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Balanced approximation can be optimal 

D .  M u s t a f a *  a n d  T . N .  D a v i d s o n * *  
Department of Engineering Science. University of O.~([brd. Parks 
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~(~2 n o r m s .  This property was first pointed out in 
[8] for the Hankel  norm only. 
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Abstract: It is shown by example that there exist systems whose 
balanced approximations are optimal. Specifically, for various 
norms including the Hankel norm and the *~'2 norm, it is shown 
that the approximation error can achieve the minimum possible. 

Kevwords." Balanced approximation; model reduction; Hankel 
norm; finite differences; Hamiltonian systems. 

Let G ( s ) =  C ( s l - A ) - t B = : ( A , B , C )  be an n- 
state, stable, minimal system with controllability 
and observability gramians P and Q. The Hankel  
singular values of  G are a i =  2/I/2(PQ), 
i =  1,2 . . . . .  n a n d a r e o r d e r e d a t  > a 2 > _  " ' "  > 
a ,  > 0, as usual. We use the following s tandard 
norms of  G to measure approximat ion  errors: 

I. Introduction 

Since its introduct ion by Moore  [7]  in 1981, 
balanced approximat ion  has become a popular  and 
successful method for system approximation.  Low- 
order  models are simply obtained by discarding 
those states in a balanced realization that  corres- 
pond  to small Hankel  singular values. These states 
are the most  difficult to control  and observe in an 
L/'2 sense. An advantage  of  the method  is that  the 
Z~'~ approximat ion  error  is bounded  above and 
below by simple functions of  the Hankel  singular 
values [3,2].  The technique is therefore readily 
applicable to reduced-order  o ~  controller  syn- 
thesis [1]. 

Hyland and Bernstein [6]  have shown that, in 
general, balanced approximat ion  is not  optimal in 
the £~'2 norm. To complement  that result, it is the 
purpose of  the present paper  to show that, in par- 
ticular cases, balanced approximat ion  can lead to 
approximat ions  that  minimize various error  norms, 
including the .La 2 norm. Specifically, balanced ap- 
proximations of  a special class of systems with 
symmetric  A matrices and unitary B and C ma- 
trices are shown to achieve the min imum possible 
error  in the Hankel,  Hilbert-Schmidt ,  nuclear and 
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• Hankel  norm (see e.g. [-3]), defined by 

II O II. := al 
• Hilber t -Schmidt  norm (see [4]), IlallHs:= 

• nuclear norm (see [5]), [IGI[N:= ~7=1 al 

• -~2 norm, [I G [12 = x / t r ace (CPC T) = 

x / t race (BT  OB). 

The following lemma collects together some 
lower bounds  on approximat ion  errors with respect 
to the above norms. Our  main result will be to 
show that these lower bounds  can be attained by 
balanced approximat ion in some cases. 

L e m m a  2.1. Let  G ( s ) = ( A , B , C )  be an n-state 

stable minimal p x m system with Hanke l  sinoular 

values, tr 1 >_a2 >_ " ' "  >-a , .  Le t  G(s) be any k- 
state stable p x m system, where 1 <_ k < n. Then 

(a) II a - (711H > a~+l,  

(b) [I o - (7 II Hs --> ~/ET=k +1 a, 2 , 
(c) I16 - C~PlN --> Y.7=k+, a,,  

(d) I I a -  GII2 >-x /~"=k+t  ~ ,  
where ~i := 2~/2(P~Q,) and are ordered 

Ctl > • • • > ct.. Here  

f: p~:= e~tBBTeATt 1 - - ~ d t ,  
x/~t  

(1) 

Q~ := eATt C T .,It 1 Ce  ~ d t  
,,/rot 

are scaled controllabil i ty and observabil i ty gramians. 
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Proof. For  (a) see [3] and for (b) (d) see [4]. See 
also [14] for (b). [] 

We assume that  the reader is familiar with bal- 
anced approx imat ion  and related concepts,  as 
covered by Moore  [7], Pernebo and Silverman 
[10] and Glover  [3, Sections 2 and 4]. When we say 
that  (~ is the k-state balanced approximation of an 
n-state stable system G, we mean,  as usual, the k- 
state subsystem of a balanced realization of G that  
retains the k largest Hankel  singular values. 

3. Main  result 

Firstly, a definition of the relevant class of  sys- 
tems. The definition is essentially from [8, 9], but is 
s trengthened here to have distinct Hankel  singular 
values. 

Defini t ion 3.1. Def ine  ~ P ~ "  J n ; s t a b l e  to be the set of all 
n-state stable p x m systems (n < min(m,p))  with 
distinct Hankel  singular values and a minimal  real- 
ization (A ,B ,C)  such that  A = A r and 
BB T = c T  C = I,. 

Our  main result is that  balanced approx imat ion  
of systems in the above class achieves equality in all 
the lower bounds  in L e m m a  2.1. 

r_~pp×,  and let d be the k- Theorem 3.2. Let u~J, ;s table  
state balanced approximation of  G, where 1 < k < n. 
Then 

(a) IIG - GIIH = ~rk+l, 

(b) fl G - (~ Ilns = N / 2 7 = k +  1 0 . 2 ,  
n 

(c) ItG - dltN = ~ = , , + ,  a, ,  

(d) NG - dl12 = x/ET=k+,  cd; 

so d is simultaneously an optimal k-state approxima- 
tion o f  G in the Hankel, Hilbert-Schmidt,  nuclear 
and d 2  norms, l 

The proof  may  be found in the Appendix.  
Clearly, c, op×,, is a restricted class of systems ~ n ;  stable 

here our  p r imary  interest in c~p×,, is to demon-  "J n; stable 
strate that  opt imal i ty  may  occur. However ,  practi-  
cal si tuations leading to systems in cap×,, d o  J n ;  stable 

exist, as the following two examples illustrate. (In 
both examples it turns out that C = B v, so the 
systems are also relaxation systems [13, Section 10].) 

Example  3.3. (Taken from Mustafa  [9])  Consider  
the following parabol ic  partial  differential equat ion 

6qO 0 2 0  

Ot OX 2 "['- U 

for 0 _< x < 1, t > 0, subject to boundary  condi- 
t ions 0(0, t ) =  0 ( 1 , t ) =  0 and given initial condi- 
tions. This equat ion can represent the tempera ture  
O(x, t) in a one-dimensional  normalized heat con- 
duct ion problem, with heat input  term u(x, t). It 
can be approx imated  using a s tandard  finite-differ- 
ence technique as follows. Define a solution grid 
x = lh, where l = 0, 1 . . . . .  N , N  + 1 and 
h(N + 1) = 1. At each interior grid point  x = ih, 
i = 1,2 . . . . .  N, apply the finite-difference approx-  
imat ion 

t?20 

[)X2 x=ih 

O((i -- 1)h,t) - 20(ih, t) + O((i + 1)h,t) 
+ O(h2) .  

h 2 

Then at each interior grid point,  the exact solution 
O(ih, t) is approx imated  by vi(t) that  solves 

vi l ( t ) -  2vi(t) + vi+l(t) 
Oi(t) = h2 + Ui(t), (2) 

where ui(t):= u(ih, t), and Vo(t)= v u + l ( t ) =  0. By 
defining a state vector  Y(t) = (Vl (t) . . . . .  vu(t)) T, an 
input vector  t~(t) = (ul(t) . . . . .  uu(t)) T and an out- 
put vector 35(0 = £(t), the N first-order differential 
equat ions in (2) can be written in a state space form 

x(t)  = AY(t)  + Bfi(t), y(t) = CYc(t), 

where A is the stable N x N symmetr ic  tr idiagonal  
matrix 

- 2  1 

1 - - 2  
1 

A = h ~  0 1 

0 

1 ' ' .  

- 2  "- 0 

" ' .  " ' .  1 

0 1 - - 2  

INote added in proof: (~ can also be made into an H~. optimal 
approximation by adding a suitable constant term using [I 5]. 

and B = C = IN. Fur thermore ,  the Hankel  singular 
values of(A, B, C) are shown in [9] to be distinct, so 
A B  N,N ( , ,C)~SeN;stable. 
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E x a m p l e  3.4. In [12] van der Schaft and Oeloff 
developed a model reduction procedure, known as 
pseudo-balanced truncation, for the subclass of 
Hamiltonian systems which are linear, time-revers- 
ible [11], and have all their poles on the jto-axis, 
excluding the origin. These systems have the prop- 
erty that G(s) = Gr(s) = G( - s) and occur in lin- 
ear conservative systems with collocated sensors 
and actuators. Such systems always have a minimal 
2n-state realization 

([0 
= - R  0MI ' [0LI  ' [LT 0 ] ) ,  (3) 

where M, R > 0. Using the relation 

G,(s 2) = G(s) (4) 

one can associate with G(s) an n-state oradient 
system, Gs(s). The gradient system is stable and has 
a minimal realization Gg(s ) = ( - MR,  ML,  LT). 

Let S be a balancing state transformation for the 
gradient system. Then it turns out that S M S  v = I.,  
and a balanced realization of the gradient system 
is G s = (A s, B s, Cg), where ~is = - S - T R S -  1, 
~g = S-T  L, Cs = LrS - 1. Under the relation in (4) 
the balancing state transformation S for the gradi- 
ent system induces a symplectic state transforma- 
tion, blockdiag (S,S-T), on G in (3). This results in 
a 2n-state pseudo-balanced realization of G, 

The model reduction method proposed in [12] 
involves finding a k-state balanced approximation 
of G s, then mapping back to the corresponding 2k- 
state pseudo-balanced Hamiltonian system. The re- 
sulting 2k-state Hamiltonian system is said to be 
a 2k-state pseudo-balanced approximation of the 
original Hamiltonian system. By inspection, 
/ig /i  T < 0 and Cs - x  - -T = = B  s. I f B s B  s = l .  and the 
Hankel singular values of C o are distinct, then 
G f~pxm gE'~v n; stable-  

4. C o n c l u s i o n  

It has been shown in this paper that for a certain 
class of systems balanced approximation is optimal 
with respect to several measures of approximation 
error. It remains an open question whether a wider 
class of systems behave similarly. 

A p p e n d i x  

Proof of Theorem 3.2. To show (a)-(c) it is enough 
to show that the system G - ,5 has Hankel singular 
values ak+l . . . . .  a,. (Many of the properties of 
systems in ccp×m required to show this appeared ~ n  ; stable 

more formally in [8].) 
By simple algebraic manipulations, it can be 

shown that for GeSe,P;~ble a balanced realization is 
G = (A, W T B, C W), where A = WA W T is a spec- 
tral decomposition of A. That is, 
A = diag(21 . . . . .  2.), where 21 are the eigenvalues 
of A ordered 21 > " "  > 2 ,  and W is the unitary 
matrix of eigenvectors. Note that the Hankel singu- 
lar values are given by oi = - (22i)-1, [8, Corol- 
lary 2.4], and are distinct by assumption. Using this 
realization, and partitioning A = diag(A1, A2) and 
W =  [WI We] conformally with the balanced 
approximation, a realization of G - ,5 is 

(Ei  ° :1 A 2  

0 A1 

[CWI 

WTB ] 
[, 

- wIBJ 

CW2 C W I ]  I . 

Applying the nonsingular state transformation 

°°o] 0 l,,-k 

- -  lk 0 lk 

gives the realization 

o 0 ° 

A 2  , , 

0 A1 

[o cw2 cwl]), 

from which the uncontrollable and unobservable 
states (which are stable) can be removed to give 
a minimal realization 

G - ,5 = ( A 2 ,  WTB, CWe). (5) 
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This is a stable balanced system with gramians 
equal to 

X 2 = d i a g ( - - ( 2 ) , k + l )  l . . . . .  _ ( 2 2 , ) - 1 )  

= diag(~k + i . . . . .  a , ) .  

p x m  Hence, for systems GG<~'r'n;stable the Hankel singular 
values of G - G  are ak+~ . . . . .  a, .  NOW, (a) (c) 
follow immediately from the definitions of the 
norms in Section 2. 

To show (d), we first evaluate IIG-(~112 for 
r×,. 

GeSf.:~,able. Using (5), 

!l G - (~ ll2 = x/trace(CW2X2 WVzC T) 

= ,jtracetSjW CTC 

Noting t h a t C X C = l ,  and W2 ~ W 2 =  I ,  k, thissim- 
plifies to 

IIG - ¢~1t2 = x /~7_~+ ~g/,. 

We now show that for - ~ . . x ~  {JEo')rn;stable,  w e  have 
c~ = ~2. From [4, Section 3.2], for an n-state system 
(Aa, Bd, Cd) with Ad = diag(21 . . . . .  2.), the expres- 
sions in (1) become 

[ B d B T ] I j  
[P~]'J ~ / -  (L + ;.k' 

[Qslij - -  / ~  ; j ) ,  i , j  = 1,2 . . . . .  n.  
x/ - (2~ + 

Hence, with G = (A, WTB, CW), the scaled gram- 
ians become 

P , ~ = Q s = d i a g ( ( - 2 2 1 )  1/2 . . . . .  ( - 2 2 , )  1/2) 

and by definition a { = - ( 2 2 ~ )  - t .  But since 
o-i = - (2,,/) i we have a2 = a / a n d  therefore 

il c - a : , / - 2 7  

and (~ is an opt imal  ~c~' 2 approximat ion of G. 
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