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Abstract—We consider the jointly optimal allocation of the
radio resources for a two-user orthogonal amplify-and-forward
(AF) cooperation scheme. In particular, we derive a simple effi-
cient algorithm for determining the power and channel resource
allocations required to operate at any point on the boundary
of the achievable rate region. The algorithm is based on two
results derived herein: a closed-form solution for the optimal
power allocation for a given channel resource allocation; and
the fact that the channel resource allocation problem is quasi-
convex. The structure of the optimal power allocation reveals
that at optimality at most one user acts as a relay, and hence
a fraction of the channel resource will be idle. We propose a
modified orthogonal AF cooperation scheme that uses the channel
resources more efficiently and hence provides a larger achievable
rate region.

Index Terms—Amplify-and-forward relaying, cooperative mul-
tiple access, achievable rate region, quasi-convexity.

I. INTRODUCTION

THE growing demand for reliable spectrally-efficient wire-
less communication has led to a resurgence of interest in

systems in which nodes cooperate in the transmission of mes-
sages to a destination node; e.g., [1]. (See Fig. 1.) An achiev-
able rate region for a full-duplex two-user cooperative multiple
access system was obtained in [1], based on earlier work in [2],
and this achievable rate region was shown to be larger than
the capacity region for conventional multiple access without
cooperation between the source nodes. However, full-duplex
cooperation requires sufficient electrical isolation between the
transmitting and receiving circuits at each node in order to
mitigate near-end cross-talk (e.g., [3], [4], [5], [6]), and this is
often difficult to achieve in practice. In order to avoid the need
for stringent electrical isolation, the cooperation scheme can
be constrained so that the source nodes do not simultaneously
transmit and receive over the same channel, and such schemes
are often said to be half-duplex; e.g., [3], [7]. The subclass
of half-duplex schemes with orthogonal components (e.g.,
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[3]) further constrains the source nodes to use orthogonal
subchannels. (These subchannels can be synthesized by time
division, e.g., [3], or by frequency division, e.g., [6].) This
enables “per-user” decoding at the destination node, rather
than joint decoding, and hence simplifies the receiver at the
destination node. Motivated by this simplicity, we will focus
on orthogonal (half-duplex) cooperation schemes in this paper.

A feature of orthogonal cooperation schemes is that they
can be decomposed into parallel relay channels, each with
orthogonal components [5], [8], [6]. Therefore, the remaining
design issues reduce to the choice of the relaying strategy,
and the allocation of the radio resources to the parallel relay
channels. For the relaying strategy, a number of choices are
available (e.g., [9], [10], [3], [11], [12], [13], [14]), and we
will focus on the amplify-and-forward (AF) strategy, because
it is the simplest in terms of the hardware requirements of the
cooperating nodes. As such, the cooperative scheme that we
will consider is a generalization of the orthogonal AF scheme
in [3]. One of our contributions will be the development of a
simple efficient algorithm for joint power and channel resource
allocation for this scheme, for scenarios in which full channel
state information (CSI) is available. (That is, the design is
based on knowledge of the (effective) channel gain on each
of the four links in Fig. 1.)

As mentioned above, the design of an orthogonal AF coop-
eration scheme requires the appropriate allocation of powers
and the channel resource (typically time or bandwidth) to the
components of each of the underlying parallel relay channels.
Unfortunately, the problem of joint power and resource al-
location so as to enable operation on the boundary of the
achievable rate region is not convex; a fact that might suggest
that this is a rather difficult problem to solve.

Some progress has been made by considering power allo-
cation alone [15].1 In particular, it was shown in [15] that
for a given resource allocation, the problem of finding the
power allocation that maximizes a weighted-sum of achievable
rates can be written in a quasi-convex (e.g., [24]) form. In
this paper, we will consider the problem of jointly allocating
the power and the channel resource. In particular, we will
show that for a given target rate of one node, the maximum

1See [16] for some related work on a non-orthogonal AF cooperation
scheme, [17] for some related work with an outage objective, and [18], [19]
for some related work on half-duplex cooperation with decode-and-forward
relaying. There has also been a considerable amount of work on power and
resource allocation for a variety of relaying schemes with achievable rate or
outage objectives; e.g., [5], [6], [20], [14], [21], [22], [23].
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Fig. 1. Transmitted and received signals of the cooperative channel.

achievable rate of the other node can be written as a convex
function of the transmission powers (see Section III-A) and
a quasi-convex function of the resource allocation parameter
(see Section IV). Furthermore, using the Karush-Kuhn-Tucker
(KKT) optimality conditions (e.g., [24]), we will derive a
closed-form solution for the optimal power allocation for a
given resource allocation (see Section III-C). By combining
this closed-form solution with the quasi-convexity of the
maximum achievable rate in the resource allocation parameter,
a simple efficient algorithm for the jointly optimal power and
channel resource allocation will be obtained (see Section IV).
In addition to the computational efficiencies that this approach
provides, the ability to directly control the rate of one of
the nodes can be convenient in the case of heterogeneous
traffic at the cooperative nodes, especially if one node has
a constant rate requirement and the other is dominated by
“best effort” traffic. The structure of the closed-form solution
to the optimal power allocation problem for a fixed channel
resource allocation (see Section III-B) suggests that under our
assumption that channel state information is available, the co-
operative communication scheme that we have adopted (which
is based on that proposed in [3]) does not use all the available
channel resources. (A related observation was made in [16]
for a non-orthogonal half-duplex AF cooperation scheme.)
Hence, the cooperative scheme itself incurs a reduction in the
achievable rate region. In order to mitigate this rate reduction,
in Section V we propose a modified cooperative scheme that
retains the orthogonal half-duplex property of the original
scheme (and that in [3]), yet can achieve a significantly
larger achievable rate region. Similar to original cooperative
scheme, we obtain a closed-form solution to the problem of
optimal power allocation (for fixed resource allocation) for this
modified scheme, and we show that the problem of optimal
channel resource allocation is quasi-convex (see Section V).
Therefore, the jointly optimal power and channel resource
allocation for this modified scheme can also be obtained using
a simple efficient algorithm.

Although the focus of this paper will be on scenarios in
which perfect channel state information (CSI) is available, in
Section VI we will provide an example of a simple modifi-
cation of the proposed approach that encompasses scenarios
with imperfect CSI.

II. SYSTEM MODEL AND DIRECT FORMULATION

We will consider a system in which two users (Nodes 1
and 2) wish to cooperate in the transmission of messages to

x1(1) =
√

P11B11

x2(2) = A2y2(1) x2(3) =
√

P22B21

x1(4) = A1y1(3)
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x2(4) = 0

r r̂ = 1 − r

Fig. 2. A frame of the orthogonal half-duplex amplify-and-forward cooper-
ation scheme under consideration.

a destination node (Node 0); cf. Fig. 1. In order to enable
simple implementation, we will adopt the orthogonal half-
duplex amplify-and-forward cooperation scheme illustrated
in Fig. 2. In this scheme, the orthogonal sub-channels are
synthesized by time division, and although we will focus on
that case, our work can be modified in a straightforward way
to address the case of frequency division. The scheme in Fig. 2
is a mild generalization of that in [3], in the sense that channel
resource allocation is implemented by allocating a fraction r
of each frame for the message from Node 1, and a fraction
r̂ = 1 − r of the frame for the message of Node 2. In the
scheme in [3], the channel resource allocation parameter is
fixed to r = 1/2.

In the scheme in Fig. 2, each frame consists of four time
blocks, with the first two blocks being of fractional length
r/2 and the second two blocks having fractional length r̂/2.
The first and second blocks have the same length because
the adoption of amplify-and-forward relaying means that the
length of the signals to be transmitted in these two blocks is
the same. For that reason the third and fourth blocks are also
of the same length. In the first block, Node 1 transmits its
message while Node 2 listens. In the second block, Node 2
works as a relay for Node 1; it amplifies the signal received
in the first block by a factor A2 and re-transmits that signal
to the master node. In the third and fourth blocks the roles of
Nodes 1 and 2 are reversed, so that Node 1 works as a relay
for Node 2.

We will consider a block fading channel model with a
coherence time that is long enough for us to focus on the case
in which full channel state information (CSI) can be acquired
without expending a significant fraction of the available power
and channel resources. (We will consider a scenario with
uncertain CSI in Section VI.) If we define yn(�) to be the
signal block received by Node n during block �, then the
received signals of interest are y1(�) for � mod 4 = 3, y2(�)
for � mod 4 = 1, and y0(�) for all �. (We will use 0 to
represent blocks in which the receiver is turned off.) If we
define Kmn to be the complex channel gain between Nodes
m ∈ {1, 2} and n ∈ {0, 1, 2}, and zn(�) to be the zero-mean
additive white circular complex Gaussian noise with variance
σ2

n at Node n, then the received signal blocks can be written
as

y1(�) =
{

K21x2(�) + z1(�) � mod 4 = 3,
0 � mod 4 �= 3,

(1)

y2(�) =
{

K12x1(�) + z2(�) � mod 4 = 1,
0 � mod 4 �= 1,

(2)

y0(�) =

⎧⎪⎪⎨
⎪⎪⎩

K10x1(�) + z0(�) � mod 4 = 1,
K20A2y2(� − 1) + z0(�) � mod 4 = 2,
K20x2(�) + z0(�) � mod 4 = 3,
K10A1y1(� − 1) + z0(�) � mod 4 = 0,

(3)
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where A1 and A2 represent the amplification factors of Nodes
1 and 2, respectively, when they act as a relay. Let us define
Pij to be the power allocated by Node i to the transmission
of the message from Node j. With that definition, the powers
of the (non-zero) transmitted signals in the blocks in Fig. 2
are P11, P21, P22, and P12, respectively. Furthermore, the
amplification factors A1 and A2 that ensure that all the
available relaying power is used are [3]

A1 =

√
P12

|K21|2P22 + σ2
1

, A2 =

√
P21

|K12|2P11 + σ2
2

. (4)

We will impose average transmission power constraints on
each node, namely, the power components should satisfy the
average power constraints r

2Pi1 + r̂
2Pi2 � P̄i, where P̄i

is the maximum average power for Node i. For notational
simplicity, we will define the effective channel gain to be
γmn = |Kmn|2/σ2

n.
For a given allocation for the power components, P =

(P11, P12, P21, P22), and a given value for r, the achievable
rate region of the system described above is the set of all rate
pairs (R1, R2) that satisfy [3]

R1 � R̄1(P , r)

=
r

2
log
(

1 + γ10P11 +
γ20γ12P11P21

1 + γ20P21 + γ12P11

)
, (5a)

R2 � R̄2(P , r)

=
r̂

2
log
(

1 + γ20P22 +
γ10γ21P12P22

1 + γ21P22 + γ10P12

)
. (5b)

Since we are considering scenarios in which full channel
state information (CSI) is available (i.e., γ10, γ20, γ12, and
γ21 are known), one way in which the power and channel
resource allocation required to approach a specified point on
the boundary of the achievable rate region can be found is
by maximizing a weighted sum of R̄1 and R̄2 subject to the
bound on the transmitted powers; i.e.,

max
Pij�0, r∈[0,1]

μR̄1(P , r) + (1 − μ)R̄2(P , r) (6a)

subject to r
2Pi1 + r̂

2Pi2 � P̄i i = 1, 2, (6b)

where μ ∈ [0, 1] is the weight. An alternative approach to
finding the required power and channel resource allocation is
to maximize R̄i for a given target value of R̄j , subject to the
bound on the transmitted powers; i.e.,

max
Pij�0, r∈[0,1]

R̄1(P , r) (7a)

subject to R̄2(P , r) � R2,tar, (7b)
r
2Pi1 + r̂

2Pi2 � P̄i i = 1, 2. (7c)

Unfortunately, neither (6) nor (7) is jointly convex Pij and r,
and this makes the development of a reliable efficient alloca-
tion algorithm rather difficult. However, we will show below
that by adopting the approach in (7), the direct formulation can
be transformed into the composition of a convex optimization
problem and a quasi-convex problem. Furthermore, we will
derive a closed-form solution for the (inner) convex problem
(see Section III), and we will show that this enables the
solution of (7) using a simple efficient search over the resource
allocation parameter, r; see Section IV.

III. OPTIMAL POWER ALLOCATION

In this section we obtain a closed-form expression for
the optimal power allocation for a given channel resource
allocation r. The derivation of this closed-form expression
involves three main steps: the derivation of a convex problem
that is equivalent to the problem in (7) with a fixed value for r;
an analysis of KKT optimality conditions for that problem; and
analytic solutions to a pair of scalar optimization problems.
To simplify our development, we will let R2,max(r) denote
the maximum achievable value for R2 for a given value of r;
i.e., the value of R̄2(P , r) in (5b) with P = (0, 2P̄1, 0, 2P̄2).

A. A convex equivalent to (7) with a fixed value for r

For a given value for r, the problem in (7) involves
optimization over Pij only. If we define P̃i1 = rPi1 and
P̃i2 = r̂Pi2, then for r ∈ (0, 1) and R2,tar ∈ (0, R2,max(r))
we can rewrite (7) as2

max
P̃ij�0

r

2
log
(

1 +
γ10P̃11

r
+

γ20γ12P̃11P̃21

r(r + γ20P̃21 + γ12P̃11)

)
(8a)

subject to
r̂

2
log
(

1 +
γ20P̃22

r̂
+

γ10γ21P̃12P̃22

r̂(r̂ + γ21P̃22 + γ10P̃12)

)
� R2,tar, (8b)

P̃i1 + P̃i2 � 2P̄i i = 1, 2. (8c)

The formulation in (8) has the advantage that the power
constraints in (8c) are linear in P̃ij , whereas the corresponding
constraints in (7) are bilinear in Pij and r.

For a given positive value of r and non-negative constant
values of a, b, c and d, the function log(1+ ax

r + bcxy
r(r+bx+cy)) is

not concave in x and y, and hence (8) is not a convex problem.
However, by showing (analytically) that its Hessian is negative

semi-definite, the function h(x, y) =
√

ax
r + bcxy

r(r+bx+cy) can
be shown to be concave in x and y (on the non-negative
orthant). By taking the exponent of both sides, the constraint
in (8b) can be rewritten as√

γ20P̃22

r̂
+

γ10γ21P̃12P̃22

r̂(r̂ + γ21P̃22 + γ10P̃12)
�
√

2
2R2,tar

r̂ − 1. (9)

Furthermore, since the logarithm and the square root functions
are monotonically increasing functions for positive arguments,
maximizing the objective function in (8a) is equivalent to
maximizing h(P̃11, P̃21) with a = γ10, b = γ20 and c = γ12.
Therefore, the problem in (8) is equivalent to

max
P̃ij�0

√
γ10P̃11

r
+

γ20γ12P̃11P̃21

r(r + γ20P̃21 + γ12P̃11)
(10a)

subject to

√
γ20P̃22

r̂
+

γ10γ21P̃12P̃22

r̂(r̂ + γ21P̃22 + γ10P̃12)

�
√

2
2R2,tar

r̂ − 1, (10b)

P̃i1 + P̃i2 � 2P̄i i = 1, 2. (10c)

2In (7), the resource allocation r = 1 is feasible only if R2,tar = 0,
and the allocation r = 0 is optimal only if R2,tar = R2,max(0). Also, if
R2,tar = 0, the optimal P = (2P̄1, 0, 2P̄2, 0) and if R2,tar = R2,max(r),
the optimal P = (0, 2P̄1, 0, 2P̄2).
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The concavity of h(x, y) implies that (10) is a con-
vex optimization problem. Furthermore, for all R2,tar ∈
(0, R2,max(r)) the problem in (10) satisfies Slater’s condition
(e.g., [24]), and hence the KKT optimality conditions are nec-
essary and sufficient. As we will show below, this observation
is a key step in the derivation of our closed-form solution
to (8).

B. Structure of the optimal solution

We will now use the KKT optimality conditions for (10) to
show that at optimality one (or both) of P̃12 and P̃21 is zero.3

Therefore, at optimality, at least one of the nodes has its relay
mode turned off. We begin by observing that for all feasible
R2,tar the optimal power allocation satisfies power constraints
in (10c) with equality; i.e., P̃ ∗

i2 = 2P̄i−P̃ ∗
i1, where the asterisk

indicates the optimal value. Therefore, the problem in (10) can
be rewritten as the following (convex) optimization problem
in P̃11 and P̃21:

min
P̃11,P̃21

f0(P̃11, P̃21) (11)

subject to fi(P̃11, P̃21) � 0 i = 1, . . . , 5,

where

f0(P̃11, P̃21) = −
(

γ10P̃11

r
+

γ20γ12P̃11P̃21

r(r + γ20P̃21 + γ12P̃11)

)1/2

,

f1(P̃11, P̃21) =

(
2

2R2,tar
r̂ − 1

)1/2

−
(

γ20(2P̄2 − P̃21)

r̂

+
γ10γ21(2P̄1 − P̃11)(2P̄2 − P̃21)

r̂(r̂ + γ21(2P̄2 − P̃21) + γ10(2P̄1 − P̃11))

)1/2

,

f2(P̃11, P̃21) = −P̃11, f4(P̃11, P̃21) = P̃11 − 2P̄1,

f3(P̃11, P̃21) = −P̃21, f5(P̃11, P̃21) = P̃21 − 2P̄2.

The KKT optimality conditions for this problem are

fi(P̃ ∗
11, P̃

∗
21) � 0, (12a)

λ∗
i � 0, (12b)⎛

⎝ ∂f0(P̃∗
11,P̃∗

21)

∂P̃11
+ λ∗

1
∂f1(P̃

∗
11,P̃∗

21)

∂P̃11
+ λ∗

4 − λ∗
2

∂f0(P̃∗
11,P̃∗

21)

∂P̃21
+ λ∗

1
∂f1(P̃

∗
11,P̃∗

21)

∂P̃21
+ λ∗

5 − λ∗
3

⎞
⎠ =

(
0
0

)
,

(12c)

λ∗
i fi(P̃ ∗

11, P̃
∗
21) = 0, (12d)

where λi is the ith dual variable. In Appendix A we will
show that in order for (12) to hold, either P̃ ∗

12 = 0 or P̃ ∗
21 =

0, or both, must be zero. An alternative, and possibly more
intuitive, proof can be constructed via the bounding argument
in Appendix B.

C. Closed-form solution to (8)

Since the problems in (8) and (10) are equivalent, the
above KKT analysis has shown that the problem in (8) can

3A related observation was made in [16] for a non-orthogonal half-duplex
amplify-and-forward cooperation scheme, although that observation arose
from an analysis of the sum-rate optimization problem.

be reduced to one of the following two one-dimensional
problems:

β(r)

= max
P̃21∈[0,2P̄2]

r

2
log
(

1 +
2γ10P̄1

r
+

2γ20γ12P̄1P̃21

r(r + γ20P̃21 + 2γ12P̄1)

)
(13a)

subject to
r̂

2
log
(

1 +
γ20(2P̄2 − P̃21)

r̂

)
� R2,tar, (13b)

and

α(r) = max
P̃11∈[0,2P̄1]

r

2
log
(
1 +

γ10P̃11

r

)
(14a)

subject to
r̂

2
log
(

1 +
2γ20P̄2

r̂

+
2γ10γ21(2P̄1 − P̃11)P̄2

r̂(r̂ + 2γ21P̄2 + γ10(2P̄1 − P̃11))

)
� R2,tar,

(14b)

where (13) arises in the case that P̃ ∗
12 = 0, and (14) arises in

the case that P̃ ∗
21 = 0. Using the properties of the logarithm,

the transformation that led to (9), and the power constraints,
it can be shown that the feasible set of each of these problems
is a simple bounded interval. In both problems, the objective
is monotonically increasing on that interval, and hence for all
feasible R2,tar, the optimal solutions to (13) and (14) occur
when the constraints in (13b) and (14b), respectively, hold with
equality. That is, the solutions to (13) and (14) are where

P̃ ∗
21 = Q̃β = 2P̄2 − r̂

γ20

(
2

2R2,tar
r̂ − 1

)
, (15)

P̃ ∗
11 = Q̃α = 2P̄1 − (2P̄2γ21 + r̂)

(
r̂(2

2R2,tar
r̂ − 1) − 2P̄2γ20

)
γ10

(
2P̄2γ21 − (r̂(2 2R2,tar

r̂ − 1) − 2P̄2γ20

)) ,
(16)

respectively. The optimal solution to (8) is then the power allo-
cation that corresponds to the larger of the values of β(r) and
α(r). However, since (13) corresponds to the case in which
the target rate for Node 2 is met by direct transmission, then
it will generate the larger value whenever R2,tar is less than
R2,thresh(r) = (r̂/2) log(1 + 2γ20P̄2/r̂). Therefore, if we let
P̃ = (P̃11, P̃12, P̃21, P̃22) denote a (scaled) power allocation,
then for each r ∈ (0, 1) and each R2,tar ∈ (0, R2,max(r)) the
optimal solution to (8) is

P̃∗ =

{
(2P̄1, 0, Q̃β , 2P̄2 − Q̃β) if R2,tar ≤ R2,thresh(r),
(Q̃α, 2P̄1 − Q̃α, 0, 2P̄2) if R2,tar > R2,thresh(r).

(17)
This expression clearly shows that at points on the boundary
of the achievable rate region (for the given value of r), at most
one node is acting as a relay; i.e., P̃12 = 0 or P̃21 = 0, or
both.

IV. OPTIMAL POWER AND RESOURCE ALLOCATION

The expression in (17) provides the optimal power allo-
cation for a given value of r. However, different points on
the boundary of the achievable rate region are not necessarily
achieved with the same r, and our goal is to jointly optimize
the power and resource allocations. Although the problem in
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(7) is not jointly convex in r and the powers, the following
result will enable us to develop a simple algorithm for finding
the optimal value of r.

Proposition 1: If the direct channels of both source nodes
satisfy γi0P̄i � 1

2 , then for a given target rate for Node j,
Rj,tar, the maximum achievable rate for Node i is a quasi-
concave function of the channel resource allocation parameter
r.

Proof: For simplicity, we will consider the case in which
i = 1 and j = 2. Our first step is to show (see Appendix D)
that the condition γ10P̄1 � 1/2 is sufficient for the function
β(r) in (13) to be quasi-concave in r, and hence the set of
values of r for which β(r) is greater than a given rate, say
R1,test, is a convex set. Let Sβ = {r|β(r) ≥ R1,test} denote
that set. Similarly, the condition γ20P̄2 � 1/2 is sufficient for
the set Sα = {r|α(r) ≥ R1,test} to be a convex set. Therefore,
the set of values for r for which the solution of (8) is greater
than R1,test is the union of Sβ and Sα. To complete the proof,
we must show that the union of these sets is, itself, convex.
When only one of the problems can achieve a rate of at least
R1,test, one of Sβ and Sα is empty, and hence the convexity
of the union follows directly from the convexity of the non-
empty set. For cases in which both Sβ and Sα are non-empty,
the fact that r is a scalar means that it is sufficient to prove that
the sets intersect. A proof that they do intersect is provided in
Appendix E. Therefore, when γi0P̄i � 1/2, for a given target
rate for Node 2, the set of values for r for which the maximum
achievable value for the rate of Node 1 is greater than a given
rate is a convex set. Hence, the maximum achievable rate for
Node 1 is quasi-concave in r.

The result in Proposition 1 means that whenever the maxi-
mum achievable SNR of both direct channels is greater than
−3 dB, as would typically be the case in practice, we can
determine the optimal value for r using a standard efficient
search method for quasi-convex problems; e.g., [24]. For the
particular problem at hand, a simple approach that is closely
related to bisection search is provided in Table I. At each
step in that approach, we use the closed-form expression in
(17) to determine the optimal power allocation for each of
the current values of r. Since the quasi-convex search can
be efficiently implemented and since it converges rapidly,
the jointly optimal value for r and the (scaled) powers P̃ij

can be efficiently obtained. Furthermore, since the condition
γi0P̄i > 1

2 depends only on the direct channel gains, the noise
variance at the master node and the power constraints, this
condition is testable before the design process commences.

V. MODIFIED ORTHOGONAL AF COOPERATION SCHEME

The analysis of the KKT optimality conditions for the
problem in (8) showed that for the cooperation scheme in
Fig. 2, the optimal power allocation results in at least one of
P̃12 and P̃21 being equal to zero; see Section III-B. As a result,
both nodes will be silent in at least one of the blocks in Fig. 2.
This suggests that the cooperation scheme in Fig. 2 does not
make efficient use of the channel resources. A question that
then arises is whether there is an alternative orthogonal half-
duplex amplify-and-forward cooperation scheme that retains
the benefits of the original scheme, such as simplified trans-
mitters and receivers, yet uses the channel resources more

TABLE I
A SIMPLE METHOD FOR FINDING r∗

Given R2,tar ∈ (0, R2,max(0)), for r ∈ (0, 1) define ψ(r) denote the optimal
value of (8) if R2,tar ∈ (0, R2,max(r)) and zero otherwise. Set ψ(0) = 0
and ψ(1) = 0. Set t0 = 0, t4 = 1, and t2 = 1/2. Using the closed-form
expression for the optimal power allocation in (17) compute ψ(t2). Given a
tolerance ε,

1) Set t1 = (t0 + t2)/2 and t3 = (t2 + t4)/2.
2) Using the closed-form expression in (17), compute ψ(t1) and ψ(t3).
3) Find k∗ = arg maxk∈{0,1,...,4} ψ(tk).
4) Replace t0 by tmax{k∗−1,0} , replace t4 by tmin{k∗+1,4}, and save

ψ(t0) and ψ(t4). If k∗ �∈ {0, 4} set t2 = tk∗ and save ψ(t2), else set
t2 = (t0 + t4)/2 and use (17) to calculate ψ(t2).

5) If t4 − t0 ≥ ε return to 1), else set r∗ = tk∗ .

x1(1) =
√

P11B11

x2(2) = A2y2(1) x2(3) =
√

P22B21
x2(1) = 0

x1(2) = 0 x1(3) = 0

r1 r̂1 = 1 − r1

(a) State 1

x1(1) =
√

P11B11

x2(2) =
√

P22B21 x2(3) = 0x2(1) = 0

x1(2) = 0 x1(3) = A1y1(2)

r2 r̂2 = 1 − r2

(b) State 2

Fig. 3. One frame of each state of the proposed modified orthogonal amplify-
and-forward cooperation scheme.

efficiently. In this section we will propose a modified version
of the protocol in Fig. 2 that satisfies these requirements.

The proposed scheme is based on time sharing between
the states shown in Fig. 3. In the first state, the message of
Node 1 is transmitted using AF relaying in a fraction r1 of
the frame, with Node 2 working as the relay and allocating
a power P21 to the relaying of the message of Node 1. In
contrast, Node 2 employs direct transmission to transmit its
message to the master node in a fraction r̂1 = 1 − r1 of the
frame using power P22. In the second state, Nodes 1 and 2
exchange roles. In the first state, the received signal blocks
can be expressed as

y2(�) =

{
K12x1(�) + z2(�) � mod 3 = 1,

0 � mod 3 �= 1,
(18)

y0(�) =

⎧⎪⎨
⎪⎩

K10x1(�) + z0(�) � mod 3 = 1,

K20A2y2(� − 1) + z0(�) � mod 3 = 2,

K20x2(�) + z0(�) � mod 3 = 0,

(19)

where A2 =
√

P21
|K12|2P11+σ2

2
. In the second state, the received

signal blocks are

y1(�) =

{
K21x2(�) + z1(�) � mod 3 = 2,

0 � mod 3 �= 2,
(20)

y0(�) =

⎧⎪⎨
⎪⎩

K10x1(�) + z0(�) � mod 3 = 1,

K20x2(�) + z0(�) � mod 3 = 2,

K10A1y1(� − 1) + z0(�) � mod 3 = 0,

(21)

where A1 =
√

P12
|K21|2P22+σ2

1
.
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Using techniques analogous to those used in Sections III
and IV, we can obtain a simple efficient algorithm for the joint
optimization of the transmission powers and channel resource
allocation for each state of the proposed cooperation scheme.

In particular, in the first state, for a given resource allocation
parameter r1 ∈ (0, 1) and a feasible R2,tar, it can be shown
that P̃ ∗

12 = 0, and hence the optimal power allocation problem
can be reduced to

φ(r1) = max
P̃21∈[0,2P̄2]

r1

2
log
(

1 +
2γ10P̄1

r1

+
2γ20γ12P̄1P̃21

r1(r1 + γ20P̃21 + 2γ12P̄1)

)
(22a)

subject to r̂1 log
(

1 +
γ20(2P̄2 − P̃21)

2r̂1

)
� R2,tar.

(22b)

Using a similar argument to that in Section III-C, the optimal
solution to (22) can be shown to be P̃ ∗

21 = 2P̄2 − Q̆1, where

Q̆1 = 2r̂1
γ20

(2
R2,tar

r̂1 − 1), and hence the the optimal (scaled)

power allocation is P̃∗
1 = (2P̄1, 0, 2P̄2 − Q̆1, Q̆1). In the

second state, for a given r2 ∈ (0, 1) and a feasible R2,tar,
it can be shown that P̃ ∗

21 = 0, and hence the optimal power
allocation problem can be reduced to

λ(r2) = max
P̃11∈[0,2P̄1]

r2 log
(
1 +

γ10P̃11

2r2

)
(23a)

subject to
r̂2

2
log
(

1 +
2γ20P̄2

r̂2

+
2γ10γ21(2P̄1 − P̃11)P̄2

r̂2(r̂2 + 2γ21P̄2 + γ10(2P̄1 − P̃11))

)
� R2,tar.

(23b)

By adapting the argument in Section III-C, the optimal solu-
tion to (23) can be shown to be P̃ ∗

11 = 2P̄1 − Q̆2, where

Q̆2 =
(2P̄2γ21 + r̂2)

(
r̂2(2

2R2,tar
r̂2 − 1) − 2P̄2γ20

)
γ10

(
2P̄2γ21 −

(
r̂2(2

2R2,tar
r̂2 − 1) − 2P̄2γ20

)) , (24)

and hence the the optimal (scaled) power allocation is P̃2 =
(2P̄1 − Q̆2, Q̆2, 0, 2P̄2).

Furthermore, using a proof analogous to that in Appendix D,
it can be shown that φ(r1) and λ(r2) are quasi-convex in r1

and r2, respectively. Hence, the jointly optimal power and
channel resource allocation for each point on the boundary
of the achievable rate region for each of the two states can
be efficiently obtained. The achievable rate region for the
proposed cooperation scheme is the convex hull of those two
regions. In the simulation results section below, this region will
be shown to subsume the region achieved by the cooperation
scheme in Fig. 2.

VI. SIMULATION RESULTS

The goal of this section is three fold. First, we compare
the achievable rate regions of the original cooperative scheme
in Fig. 2 with jointly optimal power and channel resource
allocation to the achievable rate regions obtained by the same
scheme with optimal power allocation but a fixed channel
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Fig. 4. Achievable rate region in a case of symmetric direct channels.
P̄1 = P̄2 = 2.0, σ2

0 = σ2
1 = σ2

2 = 1, |K12| = |K21| = 0.7, |K10| =
|K20| = 0.4. The solid curve represents the case of joint optimization
over P̃ij and r, the dotted curves represent the case of fixing r = 0.1k,
k = 1, 2, . . . , 9 and optimizing only over P̃ij . The dashed curve represents
the case of optimization over P̃ij for r = 0.5. The dash-dot curve represents
the the case of equal power and resource allocation.

resource allocation. Second, we compare the achievable rate
region of the (jointly optimized) modified cooperation scheme
in Section V against that of the (jointly optimized) original
scheme in Fig. 2. Finally, we investigate the performance of an
approach to robust power and resource allocation that provides
achievable rate guarantees in the presence of uncertain channel
state information (CSI). For each investigation, we examine a
(symmetric) scenario in which the gains of the direct channels
of each user are the same, and an (asymmetric) scenario in
which they are different.

We first consider the original cooperation scheme in Fig. 2
in the case of symmetric direct channels. In Fig. 4, we have
plotted with a solid line the achievable rate region that can
be obtained by jointly optimizing both the power components
and the time sharing parameter r using the efficient quasi-
convex search method suggested in Section IV. In the same
figure, we have plotted the rate regions that can be achieved
with a fixed resource allocation parameter; i.e., fixed r and
optimized power allocation. (We have plotted the rate region
for equal power and resource allocation, as well.) Fig. 6
is analogous to Fig. 4, except that it considers a case of
asymmetric direct channels. We note that in both Figs 4 and
6, the region bounded by the solid curve, which represents the
achievable rate region when one jointly optimizes over both
the transmission powers and r, subsumes the regions bounded
by the dashed curve and all the dotted curves. In fact, the
region bounded by the solid curve represents the convex hull
of all the achievable rate regions for fixed resource allocation.
Also, we point out that each of the dotted curves and the
dashed curve touches the solid curve at only one point. This
is the point at which this particular value of r is optimal.

The optimal value of the resource allocation parameter r
and the optimized (scaled) power allocations P̃11 and P̃21 are
plotted as a function of the target value R2,tar in Figs 5 and 7.
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Fig. 5. Jointly optimized power and resource allocations in the case of
symmetric direct channels considered in Fig. 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

R
2

R
1

r =0.1
r =0.9

Fig. 6. Achievable rate region in a case of asymmetric direct channels.
P̄1 = P̄2 = 2.0, σ2

0 = σ2
1 = σ2

2 = 1, |K12| = |K21| = 0.7, |K10| =
0.9, |K20| = 0.3. The solid curve represents the case of joint optimization
over P̃ij and r, the dotted curves represent the case of fixing r = 0.1k,
k = 1, 2, . . . , 9 and optimizing only over P̃ij . The dashed curve represents
the case of optimization over P̃ij for r = 0.5. The dash-dot curve represents
the the case of equal power and resource allocation.

In both these figures, we observe that the value of r decreases
as R2,tar increases. This is what one would expect, because for
increasing values of R2,tar the fraction of the channel resource
allocated to Node 2 (i.e., r̂ = 1− r) should be increased. Fig.
5 also verifies the analysis of the KKT conditions in Section
III-B, which revealed that at optimality at least one of the
nodes will turn off its relaying function. When R2,tar is small,
we observe that P̃11 = 2P̄1 and hence P̃12 = 0. This means
that Node 1 does not allocate any power for relaying, and
hence that Node 2 must transmit directly to the master node.
At high target rates for Node 2, P̃21 = 0, which means that
Node 2 does not relay the message of Node 1. For a small
range of target rates around R2,tar = 0.3, both P̃12 = 0 and
P̃21 = 0, and there is no cooperation between the two nodes.
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Fig. 7. Jointly optimized power and resource allocations in the case of
asymmetric direct channels considered in Fig. 6.
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Fig. 8. Achievable rate region of the modified orthogonal AF scheme in the
case of symmetric direct channels considered in Fig. 4.

(Both nodes use direct transmission.) The increase in R2,tar

in this region is obtained by decreasing the resource allocation
parameter r (i.e., increasing r̂), and the change in the slope
of the dashed curve that represents r in Fig. 5 can be clearly
seen in this region.

In Figs 8 and 9 we compare the achievable rate region of
the modified scheme proposed in Section V against that of
the original AF scheme in Fig. 2. Fig. 8 considers the case
of symmetric channels, and Fig. 9 considers the asymmetric
case. It is clear from these figures that the (jointly optimized)
modified scheme provides a significantly larger achievable rate
region than the (jointly optimized) original scheme. In Fig.
8, we note that the maximum achievable rate for Node 1
for the modified scheme is the same as that of the original
scheme. This is because in this scenario, the effective gain of
the inter-user channel (γ12 = γ21) is large enough, relative to
the effective gain of the direct channel, so that the maximum
value of R1 for the modified scheme occurs in State 1, in
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Fig. 9. Achievable rate region of the modified orthogonal AF scheme in the
case of asymmetric direct channels considered in Fig. 6.
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Fig. 10. Achievable rate regions of the original and modified schemes with
perfect and uncertain channel state information in the case of symmetric direct
channels considered in Fig. 4.

which the message of Node 1 is relayed by Node 2 and all
the transmission powers and channel resources are allocated to
the message of Node 1. In contrast, in the scenario plotted in
Fig. 9 the gain of the direct channel of Node 1 is large enough,
relative to the effective gain of the inter-user channel, so that
the maximum value of R1 occurs in State 2, in which the
message of Node 1 is transmitted directly and all the channel
resources are allocated to the message of Node 1. As can be
seen in Fig. 9, this means that the maximum achievable rate
for Node 1 is larger than that provided by the original scheme
in Fig. 2.

In our final experiment, we consider a scenario in which
the available CSI is uncertain, in the sense that the effective
channel gains are only known to lie in the interval γij ∈
[γ̂ij − δij , γ̂ij + δij ]. This model is well matched to scenarios
that involve the communication of quantized channel estimates
of the channel gains via low-rate feedback. Our goal here
is to obtain the power and resource allocations that provide
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Fig. 11. Achievable rate regions of the original and modified schemes with
perfect and uncertain channel state information in the case of asymmetric
direct channels considered in Fig. 6.

the largest rate region that is guaranteed to be achievable
under all admissible uncertainties. This can be achieved by
applying the existing approaches to the scenario in which all
the effective channel gains assume their lowest admissible
value; i.e., γij = γ̂ij − δij . In Figs 10 and 11 we compare
the resulting robust achievable rate regions to the achievable
rate regions for the case of perfect CSI, for a scenario in which
δij = 1/32. (This corresponds to a quantization scheme for
γij with four bits and a dynamic range of [0, 1].) As expected,
channel uncertainty reduces the size of the achievable rate
region, but this example demonstrates that robust performance
in the presence of channel uncertainties can be obtained in a
relatively straightforward manner.

VII. CONCLUSION

In this paper we addressed the problem of joint power and
channel resource allocation for a two-user orthogonal amplify-
and-forward cooperative scheme. We obtained a closed-form
expression for the optimal power allocation problem for
a given channel resource allocation, and we exploited the
quasi-convexity of the power and channel resource allocation
problem to obtain a simple efficient algorithm for the jointly
optimal allocation. Analysis of some KKT optimality con-
ditions showed that the original system under consideration
does not use the channel resources efficiently. Therefore, we
proposed a modified orthogonal AF cooperation scheme, and
we demonstrated that with optimal power and channel resource
allocation this scheme can provide a larger achievable rate
region than that provided by the original scheme. Finally, we
provided a simple strategy that enables efficient optimization
of a guaranteed achievable rate region in the presence of
bounded uncertainties in the available channel state informa-
tion.
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APPENDIX A
AT LEAST ONE OF P̃12 AND P̃21 WILL BE ZERO AT

OPTIMALITY

Since all the partial derivatives will be evaluated at the
optimal point (P̃ ∗

11, P̃
∗
21), for simplicity, we will use ∂fi

∂P̃ij
to

refer to ∂fi(P̃
∗
11,P̃∗

21)

∂P̃ij
. We are interested in the case in which

both nodes have information to transmit, and hence P̃ ∗
11 > 0,

and P̃ ∗
21 < 2P̄2. In that case it can be (analytically) shown

that ∂f0

∂P̃i1
< 0, and that ∂f1

∂P̃i1
> 0.

Let us first consider the case in which λ∗
4 = 0. From

(12c) we have that ∂f0

∂P̃11
+ λ∗

1
∂f1

∂P̃11
� 0, and hence λ∗

1 �
− ∂f0

∂P̃11
/ ∂f1

∂P̃11
. Therefore,

∂f0

∂P̃21

+ λ∗
1

∂f1

∂P̃21

�
(

∂f0

∂P̃21

∂f1

∂P̃11

− ∂f0

∂P̃11

∂f1

∂P̃21

)
/

∂f1

∂P̃11

.

(25)
By directly computing the partial derivatives and dropping
some non-negative terms from the expression for − ∂f0

∂P̃11

∂f1

∂P̃21
it can be shown that

∂f0

∂P̃21

∂f1

∂P̃11

− ∂f0

∂P̃11

∂f1

∂P̃21

>(3rr̂P̃ ∗
11 + γ12r̂P̃

∗2
11 )(2P̄2 − P̃ ∗

21)

+ γ21rP̃
∗
11(2P̄2 − P̃ ∗

21)
2, (26)

where the right hand side is positive because P̃ ∗
21 is required

to satisfy the power constraint P̃ ∗
21 � 2P̄2. Using (25), and the

positivity of (26) and ∂f1

∂P̃11
, we have that ∂f0

∂P̃21
+ λ∗

1
∂f1

∂P̃21
> 0.

Given this relation and (12b), in order for (12c) to be satisfied
with λ∗

4 = 0 we must have λ∗
3 > 0. Using (12d), this implies

that P̃21 = 0.
Using a similar strategy, we can show that if λ∗

3 = 0, then
∂f0

∂P̃11
+λ∗

1
∂f1

∂P̃11
< 0. Given this relation and (12b), in order for

(12c) to be satisfied with λ∗
3 = 0 we must have λ∗

4 > 0. Using
(12d), this implies that P̃11 = 2P̄1 and hence that P̃12 = 0.
Therefore, at optimality at least one of P̃12 and P̃21 equals
zero.

APPENDIX B
A BOUNDING ARGUMENT

Consider a value for r ∈ (0, 1) and a set of feasible values
for P̃j1 = rPj1 and P̃j2 = r̂Pj2 that satisfy (8c) with equality.
Furthermore, assume that both nodes are relaying for each
other; i.e., P̃12 > 0, and P̃21 > 0. The achievable rates
R̄1(P , r) and R̄2(P , r) for this scenario are given by the
expressions on the right hand side of (5). The key to the
argument is to fix the rate of one of the nodes and show that
re-allocating the powers so that this rate is achieved by direct
transmission increases the achievable rate of the other node.

First, let us consider the case in which γ10P̃12 � γ20P̃21,
and let us fix the rate of Node 1. If we let Δ1 = Δ̃1

r denote
the extra power that would need to be added to P11 in order
to achieve R̄1(P , r) by direct transmission, then we have
R̄1(P , r) = r

2 log
(
1 + γ10(P̃11+Δ̃1)

r

)
, from which we obtain

γ10Δ̃1 =
γ20γ12P̃11P̃21

r + γ20P̃21 + γ12P̃11

. (27)

Now, let P̃
′
ij denote the (scaled) power allocation for this

scenario. First, P̃
′
11 = P̃11 + Δ̃1, and in order for the power

constraint to be satisfied, we must have P̃
′
12 � P̃12 − Δ̃1.

Furthermore, since Node 1 can achieve its desired rate by
direct transmission, Node 2 need not allocate power to relay
messages for Node 1; i.e., Node 2 can set P̃

′
21 = 0 and hence

can set P̃
′
22 = 2P̄2. If Node 1 uses all of its remaining power

to relay for Node 2, i.e., if P̃
′
12 = P̃12−Δ̃1, then the achievable

rate for Node 2 is

R̄2(P ′
, r) =

r̂

2
log
(

1 + γ20P̃
′
22

r̂ + γ10γ21P̃
′
12P̃

′
22

r̂(r̂+γ21P̃
′
22+γ10(P̃12−Δ̃1))

)
,

(28)
where P ′

is defined in an analogous way to P in (5). Using
the sequence of bounds in Appendix C, it can be shown that
R̄2(P ′

, r) > R̄2(P , r). Therefore, for the same value for the
rate of Node 1 a higher rate for Node 2 is achievable if
Node 1 operates via direct transmission rather than operating
cooperatively. In the case that γ10P12 � γ20P21, an analogous
argument applies, but with the rate of Node 2 being fixed and
achievable by direct transmission.

APPENDIX C
PROOF OF R̄2(P ′

, r) > R̄2(P , r)

The bounding argument below is based on the fact that for
any non-negative and finite a, b, c and r

ab

r + a + b
� a and

∂

∂a

(
ab

r + a + b

)
� 0, (29)

and that for r > 0
ab

r + b + c
< a. (30)

Now

R̄2(P ′
, r)

=
r̂

2
log

(
1 +

γ20P̃
′
22

r̂
+

γ10γ21P̃
′
12P̃

′
22

r̂(r̂ + γ21P̃
′
22 + γ10(P̃12 − Δ̃1))

)

=
r̂

2
log

(
1 +

γ20P̃22

r̂
+

γ20P̃21

r̂
+

γ10γ21P̃12P̃
′
22

r̂(r̂ + γ21P̃
′
22 + γ10(P̃12 − Δ̃1))

− γ10γ21Δ̃1P̃
′
22

r̂(r̂ + γ21P̃
′
22 + γ10(P̃12 − Δ̃1))

)

>a
r̂

2
log

(
1 +

γ20P̃22

r̂
+

γ20P̃21

r̂
+

γ10γ21P̃12P̃
′
22

r̂(r̂ + γ21P̃
′
22 + γ10(P̃12 − Δ̃1))

− γ10Δ̃1

r̂

)

>b
r̂

2
log

(
1 +

γ20P̃22

r̂
+

γ20P̃21

r̂
+

γ10γ21P̃12P̃
′
22

r̂(r̂ + γ21P̃
′
22 + γ10(P̃12 − Δ̃1))

− γ20P̃21

r̂

)

=
r̂

2
log

(
1 +

γ20P̃22

r̂
+

γ10γ21P̃12P̃
′
22

r̂(r̂ + γ21P̃
′
22 + γ10(P̃12 − Δ̃1))

)

>c
r̂

2
log

(
1 +

γ20P̃22

r̂
+

γ10γ21P̃12P̃22

r̂(r̂ + γ21P̃22 + γ10(P̃12 − Δ̃1))

)

>
r̂

2
log

(
1 +

γ20P̃22

r̂
+

γ10γ21P̃12P̃22

r̂(r̂ + γ21P̃22 + γ10P̃12)

)
> R̄2(P , r),

where inequality a is a consequence of (30) (assuming r̂ > 0),
inequality b is obtained by applying the first inequality in (29)
to (27), which yields γ10Δ̃1 � γ20P̃21, and inequality c comes
from the second inequality in (29).
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APPENDIX D
QUASI-CONCAVITY OF THE RESOURCE ALLOCATION

PROBLEM

Consider r1, r2 ∈ Sβ . Let x1 and x2 denote the maximizing
values of P̃21 corresponding to those values of r, respectively.
Then the following pair of equations hold for (r = r1, P̃21 =
x1) and for (r = r2, P̃21 = x2),

r

2
log
(

1 +
2γ10P̄1

r
+

2γ20γ12P̄1P̃21

r(r + γ20P̃21 + 2γ12P̄1)

)
� R1,test,

(31a)
r̂

2
log
(
1 +

γ20

r̂
(2P̄2 − P̃21)

)
� R2,tar.

(31b)

The inequalities in (31) can be rewritten as

f1(r1, x1) � g1(r1), f1(r2, x2) � g1(r2), (32a)

f2(r1, x1) � g2(r1), f2(r2, x2) � g2(r2), (32b)

where

f1(r, x) =

√
r2 + 2γ10P̄1r +

2γ20γ12P̄1xr

(r + γ20x + 2γ12P̄1)
,

f2(r, x) = 2P̄2 − x,

g1(r) =

√
r22

2R1,test
r , g2(r) = r̂(2

2R2,tar
r̂ − 1).

By evaluating their second-order derivatives, it can be shown
that g1(r) and g2(r) are convex in r and that f2(r, x) is convex
in r and x. Furthermore, by obtaining an analytic expression
for the Hessian of f1(r, x), it can be shown that the condition
2γ10P̄1 � 1 is sufficient for the Hessian to be negative semi-
definite, and hence is sufficient for f1(r, x) to be concave in
r and x.

Let r3 = θr1 + (1 − θ)r2, for some θ ∈ [0, 1], and let
x3 = θx1 + (1 − θ)x2. Then we have

f1(r3, x3) �a θf1(r1, x1) + (1 − θ)f1(r2, x2)
� θg1(r1) + (1 − θ)g1(r2) �b g1(r3), (33)

where inequality a follows from the concavity of f1(r, x) and
inequality b follows from the convexity of g1(r). Similarly, we
can show that f2(r3, x3) � g2(r3). Hence, for any two values
of r (namely, r1 and r2), if there exist values of x (namely, x1

and x2), such that the conditions in (31) are satisfied, then for
any value of r that lies between r1 and r2 (namely, r3), there
exists a value for x that lies between x1 and x2 (namely, x3),
such that the conditions in (31) are satisfied. Therefore, Sβ is a
convex set, and hence the objective in (13) is quasi-concave in
r. Following similar steps, it can be shown that the objective
in (14) is quasi-concave in r if 2γ20P̄2 � 1.

APPENDIX E
INTERSECTION OF THE SETS OF r THAT RESULT FROM (13)

AND (14)

Here we will show that if R1,test is such that both Sβ and
Sα are non-empty, then these two sets intersect. In doing so,
we will show that if both sets are non-empty, then there exists a
value of r, denoted r3, such that a rate of at least R1,test can be
achieved for Node 1 (and the target rate for Node 2 satisfied)

using only direct transmission. Since direct transmission is a
feasible solution for both (13) and (14), r3 lies in both Sβ and
Sα, and hence these sets intersect.

Using the closed-form solution in (17) we have that

β(r) =
r

2
log

(
1 +

2P̄1γ10

r

+
2P̄1γ12(2P̄2γ20 − r̂(2

2R2,tar
r̂ − 1))

r(r + (2P̄2γ20 − r̂(2
2R2,tar

r̂ − 1)) + 2P̄1γ12)

)
,

(34a)

α(r) =
r

2
log

(
1 +

2P̄1γ10

r

− [2P̄2γ21 + r̂][r̂(2
2R2,tar

r̂ − 1) − 2P̄2γ20]

r(2P̄2γ21 − [r̂(2
2R2,tar

r̂ − 1) − 2P̄2γ20])

)
.

(34b)

Let rβ ∈ Sβ and rα ∈ Sα. Since the constraints in (13b) and
(14b) hold with equality at optimality, and since the power
constraint must be satisfied, we have that

r̂β(2
2R2,tar

r̂β − 1) � 2γ20P̄2, (35)

and that

2γ20P̄2 � r̂α(2
2R2,tar

r̂α − 1) � 2(γ20 + γ21)P̄2. (36)

Since rβ ∈ Sβ and rα ∈ Sα by assumption, β(rβ) � R1,test

and α(rα) � R1,test. By substituting the expressions in (34)
into these bounds, and using the inequalities in (35) and (36)
we have

rβ

(
2

2R1,test
rβ − 1

)
� 2P̄1γ10 + 2P̄2γ20 − r̂β

(
2

2R2,tar
r̂β − 1

)
,

(37a)

rα

(
2

2R1,test
rα − 1

)
� 2P̄1γ10 + 2P̄2γ20 − r̂α

(
2

2R2,tar
r̂α − 1

)
.

(37b)

It can be shown that r(2
2R1,test

r − 1) is convex decreasing in
r, and hence for any r3 = μrβ + (1 − μ)rα, we have

r3(2
2R1,test

r3 − 1) � μrβ(2
2R1,test

rβ − 1) + (1 − μ)rα(2
2R1,test

rα − 1)

� 2P̄1γ10 + 2P̄2γ20 − r̂3(2
2R2,tar

r̂3 − 1) (38)

If we choose r3 such that r̂3(2
2R2,tar

r̂3 − 1) = 2P̄2γ20, i.e.,

R2,tar = r̂3
2 log(1+ 2P̄2γ20

r̂3
),4 then we have r3(2

2R1,test
r3 −1) �

2P̄1γ10, and hence R1,test � r3
2 log(1 + 2P̄1γ10

r3
). That is, for

the choice r = r3, direct transmission from both nodes (i.e.,
P̃12 = 0 and P̃21 = 0) yields a rate for Node 1 that is at
least R1,test. (Actually, direct transmission yields the largest
achievable rate for Node 1 for this value of r.) Since direct
transmission is a feasible solution to both (13) and (14), r3 is
an element of both Sβ and Sα, and hence these sets intersect.

4The existence of an r3 such that r̂β � r̂3 � r̂α follows directly from

(35) and (36) and the decreasing nature of r̂(2
2R2,tar

r̂ − 1) in r̂.
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