enables it to achieve a
larger fraction of the achievable rate region of the full duplex
case than the underlying scheme.
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An impediment to the development of reliable, efficient
power allocation algorithms for full-duplex cooperative mul-
tiple access has been that the direct formulation of the power
allocation problem is not convex unless the transmission scheme
is constrained to avoid interference. However, by examining the
structure of this problem, we show that the non-convex direct
formulation can be transformed into a convex one. In particular,
we will show in Section II that for a given rate requirement
for one of the nodes, the power allocation problem for the
full-duplex case can be transformed into a convex problem that
has a closed-form solution. In addition to the computational
efficiencies that this closed form provides, the ability to di-
rectly control the rate of one of the nodes can be convenient
in the case of heterogeneous traffic at the cooperative nodes,
especially if one node has a constant rate requirement and the
other is dominated by “best effort” traffic. The derivation of our
closed-form expressions involved the independent discovery of
some of the observations in [8] and [9] regarding the properties
of the optimal solution to the sum-rate optimization problem.
In particular, using different techniques from those in [8] and
[9], we independently showed [10] that for each node, one
of the components of the optimal power allocation is zero
(although which one depends on the scenario), and that the
optimization of the remaining powers can be formulated as a
convex optimization problem. In [8] and [9], these observa-
tions were used to derive a power allocation algorithm with
an ergodic achievable rate objective and long-term average
power constraints, whereas our focus is on a setting in which
the channel coherence time is long. A distinguishing feature of
our approach is that the convex optimization problem for the
remaining powers admits a closed-form solution.

The development of reliable, efficient, power allocation algo-
rithms for half-duplex cooperative multiple access schemes with
fixed resource allocation is simpler than that for the full-duplex
case, because interference is explicitly avoided and the problem
becomes convex. However, the joint allocation of power and the
channel resource remains non-convex. In Section V, we con-
sider a half-duplex scheme based on that in [2, Sec. III], and
show that for a given rate requirement for one of the nodes the
maximal achievable rate of the other node is a quasi-concave
function of the resource allocation parameter. Therefore, we can
construct an efficient algorithm for the optimal resource allo-
cation using a standard quasi-convex search. At each stage of
the search, a convex optimization problem with just two vari-
ables is solved. The complexity reduction that we obtain by ex-
ploiting the underlying quasi-convexity suggests that it may be
possible to develop an online implementation of the jointly op-
timal power and resource allocation algorithm without resorting
to approximation.

II. FULL-DUPLEX MODEL

A block diagram of the model for full-duplex pair-wise co-
operative multiple access is provided in Fig. 1; see [1] and [11].
A superposition block Markov coding scheme with backward
decoding was proposed for this system in [1], and we will adopt
that scheme herein. To describe that coding scheme, we let

denote the th message to be sent directly from node
to the destination node (node 0), and let denote the th

message to be sent from node to the destination node with the
cooperation of node . At the th (block) channel use, node
transmits the codeword

(1)

where carries the in-
formation sent by node directly to the destination node,

carries the information
that is sent by node to the destination node via node ,1 and

carries the cooperative information.
(Note that all three components of depend on the coopera-
tive messages sent in the previous block.) We will let , ,
and denote the power allocated to each component on the
right-hand side of (1), and will define .
Assuming, as in [1], that perfect isolation and echo cancellation
are achieved and that each transmitter knows the phase of the
channels into which it transmits and has the means to cancel
this phase, the received signal at each node can be written as

(2a)

(2b)

(2c)

respectively, where is the magnitude of the channel gain be-
tween node and node , and represents the additive zero-
mean white circular complex Gaussian noise with variance
at node . We define the (power) gain-to-noise ratio of each
channel to be . The transmitting nodes engage the
channel in this way for (block) channel uses, and the destina-
tion node employs backward decoding once all blocks have
arrived [1]. (The cooperating nodes employ forward decoding.)

The data rate of node in the previous model is
, where is the rate of the message transmitted directly

to the destination node, , and is the rate of the message
transmitted with the cooperation of node , . Under the as-
sumption that all the channel parameters are known at both
transmitting nodes, an achievable rate region for a given channel
realization is the closure of the convex hull of the rate pairs

that satisfy the following constraints [1]:2

(3a)

(3b)

(3c)

(3d)

Here, (3a) and (3b) bound the conventional multiple access re-
gion (with no cooperation), and (3c) and (3d) capture the impact
of cooperation. A natural design objective would be to operate
the system in Fig. 1 at rates that approach the boundary of the
region specified in (3), subject to constraints on the power trans-
mitted from each node. The power allocation required to do so
can be found by maximizing a convex combination of and

1The destination node also receives � directly.
2All logarithms are to base 2, and all rates are in bits per two dimensions.
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Fig. 1. Full-duplex pair-wise cooperative multiple access.

subject to (3) and a bound on the transmitted powers,3 or by
maximizing for a given value of , subject to (3) and the
bound on the transmitted powers. Unfortunately, the direct for-
mulation of both these problems is not convex in the transmitted
powers, due to the interference components in (3c). The lack of
convexity renders the development of a reliable efficient algo-
rithm for the solution of the direct formulation fraught with diffi-
culty. However, in Section III, we will show that by adopting the
latter of these two problems, the direct formulation can be trans-
formed into a convex optimization problem that in most sce-
narios can be analytically solved to obtain closed-form expres-
sions for the optimal power allocation. The overall strategy for
obtaining this closed-form solution involves three main steps.

Step 1) For a given (feasible4) value of , denoted ,
find a closed-form expression for the powers that
maximize subject to (3) and the bound on the
transmitted powers; i.e., solve

(4a)

subject to (4b)

and equation (3) with (4c)

Step 2) For a given (feasible) value of , denoted ,
find a closed-form expression for the powers that
maximize subject to (3) and the bound on the
transmitted powers. The formulation of this problem
is the (algebraically) symmetric image of that in (4),
in the sense that the powers and the rates of nodes 1
and 2 simply exchange roles.

Step 3) The achievable rate region of the system proposed
in [1] is the convex hull of the rate regions obtained
in Steps 1) and 2). When a desired rate pair on the
boundary of this convex hull is achieved by the solu-
tion to Steps 1) or 2), an optimal power allocation is

3That problem that can be viewed as a special case of the problem in
[8] and [9], which involves power allocation over a distribution of channel
realizations with an ergodic achievable rate objective and long-term average
power constraints.

4The set of feasible values for � is ��� � �, where a closed-form ex-
pression for � can be obtained by solving the problem in Step 2) for
� � �. Analogously, a closed-form expression for � can be ob-
tained by solving (4) for � � �.

obtained directly. When this is not the case, a stan-
dard time-sharing strategy is applied.

In a conventional multiple access scheme, all points on the
boundary of the capacity region can be obtained by time sharing
(if necessary) between rate pairs that can be achieved by suc-
cessive decoding of the messages from each node [13], and this
significantly simplifies the system. A related result holds for the
cooperative multiple access scheme, and significantly simpli-
fies the power allocation problem. In particular, it is shown in
Appendix I that in each of Steps 1) and 2) it is sufficient to con-
sider two simplified problems in which the direct messages from
each node are decoded sequentially—one in which the direct
message from node 1 is decoded first (and is cancelled before the
remaining messages are decoded), and one in which the direct
message of node 2 is decoded first. Furthermore, solving Step
1) with the direct message of node 1 decoded first results in the
same set of constraints on the rates [i.e., the same simplification
of (3)] as solving Step 2) with the direct message of node 1 de-
coded first. Also, solving Step 1) with the direct message of node
2 decoded first results in the same set of constraints on the rates
as solving Step 2) with the direct message of node 2 decoded
first. Therefore, in Step 1) it is sufficient to consider only the
case in which the direct message of node 1 is decoded first, and
in Step 2) it is sufficient to consider only the case in which the
direct message of node 2 is decoded first. Moreover, these two
problems are (algebraically) symmetric images of each other.
Therefore, we will explicitly state our closed-form solution only
for the problem in Step 1) in which the direct message of node 1
is decoded first.

A key observation in the derivation of our closed-form
expressions for the optimal power allocation is that the mono-
tonicity of the logarithm implies that for positive constants

and , and nonnegative constants and , the function
is monotonic in . Hence,

the optimal solution to

(5a)

subject to (5b)

is

if
if .

(6)

(When all are optimal.) Since problems
of the form in (5) appear in two of the underlying components
of (4), and since (6) has two important cases, we will need to
consider four cases in order to solve Step 1). (These four cases
also arise in [8] and [9], although in a different way.) In each
case, we exploit the fact that since we are attempting to maxi-
mize , the upper bound in (4b) on the transmitted power for
node 1 will be active at optimality. In order to simplify our ex-
position, we have collected the closed-form expressions for the
optimal power allocations in Table I, and to simplify the deriva-
tion of these expressions, we will consider each of the four cases
in a separate subsection of Section III. Before moving to those
derivations, we point out that in each of the four cases in Table I,
for each node (at least) one of the components of the optimal
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TABLE I
POWER ALLOCATIONS FOR POINTS ON THE BOUNDARY OF THE ACHIEVABLE RATE REGION FOR THE FULL-DUPLEX COOPERATIVE SYSTEM, IN CASES 1–3 AND IN

STEP 1) OF CASE 4. GIVEN A FEASIBLE RATE FOR NODE 2, � , WE DEFINE � � �� � ���� , AND �� � �	
�� � �� �� � ���� �

power allocation is zero. That observation is a key step in the
derivation of these expressions, because once it is made the re-
maining design problem is convex. (These observations were
made independently of [8] and [9], in which they arise from an
analysis of the problem of optimizing the sum rate.) The par-
ticular powers that are zero imply that in Case 1 both nodes
use cooperative transmission only; in Case 2 node 1 uses direct
transmission only and node 2 uses only cooperative transmis-
sion; and in Case 3 node 1 uses cooperative transmission only,
and node 2 uses only direct transmission.

III. DERIVATION OF EXPRESSIONS IN TABLE I

A. Case 1: and

In this case, the cooperation channel for both nodes has a
higher gain-to-noise ratio than the direct channel. Following
the discussion in Section II, we will assume that node 1’s di-
rect message will be decoded first, and hence, the constraint on

in (3c) can be written as

(7)

Furthermore, since the constraint on in (3d) can be
written as

(8)
Our first step in the solution of (4) is to determine the powers

of node 2 such that (7) is satisfied and the bound on the right-
hand side of (8) is maximized. To do so, we need to maximize

, which is the portion of the power node
2 uses to send the cooperative codeword. This can be done by
minimizing the power required to satisfy (7). The power used to
satisfy (7) is the sum of the powers allocated to the direct and

indirect codewords, namely . To determine
and such that is minimized, we rewrite (7) as

(9)

From (9), it can be seen that in order to minimize such that
(9) holds, we need to make the second term in (9) as small as
possible. This can be achieved by making the first term large.
(Recall that .) That is, we seek to

subject to

This problem has the form of (5), and since , the
solution is , and hence, . For that
power allocation, (7) can be written as

(10)

and hence the minimum power required for to be achiev-
able is . As in Table I, we define

. The remaining power available for the
cooperative codeword is .

We now consider the optimization of the remaining powers
so that is maximized (subject to

being achievable). The rate of node 1 has two constraints

(11)

(12)
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To simplify (11), we let . This
enables us to write (11) as

(13)

(14)

For a given value of , is fixed and (14) can be maximized
by solving

subject to

This problem takes the form in (5), and since , the
solution is and . The remaining two
constraints on are (12) and ,
and the remaining design variable is . Therefore, we have
reduced the problem in (4) to

(15a)

subject to (15b)

where

(16a)

(16b)

In order to solve (15) analytically, we observe that the argument
of the logarithm in is linearly decreasing in while
the argument of the logarithm in is concave increasing.
Therefore, the solution of (15) is the value of for which the
two upper bounds on intersect (i.e., ),
so long that value of satisfies . (A similar
observation was made in [12] in the context of relay channels.)
Equating and results in a quadratic equation
in , and to express the solution of that quadratic equation
we define

(17a)

(17b)

If , then the optimal power allocation for node 1 is5

(18a)

(18b)

(18c)

where .
In some scenarios, the gain-to-noise ratios of the channels

may be such that for small values of . In that
case, it can be shown that for all admis-
sible values of , and hence, the problem in (15) simplifies

5It can be analytically shown that � � �� . Furthermore, the condition
that � � � guarantees that the argument of the square root in (18a) is positive.

to the maximization of , for which the optimal power
allocation is , and hence, . The fact that

, for all admissible means that for
the given , node 2 does not have to use all its allowed
power in order for node 1 to achieve its maximum achievable
rate (while node 2 achieves its target rate). In fact, the minimum
(total) power that node 2 must use is the power that would make

in (17b) zero; i.e.,

(19)

Since and , we have that . If
, the additional power can be partitioned

arbitrarily between or ; see Table I.6

An alternative perspective on scenarios in which is
provided by the observation that if denotes the in-
terval, if any, of values of that result in , then
for all the optimal value of is equal to
its maximum possible value. That is, for these cases the provi-
sion of a nonzero rate of up to to node 2 does not reduce
the achievable rate for node 1. Such scenarios arise naturally
in conventional multiple access systems. This property is illus-
trated in the achievable rate regions in Fig. 3 for the cases in
which and . The boundaries of
these regions are constant for small values of .

As discussed in Step 1), the target rate is achievable if
(and only if) it lies in , where can be found
from the solution to Step 2) with target rate . Using
a similar derivation to that above, we can show that under the
conditions of Case 1, the solution to Step 2) with
has , , and , and that the constraints
on reduce to

(20a)

(20b)

Therefore, the problem of finding has been reduced to
finding the value of that maximizes the minimum
of the two constraints in (20). A problem of this type arose in
(15), and hence, by applying techniques similar to those that fol-
lowed (15) one can obtain a closed-form solution for the optimal
value of , and hence, a closed-form expression for .
Actually, this expression for applies in any situation in
which . That is, it also applies to Case 2. For Cases
3 and 4, in which , one can use similar arguments to
show that is the same as that for the conventional mul-
tiple access region, namely .

B. Case 2: and

In this case, the direct channel for node 1 has a higher gain-to-
noise ratio than its cooperation channel, but for node 2 the op-

6Since � � �, there is no coherent combining of � and � at the desti-
nation node, but � can still play an active role in the backward decoder at the
destination node; cf., [1, Appendix ]. That said, setting � � �� and � � �

has the potential to simplify the encoder at node 2 and the decoder at the desti-
nation node.
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posite is true. Using a similar argument to Case 1, the minimum
value of required for to be achievable oc-
curs when . Thus, an optimal power distribution for
the second node is , ,

. Therefore, the constraint in (3c) for node 1
reduces to that in (11). However, in this case, it can be shown
that the choices and maximize the
constraint in (11). The two constraints on will be (3d) and

. That is, for Case 2, we have
reduced the problem in (4) to

(21a)

subject to (21b)

where and was
defined in (16b). By analogy to Case 1, the solution to this
problem is the intersection point between the two terms inside
the minimum function, so long as that value lies in . Let
us define

(22a)

(22b)

If , the optimal value of has the same form as (18a).
If , it can be shown that for all
admissible values of , and hence that . As in Case
1, if then node 2 can reduce its total transmission power,
in this case to

(23)

and there is a range of optimal values for the pair ;
see Table I.

C. Case 3: and

In this case, the cooperation channel of node 1 has a higher
gain-to-noise ratio than the direct channel, while this property
is reversed for node 2. This case is (algebraically) symmetric to
Case 2, which means that it is optimal to set , ,

, and . The
problem in (4) can then be written in the same form as (15),
except that . Therefore, if we define

and as in (17), then if the optimal power allocation
for node 1 will have the same form as (18). If , then

, and node 2 can reduce its total power to .

D. Case 4: and

In this case, for each node the cooperation channel is
“weaker” than the direct channel. Therefore, we expect rather
modest gains, if any, from cooperation. These expectations
materialize in our solution. To solve the problem in Step 1),
namely (4), under the assumption that node 1’s direct message

will be decoded first, we observe that the constraint set (3) can
be written as

(24a)

(24b)

(24c)

where we have used the power constraint . To simplify
(24b), we let . This enables us to
write (24b) as

(25)

For a given value of , is fixed and (25) can be maximized
by solving

subject to

This problem takes the form of (5), and hence, the solution is

if

if .
(26)

Consider the first case in (26), namely
. In that case, the constraint set in (24) can be written as

(27a)

(27b)

(27c)

Our next step in the solution of (4) is to determine the powers
of node 2 such that (27a) is satisfied and the bound on the right-
hand side of (27c) is maximized. To do so we need to maximize

. This can be done by minimizing the
power required to satisfy (27a). The power used to satisfy (27a)
is , and to determine and such that
is minimized, we rewrite (27a) as

(28)

From (28), it can be seen that in order to minimize such that
(28) holds, we need to make the second term in (28) as small as
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possible. This can be achieved by making the first term large;
i.e.,

subject to

This problem has the form of (5), and since , the
solution is , and hence, . For
those power allocations, (27a) can be written as

(29)

The minimum value of required for (29) to be satisfied
is , and hence, an optimal value for

under the conditions of the first case of (26) is
. The remaining power available

for node 2’s cooperative codeword is .
We now consider the optimization of the remaining powers

so that is maximized. Since we are focusing
on the first case in (26), , and hence, the problem
of maximizing can be written as

(30a)

subject to (30b)

where and were defined in (16). Therefore,
as we have seen in Case 1, the solution of (30) is the value of

for which the two upper bounds on intersect, so long as
this value lies in . If we define and as in (17), then
if the optimal power allocations for node 1 in the first
case of (26) are given by the expressions in (18); see Table I.
If , then for all admissible values
of , and in order to maximize , we
would choose and hence . With that choice,
the achievable rate for a given target rate is

. However, a feature of the scenario in Case 4
is that for values of that result in a negative value of ,
the conventional multiple access scheme provides a larger value
for than that derived previously; see Appendix II for the
derivation. Therefore, in the first case of (26), if is such
that , then the optimal solution is to perform conventional
multiple access.

In the second case of (26), namely ,
the constraint set in (24) can be written as

(31a)

(31b)

(31c)

It can be shown that letting and increases
(31c), but at the same time it increases the interference term
in (31b). This suggests that the optimal values of and
might both be nonzero, and hence, the power allocation problem

Fig. 2. Convex hull of the two achievable rate regions in Case 4. � � � �
���, � � � � � � �, ��� � � ��� � � ����, ��� � � ���	,
��� � � ���
.

appears to become significantly more complex to solve. How-
ever, in Appendix III, we show that it is sufficient to study the
first case of (26), namely , and the
symmetric case that arises when solving Step 2). In particular,
we show in Appendix III, that the convex hull of the regions ob-
tained by solving Step 1) for and Step
2) for , and the conventional multiple
access region contains all other regions that would result from
solving Step 1) for and solving Step
2) for .

In Cases 1–3, our proposed closed-form solution to (4) gen-
erates the achievable rate region directly. However, as stated in
the previous paragraph, in the present case (Case 4) the most
convenient description of the achievable rate region is via the
convex hull of the rates generated by solving (4) in a special
subcase, those generated by the solution of the (algebraically)
symmetric image of that problem, and the conventional multiple
access region. Fig. 2 shows the construction of the optimal rate
region. The dotted curve is the union of the region generated
by the power allocation in Table I and the conventional mul-
tiple access region. The dashed curve is the union of the region
generated by the corresponding solution for Step 2) and the con-
ventional multiple access region. The solid curve is the convex
hull of the two component regions and hence is the optimized
achievable rate region. The inner pentagon in Fig. 2 is the con-
ventional (non-cooperative) multiple access region, and hence,
the cooperative gain in Case 4 is clear. (Recall that in Case 4 the
direct channels are stronger than the cooperation channels, and
hence, the cooperative gain is expected to be modest.) Points on
the interval to in Fig. 2 are not achieved by
the solution of the problem for Step 1) nor that for Step 2), but
can be achieved using standard time sharing techniques in which
the system operates at the point for a fraction of the
block length, and at the point for the remainder of the
block. Although we do not have a closed-form expression for
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Fig. 3. Achievable rate region in a case of statistically symmetric direct chan-
nels. � � � � ���, � � � � � � �, ��� � � ��� � � ����.

the points and at this time, they can be de-
termined from the solution of an auxiliary convex optimization
problem. (For reasons of brevity, we have omitted those details.)

IV. SIMULATION RESULTS

In order to verify our derivations, we used our closed-form
expressions to compute the average achievable rate regions in
scenarios corresponding to those chosen for [1, Fig. 2]. The re-
sulting regions are plotted in Fig. 3 and, as expected, they match
the corresponding regions in [1, Fig. 2]. In the scenarios con-
sidered, the channels were independent block fading channels
with long coherence times. The channel gains were Rayleigh
distributed, the Gaussian noise variances were normalized to
1, and the transmission powers of the cooperating nodes were
set to be equal . (Recall that each node has full
channel state information.) As in [1, Fig. 2], Fig. 3 is constructed
for the case of a channel with symmetric statistics, in the sense
that the direct channels between each node and the destination
node is Rayleigh fading with the same mean value

. Different curves are plotted for different values
of the mean value of the inter-node channel . (For each
realization .) The average achievable rate region was
obtained by taking the direct sum of the achievable rate regions
for each channel realization and then dividing by the number of
realizations. Like [1, Fig. 2], Fig. 3 demonstrates advantages of
cooperative multiple-access, especially when the gain of the co-
operative channels is (often) significantly larger than the gain of
the direct channels.

In addition to the average achievable rate region, it is inter-
esting to observe the optimal power allocations. Fig. 4 shows the
allocation of the different power components for one channel re-
alization in which and .
(These gains satisfy the conditions of Case 1 in our closed-form
solution.) Fig. 4 plots the optimal power components that max-
imize the rate for each value of the rate . We note from
Fig. 4 that there is one power component for each node that is

Fig. 4. Power allocation for a channel realization that satisfies the conditions
of Case 1.

Fig. 5. Partitioning of the total bandwidth� into two bands and four subchan-
nels, where 	� � � � �.

zero for all values of ; i.e., in this case . We
also note that the curves for and intersect at the same
value for as the curves for and . This intersection
point represents the equal rate point at which . Fig. 4
also illustrates that as increases, node 2 allocates more power
to to increase the data rate sent to node 1. As increases,
node 1 has to reduce its data rate, and this is reflected in the de-
creasing amount of power that is allocated to .

V. JOINTLY OPTIMAL POWER AND RESOURCE ALLOCATION

FOR A HALF-DUPLEX SCHEME

The full-duplex cooperative multiple access scheme studied
in Section IV places demands on the communication hardware
that can be difficult to satisfy with a reasonable cost. Therefore,
in this section, we consider (a modified version of) an existing
half-duplex cooperative scheme that partitions the channel
resource in order to avoid interference at the receivers, and
hence, can be implemented using conventional communication
hardware. In practice, the channel resource is often partitioned
equally, but we develop an efficient algorithm for the joint
allocation of power and the channel resource for this scheme,
and we demonstrate that this algorithm enables the resulting
scheme to attain a significantly larger fraction of the achievable
rate region for the full duplex case than the underlying scheme.

The half-duplex cooperation scheme that we will consider is
a modified version of a block-based version of the scheme pro-
posed in [2, Sec. III]. The modification is that the system band-
width is partitioned into two bands of fractional bandwidth and

, , respectively, rather than having fixed to
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Fig. 6. Modified half-duplex cooperation scheme. In the first band, node 2 acts as a regenerative relay for node 1, and in the second band, these roles are reversed.

.7 In the first band, node 2 acts as a relay for node 1 and
does not attempt to transmit its own data, while in the second
band, node 1 acts solely as a relay for node 2. The chosen re-
laying strategy is of the regenerative decode-and-forward type,
and exploits coherent combining at the destination node. (The
chosen scheme does not require backward decoding.) Each band
is partitioned into two orthogonal subchannels.8 Those in the
first band will be denoted and and those in the second
band will be denoted and . We will adopt a repetition-
based transmission strategy within each band, and hence, the
subchannels and will each contain half of the bandwidth
of the first band, and and will each contain half of the
bandwidth of the second band. A typical bandwidth allocation
for this system is given in Fig. 5.

The transmission strategy envisioned for this system is de-
picted in Fig. 6, where we have used to denote the power
allocated by node to the th band, and hence, the total power
transmitted by node is . Let us consider the
operation of the first band, in which node 2 acts as solely a relay
for node 1. In the th block channel use, , node
1 transmits a new codeword (or new segment of a larger code-
word), , on subchannel with power , and repeats
its previous codeword, , on subchannel with power

. In that same block, node 2 receives on sub-
channel , and regeneratively retransmits on sub-
channel with power and with the phase corrected so that
it coherently combines at the destination node with the repeated
transmission of by node 1. The first block channel
use contains only the first codeword (segment) from node 1, and
the last block involves only repetition of the previous codeword,
but the impact of these end effects can be neglected when is

7It is possible to construct equivalent systems in which the communication
resource that is partitioned is a time interval or the components of a (large) set of
orthogonal spreading codes, rather than the system bandwidth, but the principles
that underly our approach are the same in those cases. For ease of exposition we
will focus on the case of bandwidth allocation.

8Again, for ease of exposition we will focus on systems in which the sub-
channels are synthesized in frequency.

large. In the second band, the roles are reversed, with powers as
shown in Fig. 6.

The half-duplex cooperative multiple access scheme de-
scribed has been designed for scenarios in which the coop-
erative channels are stronger than the direct channels; i.e.,

and , which corresponds to Case 1 in
Table I. In that case, the achievable rate region for the proposed
scheme is the convex hull of all rate pairs that satisfy
the following constraints:

(32a)

(32b)

(32c)

(32d)

The constraints in (32a) and (32c) ensure that the messages to
the relaying nodes can be reliably decoded, while the constraints
in (32b) and (32d) arise from the combination of the repeated
direct transmissions and the regeneratively relayed signals. In
particular, in (32b), the term is the SNR of the direct
transmission of to the destination node on subchannel

in block , and the term is

the SNR of the coherent combination of the repetition of
by node 1 on subchannel in block and the regenerative
retransmission of on subchannel in block by
node 2. (The relay receives on subchannel in block
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.) The roles of nodes 1 and 2 are reversed in the second band,
leading to (32d).9

For a given value of the fractional bandwidth allocation, , we
can determine the achievable rate region by maximizing for
each value of subject to (32) and the constraint that .
Using techniques similar to those in Section II, that problem can
simplified to (see Appendix IV for a derivation)

(33a)

subject to

(33b)

(33c)

(33d)

where and the constants , , and are de-
fined in Appendix IV. Appendix IV also contains the modifica-
tions that need to be made to (33) in the case where is a time-
sharing parameter rather than a bandwidth sharing parameter.

The formulation in (33) gives the optimal power allocation
for a given value of . However, our goal is to find the value
of that enables the largest ; i.e., the largest optimal value
in (33). It is clear that the optimal value of depends on the
target value of ; i.e., the different points on the boundary
of the achievable rate region are not achieved with the same
. Therefore, in order to determine the achievable rate region,

we will have to optimize over both the powers and the resource
sharing parameter, . Although the problem in (33) is not convex
in and the powers, the following result, which is proven in
Appendix V, will enable us to develop an efficient algorithm
for the optimal value of .

Theorem 1: For a given rate , the maximum achievable rate
in (33) is a quasi-concave function of the resource sharing

parameter .
Since the maximum achievable value of is quasi-concave

in , we can determine the optimal value of using a standard
search method for quasi-convex problems [14]. At each step
in the search, a problem based on (33) with the current value
for is solved. Since the problem in (33) can be efficiently
solved, and since the quasi-convex search can be efficiently im-
plemented, the optimal design of and the powers , ,

, , , and can be efficiently obtained.
To illustrate the performance of the modified half-duplex co-

operation multiple access scheme, we have plotted the average
achievable rate regions for several multiple access schemes in
Figs. 7 and 8. We consider the case of no cooperation (i.e., con-
ventional multiple access), an optimally power loaded block-
based version of the half-duplex strategy in [2, Sec. III],10 the
proposed half-duplex strategy and the full-duplex strategy from

9It is relatively straightforward to obtain an expression for the achievable rate
region of the proposed scheme in the other cases in Table I. In particular, if � �
� , one would switch off the relaying activity of node � (i.e., set� � �), and
the rate constraint on communication from node � to node � would be removed.
That said, in such cases the proposed scheme operates like a repetition-based
orthogonal multiple access scheme, and for certain target rates for one of the
users, one may be able to achieve a larger rate for the other user by time sharing
between the proposed scheme and a conventional multiple access scheme.

10Recall that the proposed scheme reduces to a block-based version of the
scheme in [2, Sec. III] when � is set to 1/2. Therefore, the optimal power loading
for that scheme can be found by solving (33) with � � ���.

Fig. 7. Achievable rate region for the no cooperation case, the existing cooper-
ative strategy in [2], the proposed cooperative strategy and the full duplex model
in case of statistically symmetric direct channels. � � � � �	�, 
 � 
 �

 � �, ��� � � ��� � � �	�, ��� � � ��� � � �	�.

Fig. 8. Achievable rate region for the no cooperation case, the existing coopera-
tive strategy in [2], the proposed cooperative strategy and the full duplex model
in case of statistically asymmetric direct channels. � � � � �	�, 
 �

 � 
 � �, ��� � � �		, ��� � � �	�, ��� � � ��� � � �	
.

Section II. In each scenario, the noise variance and the trans-
mitted powers were normalized to one, and the channel gains
were Rayleigh distributed. In Fig. 7, the direct channel gains
are statistically symmetric with ,
and with . In Fig. 8, the direct
channel gains are statistically asymmetric with ,

, and with . In both
Figs. 7 and 8, the proposed half-duplex strategy provides a sig-
nificant expansion of the achievable rate region over that of the
half-duplex strategy in [2] when the rates of the nodes are sig-
nificantly different. This is a consequence of the efficient algo-
rithm for finding the optimal resource sharing parameter. Since

is the optimal value of when , boundaries
of the achievable rate regions of the proposed strategy and that
in [2] overlap at this point.
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VI. CONCLUSION

In this paper, we have analyzed the power allocation problem
in full-duplex cooperative multiple access schemes and the joint
power and resource allocation problem in a class of half-duplex
cooperative multiple access schemes. In the full duplex case, our
analysis revealed an underlying convex optimization problem
that has a closed-form solution, while in the half-duplex case we
exposed the quasi-convexity of the resource allocation problem
and exploited that property to develop an efficient algorithm. In
doing so, we demonstrated that a significantly larger fraction of
the achievable rate region of the full duplex case can be obtained
with the proposed scheme. Moreover, the reduction that we have
obtained in the complexity of finding the optimal power and
resource allocation suggests that it may be possible to avoid
approximations in the development of online algorithms.

APPENDIX I
SUFFICIENCY OF THE CORNER POINTS ON THE CONVENTIONAL

MULTIPLE ACCESS REGION

Let us begin with a point on the line connecting the two
corner points of the conventional multiple access region; i.e.,
the region. Any point on that line can be achieved
by time sharing between the two corners, [13]. That is

(34)

(35)

where is a time sharing constant and .
Since and , we can write the
constraints on and as

(36)

(37)

(38)

which can be written as

(39a)

(39b)

(39c)

where

Now, consider maximizing the region defined by the constraints
in (39), subject to the power constraints in (4b). Any point on the
boundary of the maximized region can be obtained by solving
the following problem (maximize the weighted sum of rates):

subject to (39a)–(39c), (4b)

where is a vector containing all the power components. For
simplicity, we will focus on the case in which . The
proof for the case in which is analogous. If ,
then the previous problem can be written as

(40a)

subject to (39a)–(39c), (4b) (40b)

The sum rate constraint in (39c) can be written as

(41)

(42)

where

Now, (40) can be written as

(43a)

subject to (39a)–(39c), (4b) (43b)

Substituting for from (39b), the objective in (43a) can be
rewritten as

(44)

Authorized licensed use limited to: McMaster University. Downloaded on July 13,2010 at 05:20:30 UTC from IEEE Xplore.  Restrictions apply. 



MESBAH AND DAVIDSON: OPTIMIZED POWER ALLOCATION FOR PAIRWISE COOPERATIVE MULTIPLE ACCESS 3005

Furthermore, (44) can be bounded as

(45)

The first term in the right-hand side of (45) represents the max-
imization of the rate region assuming that the direct message
of node 1 is decoded first, while the second term represents the
maximization of the rate region assuming that the direct mes-
sage of node 2 is decoded first. Therefore, it is clear from (45)
that time sharing between the two regions corresponding to the
two corner points of conventional multiple access region [i.e.,
the region] contains all the regions corresponding
to the points on the line connecting the two corners. Hence, it
is sufficient to study only the two regions corresponding to the
two corner points on the region.

APPENDIX II
THE FIRST CASE OF (26) WITH

In the first case of (26), if is negative, then
. Taking the logarithm of both

sides, we have that

(46)

Given the conditions on the channel gains for Case 4 to arise,
we also have . The conven-
tional multiple access scheme provides an achievable that
equals

(47)
Since both terms in the minimization in (47) are larger than

, in this scenario the conventional multiple ac-
cess scheme provides a higher achievable rate than that offered
by a scheme that presumes cooperation.

APPENDIX III
PROOF OF SUFFICIENCY OF THE FIRST CASE OF (26) AND ITS

SYMMETRIC IMAGE

For simplicity, we let

When , the constraint set (24) can be
written as

(48a)

(48b)

(48c)

The first term in the right-hand side of (48a), and the term on
the right-hand side of (48b) represent the conventional multiple
access region. Therefore, this constraint set can be rewritten as

(49a)

(49b)

(49c)

Solving Step 1) with , using (27) and
(29), gives the following constraint set:

(50a)

(50b)

Similarly, solving Step 2) with gives
the following constraint set:

(51a)

(51b)

Now consider the generic problem of maximizing a weighted
sum of the rates and , under the second case of (26),
namely

subject to (49), (4b)

(52)
where is the vector containing all the power components to
be allocated. The region resulting from (52) is contained in the
region that is achievable if the constraint

is removed, namely

subject to (49), (4b) (53)

The problem in (53) can be written as

subject to (49), (4b) (54)

where and are constants. The region
resulting from the problem in (54) is contained in the following
region:

(55a)

subject to (49), (4b) (55b)

where contains all the power components to be allocated, ex-
cept . The objective in (56) can be expanded as

(56)
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For a constant sum , maximizing over takes
the form of (5), and hence

if

if .
(57)

For the first case of (57), namely ,
the expression in (56) can be written as

(58)

Since , (58) can be
written as

(59)
The region resulting from (59) is the same as the conventional
multiple access region. In the second case of (57), namely

, the problem in (56) can be written as

(60)

The region resulting from solving (60) is the same as the region
resulting from the constraint set in (51).

Therefore, given the containment arguments that gave rise to
(53) and (55b), the regions resulting from the case in which

is contained in the convex hull of
the conventional multiple access region and the region resulting
from the constraint set in (51). Using similar arguments, it can
be shown that the region resulting from solving Step 2) with

is contained in the convex hull of
the conventional multiple access region and the region resulting
from the constraint set in (50).

APPENDIX IV
DERIVATION OF (33)

For given values of and we must choose values for ,
, and such that (32c) and (32d) are satisfied. For (32c)

to be satisfied with minimum power we should choose
and for (32d) to be satisfied

and should satisfy the following inequality:

(61)

where . Using the relations
between and , (61) becomes

(62)

where

(63)

Now, (32a) and (32b) can be written as

(64a)

(64b)

The problem of maximizing can now be written as

(65a)

subject to

(65b)

(65c)

(65d)

where and are the terms on the right-hand side of (64a)
and (64b), respectively. This problem can be shown to be con-
cave in , , and as follows. First, is concave
in . The function inside the logarithm in has a negative
semi-definite Hessian, namely (66), shown at the bottom of the
page. Since the logarithm is concave non-decreasing function,
then is a concave function and since the minimum of two
concave functions is a concave function then the objective func-
tion is concave. The first constraint can be shown to be convex
by evaluating the Hessian. The Hessian is

(67)

which is positive semidefinite and hence the constraint is
convex. The last three constraints are linear constraints, and

(66)
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hence the problem in (65) is concave and a global maximum
can be efficiently obtained. However, as we show in the next
paragraph, the variable can be determined analytically.

We can solve (64a) and (64b) to obtain the value of that
maximizes the minimum of both equations in terms of and

. Since the term inside the logarithm in (64a) is linearly
increasing in and the term inside the logarithm in (64b) is
concave decreasing in , the intersection of these two curves
is the target point. This will result in ,
where

(68)

By substituting the expression for into (65), we
obtain (33). By evaluating the Hessian, it can be verified that

is a concave function of and . In the
case that the derivation simplifies
in that for all admissible and . In that case,
the optimal value of is and .

In Section V and the previous proof, the parameter was a
bandwidth sharing parameter. However, it is easy to envision an
equivalent time sharing system. In this paragraph, we point out
some minor adjustments to the formulation that are required in
the time sharing case. In the case of time sharing, the average
power transmitted by node is .
Therefore, the constraints in (33d) should be changed to

,
where is the value of the peak power for the trans-
mitter of node 1. Constraining to be less than
guarantees that will not take
negative values, while constraining to be greater than

guarantees that will not exceed
the value of peak power for the transmitter of node 1. Using
similar arguments, the constraint in (33d) should be changed to

.

APPENDIX V
PROOF OF QUASI-CONCAVITY OF IN

Using the substitution and
, (32d) can be written as a function of , and .

For given values of and we can solve (32a) and (32b)
to find the value of that maximizes the minimum of the two
equations in terms of and . [A similar analysis led to
(68).] Similarly, we can solve (32c) and (32d) for . Hence,
the constraints on and reduce to

(69a)

(69b)

where was defined in (68) and
has a similar form. It can be shown that and

are concave functions of and by eval-
uating the Hessian.

We will now show that the maximum achievable for a
given is quasi-concave in by proving that the set of values
of such that the maximum achievable is greater than certain
level is a convex set. For a given value of , if a value
of , say , is to be such that there exist transmission powers
that provide a rate that is greater than , these powers
must satisfy

(70a)

(70b)

for , where and
. The functions and

can be shown to be convex functions in for . Now,
assume that there exist transmission powers and

such that (70) holds for , and powers
and such that (70) holds for . To

complete the proof we need to show that for any
with there exist transmission powers

and such that (70) holds for .
Consider the powers and

. For these powers

(71a)

(71b)

(71c)

where (71a) follows from concavity of , (71b)
follows from (70), and (71c) follows from the convexity of

. A similar analysis shows that .
That is, given , we have constructed powers
and such that (70) holds for . Therefore, the set of
values of for which the maximum achievable for a given

is greater than is convex, and hence the maximum
achievable for a given is a quasi-concave function in .
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