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Generalized PI controllability
D. MUSTAFA®} and T. N. DAVIDSON{

Integral controllable systems can be stabilized by all sufficiently low-gain integral
controllers. The concept of integral controllability is extended to two generalized
stability regions and to proportional controllability and PI controllability with
respect to those regions. Furthermore, closed eigenvalue formulae are derived for the
maximal low integral gain and the maximal low proportional gain for generalized
stabitity. Related eigenvalue formulae are then used in combination to find all low-
gain PI controllers that place the closed-loop eigenvalues in the desired region.

1. Introduction

A stable system is said to be integral controllable if it can be stabilized by all
sufficiently low gain integral controllers. Conditions for a system to be integral
controllable were given by Morari (1985) and exact formulae for the maximal low gain
for stability were derived under mild conditions by Mustafa (19944, 1994 ¢). Integral
controllability of a system is a useful property in the design of simple decentralized
controllers (see Grosdidier et al. 1985, Morari and Zafiriou 1989, Campo and Morari
1994). By correcting Lemma 10-4 of Lunze (1989) it can be shown that a stable system
can be stabilized by all sufficiently low-gain PI controllers (i.e. is PI controllable) if and
only if it is integral controllable. Results on the maximal range of stabilizing PI gains
have been presented by Mustafa (1994 5).

It is well known (see for example, Siljak 1969, Gutman 1990 and Ackermann et al.
1993) that by using a generalized notion of stability it is possible to enforce certain
useful performance criteria. For example, a minimum damping factor constraint can
be satisfied by keeping all the closed-loop eigenvalues in a left sector of the complex
plane. Similarly, a maximum oscillation frequency (damped natural frequency)
constraint can be satisfied by keeping all the closed-loop eigenvalues in a horizontal
band in the complex plane. In the present paper the integral controllability condition
of Morari (1985) and the maximal low integral gain formulae of Mustafa (1994 a) are
extended to cover such generalized stability constraints, based on the preliminary
work in Mustafa and Davidson (1994). Furthermore, we derive a formula for the
maximal low proportional gain for generalized stability, and provide a method for
finding the maximal low gain region in PI gain space for which the closed-loop
eigenvalues are in the desired region of the complex plane.

The paper is organized as follows. In § 2 we introduce the control system of interest
and give a brief summary of the relevant mathematical tools. In §3 we give conditions
forintegral controllability with respect to a left sector. We then derive a closed formula
for the maximal low integral gain with respect to the left sector by using block
Kronecker algebra (Hyland and Collins 1989) to modify a guardian map (Saydy et al.
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1990). This formula generalizes the formula of Mustafa (1994 4, 1994 ¢). Using similar
techniques we also derive closed formulae for the maximal low integral gain with
respect to the horizontal band and for the maximal low integral gain with respect to
the intersection of the left sector and the horizontal band. In §4 we use a guardian map
approach to calculate the maximal low proportional gains for the left sector and the
horizontal band, and in §5 we show how to construct the maximal low gain region in
PI gain space for the sector and the band.

2. Preliminaries

In the present paper we consider the negative unity feedback connection of the
controller k(s) I, to an m x m system G(s) = D+ C(sI—A)™"B, as shown in Fig. 1. Of
course, G(s) can be a pre- (or a post-) compensated plant, as in Morari (1985). In §3,
k(s) is the integral controller k(s) = k,/s; in §4, k(s) is the proportional controller
k(s) = k;; and in §5, k(s) is the PI controller k(s) = kp+ky/s.

Given an open region I"in the complex plane, we say that a (square) matrix is in
I'if all its eigenvalues are in I". Similarly, given a system G(s) = D+ C(sI—A)™'B, we
say that G(s)is in I'if Aisin I". If D+ C(sI— A)™' B is the closed-loop transfer function
from r to y in Fig. 1, we call the eigenvalues of 4 the closed-loop eigenvalues. We say
that the controller I™assigns G(s) if the closed-loop dynamics matrix A4 is in I". Of
course, if I' is the (open) left half-plane then I-assignment is equivalent to internal
stability.

Let ® and @ denote the usual Kronecker product and Kronecker sum respectively
(see Brewer 1978, for a survey), and let ® and @ denote the block Kronecker product
yand block Kronecker sum respectively as defined by Hyland and Collins (1989). In the
present paper we are interested in 2 x 2 block matrices. In this case, for # x n matrices
A and B partitioned identically as

A, 4 B, B
4 = |: 11 12] and B— [ 11 12]
Ay Ay By, By,

the block Kronecker product 4 ® B is the n* x n* matrix

All ® Bll All ® B12 A12 ® Bll A12 ® B12
All ® B21 All ® B22 A12 ® B21 A12 ® B22
A21®B11 A21®B12 A22®Bll A22®Bl2
A21®BZI A21®BZZ A22®B21 A22®B22

and the block Kronecker sum 4 @ B is the n® x n® matrix A@ B:=A®I,+1,® B
(where, of course, I, is partitioned conformally with 4 and B). Whilst the basic
properties of Kronecker and block Kronecker algebra (as in Brewer 1978, and Hyland
and Collins 1989, respectively) will be used freely, we draw attention to the fact that
the eigenvalues of 4 ® B are the n? pairwise products of the eigenvalues of 4 and Band
the eigenvalues of both A ® B and 4 @ B are the n* pairwise sums of the eigenvalues
of A and B.

For a matrix M, let M * denote its conjugate transpose. If M is square, let A,.,,(M)
denote any real eigenvalue of M and let A}, (M) denote the largest positive real
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k(8)Im »  G(s) >

Figure 1. Closed-loop system.

eigenvalues of M, or 0% if M has no positive real eigenvalues. If M and N are square
matrices of the same dimension, let A..,,(M, N) denote any finite real generalized
eigenvalue of M (i.e. any finite real solution to det (M —AN) = 0).

3. Generalized integral controllability

In this section we consider the negative unity feedback connection of the integral
controller kI, /s to G(s) = D+ C(sI— A) ' B. The closed-loop dynamics matrix is

I+m.

A kIB] »

A_(kl)::[—c —k,D

The definition of integral controllability of Morari (1985) is generalized to a region I~
in the following way.

Definition 3.1: An m xm system G(s) in I is said to be I-integral controllable if
there exists a k, > 0 such that the integral controller k; 1, /s I-assigns G(s) for all
k€0, k). O

‘We will use the term radius of I-integral controllability to mean the largest value
of k, such that k, I, /s I'-assigns G(s) for all k;€(0, k;), and will denote it by &7**. The

I+m

‘A

region I' to which k= refers will be clear from the context.

In the following subsections we give closed formulae for 731’[“3‘" for the cases where I”
is a left sector, a horizontal band an intersection of the sector and the band. We also
provide some additional results required for §5.

3.1. Integral controllability in a left sector

In this section we study integral control with respect to the open left sector. The left
sector is defined by

I'={z:zeC,n/24+a < arg(z) < 3In/2—o}

where 0 < o < /2, and is illustrated in Fig. 2.
The following proposition gives conditions for left-sector integral controllability.

Proposition 3.1: An mxm system G(s) in the left sector is left-sector integral
controllable if — G(0) is in the left sector, and only if —G(0) is in the closed left sector less
the origin. If m = 1 then G(s) is left-sector integral controllable if and only if G(0) > 0.

Proof: For the proof see Appendix A.

Remark 3.1: For a = 0, the above result collapses to the standard result on (left half-
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Figure 2. The left sector.

plane) integral controllability. That is, G(s) is integral controllable if —G(0) is in the
left half-plane, and only if —G(0) is in the closed left half-plane less the origin {Morari
1985). O

Remark 3.2: In a similar way to the standard results on (left half-plane) integral
controllability (Morari 1985), Proposition 3.1 gives no information about the left-
sector integral controllability of systems for which — G(0) is in the closed left sector
and is non-singular but has eigenvalues on the sector boundary. To illustrate that case,
consider the systems

s+1 s—1
0 — 0 —
1
Gi(s) = s+10 and  Gy(s) = s+10
iﬂ _2003¢ﬂ N S_l OS¢ S—
s+ 10 s+10 s+10 s+10

where ¢ : = 1/2+ . The eigenvalues of both —G,(0) and — G,(0) are 0-1 e* and hence
are on the boundary of the left sector (defined by «). However, the closed-loop
dynamics for k, I, /s with G,(s) is in the left sector for all k; > 0 and the closed-loop
dynamics matrix for k, I, /s with G,(s) is not in the left sector for any k; > 0. Details of
the corresponding root locus diagrams for the case of « = /6 are given in Fig. 3. For
the case where o = 0 so that ¢ = nt/2, the systems G,(s) and G,(s) are equal to the
systems H,(s) and H,(s) in Example 4 of Grosdidier ez al. (1985) respectively. That
example also shows that the necessary and sufficient condition for (left half-plane)
integral controllability of Lunze (1985) is only sufficient for 2 > 1 and hence that the
result of Lunze (1985) is equivalent to that of Morari (1985). O

Let 4, (1 < i < n+m) be the eigenvalues of A(k,) in (1). A critical integral gain (for
the left sector) is defined to be any finite real value of k; such that

el +e 1, =0

for some p, q (1 < p, g <n-+m). When k, is critical, 4(k,) has at least one pair of
eigenvalues with the same magnitude that subtend an angle of ©— 2« at the origin or
A(k,) has at least one eigenvalue at the origin.

In part (a) of the following proposition, we give a formula for the radius of left-
sector integral controllability. In parts (b) and (c) we give formulae for all the critical
integral gains, for later use. The proof'is in Appendix B. The basic idea is to show that
the critical gains are the finite gains for which v(k,) = 0, where v(k;) is a suitably
constructed block-structured guardian map. The natural form of v(k;) = 0 is that of a
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Figure 3. Details of the integral gain root loci for G,(s) (left) and G,(s) (right) in Remark 3.2.

generalized eigenvalue problem, but under certain mild assumptions Schur-type
formulae for the determinant of a 2 x 2 block matrix can be used to reformulate

v(k,) = 0 as an eigenvalue problem of reduced dimension.

Proposition 3.2:  Let G(s) = D+ C(sI— A)™ B be an n-state m x m system.

(@) If G(s) is in the left sector and — G(0) is in the left sector, then the radius of lefi-

sector integral controllability is given by

- 1
kmax —_
b Aax(S(@)
where S(ot) is the 2mn X 2mn matrix
e 4 1®e D 0
S(“) L l: 0 ejnxD ® ejaA—l]
+ [AT'B® I, e *4r®e*C
I, ®AB  e"C®e*4t

[(€*G(0) @ e *G(0)) *

I, ®e B BRI,

0
0 —(E"4® e“j"‘A)l]
[CA'®eG(0) &°G(0) ® CA‘lJ
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(b) All the critical gains are given by

W 4 0]~ [ 401 0 —Bl. .0 —B
(e [—c 0]@61[—0 0]’ ° [o D]®° [0 DD

(¢) If both €A @ e "4 and e*G(0) ® e *G(0) are non-singular, than all the critical
integral gains are given by the finite values of

1

Area(S())
together with 0.

Proof: For the proof see Appendix B. O

Note that the mild assumptions in Proposition 3.2(¢) allow a significant reduction
in the dimension of the eigenvalue formulae for the critical integral gains. Indeed, S(«)
is of dimension 2mmn x 2mn whereas the dimension of the generalized eigenvalue
problem in Proposition 3.2(b) is (n+m)? x (n+m)®.

Remark 3.3. For « =0, Proposition 3.2(a) solves the same problem as Mustafa
(19944, 1994c¢) (i.e. it gives the radius of (left half-plane) integral controllability).
However, Proposition 3.2(a) does not require the additional technical assumptions
needed by Mustafa (1994 a, 1994 ¢). For example, Proposition 3.2(a) is valid for strictly
proper systems in contrast to the results of Mustafa (19944, 1994¢). When G{s) is
strictly proper S(0) simplifies to

_[4'B®I, A*®C
S(0) = [Im ®AB C® Al]
o (GO)® G(o)* 0 CA'®GO) GO)® CA‘I] 0
0 —(A@ A I, ®B B®I,

The application of Proposition 3.2 is now illustrated by two examples. In the first
example parts (a) and (¢) of Proposition 3.2 are analytically verified for a simple system
by using root locus roles to calculate the critical integral gains and show that these are
the reciprocals of the real eigenvalues of S(«). In the second example the proposition is
used to solve numerically an illustrative multivariable problem.

Example 3.1: Consider the left sector with n/4 < o < 7/2 and the system with
A=—1,B=1,C=1and D =1 so that

5 +2

0=

This system is simple enough for the integral gain root loci to be calculated exactly, as
shown in Fig. 4. The integral gain root loci consist of a circle of radius 1/2, centred on
—2, together with the indicated parts of the real axis.

Zero is obviously a critical integral gain as there is a closed-loop eigenvalue at the
origin when k; = 0. The non-zero critical integral gains are the gains at the points P
and Q in Fig. 4. It is a simple exercise in elementary geometry to express, in terms of
o, the distances from P and Q to the open-loop poles and zero. Applying the standard
calibration rule for root locus, it follows that the critical integral gains are

0,1—2cos2aF 2 sin o{ —2 cos 2a)*/? )
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Figure 4. Integral gain root loci for Example 3.1.

Alternatively, using the formula in Proposition 3.2, we find that

_[—e™(1—jtane) jtana
S(o) = [ —jtana —e(] +jtan )
and hence
Ao (S(0)) = 1 —2 cos 200+ 2 sin o —2 cos 200) %)

Inverting (3) and rationalizing the denominator gives the non-zero term in (2) and
hence parts () and (¢) of Proposition 3.2 are verified for this simple system. O

Example 3.2: Consider the five-state 3 x 3 system with state-space matrices

—3527 709 151 —547 1344
—7242 1436 428 —1216 27-98
A= | —178 153 020 —133 031 |,
—6006 1052 336 —903 24:85
—5810 1292 292 —10-10 21-23

—075 040 —040
—077 —0-08 0-05
=[—0-82 049 —0-07
—0-49 034 —0-05
—1.02 0 —047

0-58 —1-56 —0-27 0-22 0-31 0 00
c=|179 0-25 089 —-102 -—-112|, D=0 0 0
097 056 —006 —-001 —1-12 0 00
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Figure 5. Integral gain root loci for Example 3.2, where x and % denote the closed-loop
eigenvalues for k&, = 0 and &, = k™ respectively.

Suppose that we wish to see how far we can increase integral action from zero whilst
keeping the damping factor greater than 1/2 = sin7/6. In other words, find £ for
the 30° left sector. Using Proposition 3.2 (4) we find that £ = 0-1623. To confirm this
calculation, the integral gain root loci of the system are plotted in Fig. 5. It can be seen
that the closed-loop eigenvalues do indeed satisfy the damping constraint for all
k.e (©, k™) and that the first violation of the damping constraint occurs when
ky = kP |

3.2.  Integral controllability in a horizontal band
We now present a complementary analysis to that in the previous subsection, by
considering integral control with respect to the open horizontal band in the complex
plane defined by
I'={z:zeC, —f < Imag(z) < f}

where f > 0. This region is illustrated in Fig. 6.

By continuity of the eigenvalues of A(k,) it is immediate that all systems in the
horizontal band are horizontal-band integral controllable. Let 4, (1 < i< n+m) be
the eigenvalues of A(k,) in (1). A critical integral gain (for the horizontal band) is
defined to be any finite real value of % such that

Ap—A, = 2P

for some p, g(1 < p, g <n+m). When k; is critical A(k,) has at least one pair of
eigenvalues with the same real part and imaginary parts, which differ by 2.
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Figure 6. The horizontal band.

In part (a) of the following proposition we give a formula for the radius of
horizontal-band integral controllability. In parts (b) and (c) we give formulae for all
the critical integral gains, for use in §5.

Proposition 3.3:  Ler G(s) = D+ C(sI— A)Y ' B be an n-state m x m system.

(a) If G(s) is in the horizontal band, then the radius of horizontal-band integral
controllability is given by

~ 1
o D)
where H(p) is the 2mn+m®) X 2mn+ m*) matrix
—A7'® D 0
H(p):= 0 D® A
(CAT' @ —G(2B)/(28)  ~(G(—i2B) ® CA,)/(2h)
_AI_IB ® Im A;I ®C
x I, ®AB +| —ce4a

(G(—i28) ® —G(2)/(2p) CA'® CA?
X (A+jpL) ® (—A+BL)[—1,®B B®I, (]

and A,:= A+j2p1, and A.:=—A+j201,.
(b) All the critical integral gains are given by

[ 2 Jo[ 21 ele %)

m.

(¢) If (A+jAL) @ (—A+jpL,), A, and A, are non-singular, then all the critical
integral gains are given by the finite values of

1
Areat(H())

Proof: For the proof see Appendix C. |

Although the formulae in Proposition 3.3 are valid when D = 0, more compact
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formulae can be derived in that case. The proof is similar to that for Proposition 3.3
with an extra application of Schur’s formula for the determinant of a 2 x 2 block
matrix.

Corollary3.4: [f D = 0 then Proposition 3.3 can be re-stated with H(f§) replaced by the
2mn X 2mn matrix

AT®C —A'B®I,
—C®4'  I,@4'B

X[((Aﬂﬁln)@(—mjﬁm)‘l 0 M—I,@B B@In]
0 —Im2/(_]2ﬁ) _C®Im Im®c

Note that the mild assumptions in Proposition 3.3 (¢) allow a significant reduction
in the dimension of the eigenvalue formulae for the critical integral gains. Indeed, H(f5)
is of dimension (2mn+m®) x 2mn+m?) (or dimension 2mn x 2mn if Corollary 3.4
applies) whereas the dimension of the generalized eigenvalue problem in Proposition
3.3() is (n+m)? x (n+m)>.

The application of Proposition 3.3 is now illustrated by two examples based on the
systems considered in Examples 3.1 and 3.2.

Example3.3: Consider the system G(s) = (s+2)/(s+ 1) givenin Example 3.1 and the
horizontal band with 0 < f <<4/2. The critical integral gains are given by the gains at
P and R in Fig. 4. By applying the standard calibration rule for root locus and
expressing the gains at P and R in terms of §, we find that the critical integral gains are

3F2Q2-p" @
Alternatively, using the formula in Proposition 3.3(a), we find that
L o SN -
= 2+4F) 2/)’—j3»J 2?84—3'3 4,8]
Applying a similarity transformation reveals that H(f) has the same eigenvalues as
i ! 3ﬂ+j2(ﬁ2—1) .j2 0
H(p) = o —J2 3p—j2ap-1) 0

BA+H4EY | g i3 p+i32 0

The eigenvalues of H(f) are therefore the eigenvalues of the upper-left 2 x 2 block of
H(p) together with zero. Hence

a2
() = 0, 2L ©

Inverting the non-zero term in (5) and rationalizing the denominator gives (4)
and hence parts (@) and (¢) of Proposition 3.3 are analytically verified for
G(s) = (s+2)/(s+1). O

Example3.4: Consider the five-state 3 x 3 system given in Example 3.2. Suppose that
we wish to see how far we can increase integral action from zero whilst restricting the
frequency of the oscillations to be below 2 rad s~ In other words, find £™*= for the
£ = 2 horizontal band. (Note that we have not yet enforced (asymptotic) stability of




Generalized PI controllability 317

25 -r T

1.5

i
o
T

imag Axis
. =)
>‘\ /
b

0.5

B2 ] R R £ Y EETTETI O N -

2. 1 1 1 1 1 |
-3.5 -3 25 -2 -15 -1 0.5 0 0.5
Real Axis
Figure 7. Integral gain root loci for Example 3.4, where x and * denote the closed-loop
eigenvalues for k; = 0 and k, = k™ respectively.

the closed loop.) Using Corollary 3.4, we find that 13}““" = 1-5905. To verify this
calculation, the integral gain root loci of the system are plotted in Fig. 7. It can be seen
that the closed-loop eigenvalues satisfy the oscillation frequency constraint for all
k, € (0, /™), and that the oscillation frequency constraint is first violated for ke, = kma,
However, it should be noted that two of the closed-loop eigenvalues move into the
right half-plane before the oscillation frequency constraint is violated. The movement
of eigenvalues into the right half-plane in this manner is obviously undesirable, and is

the motivation for the next subsection. |

3.3.  Combining the regions

Proposition 3(iv) of Saydy er al. (1990) shows that a guardian map for the
intersection of two regions is the product of the guardian maps of the regions. This
allows us to combine the results of Sections 3.1 and 3.2 as illustrated in the following
example.

Example 3.5. Consider the system studied in Examples 3.2 and 3.4. Suppose that we
wish to scc how far we can increase integral action from zero whilst keeping the
damping factor greater than 1/2 and restricting the frequency of the oscillations to be
below 2 rad s7'. In other words, find the minimum of the critical gains calculated in
Examples 3.2 and 3.4. This cures the instability problem of Example 3.4. We get

ke = min {0-1623, 15905} = 01623
which is k%= from Example 3.2. Inspection of Fig. 5 in Example 3.2 verifies that both

constraints are satisfied for all k; (0, 0-1623) and that the first constraint violation
occurs when k; = 0-1623.
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Figure 8. Integral gain root loci for the second part of Example 3.5, where x and = denote the
closed-loop eigenvalues for k; = 0 and k; = 02926 respectively.

With the above constraints, the sector constraint is active. Of course, different
values for the minimum damping factor and the maximum oscillation frequency may
lead to the horizontal band constraint becoming active instead. For instance, if the
constraints are to keep the damping factor greater than 15% and the oscillation
frequency less than 1 rad s, then

kmax — min {0-4406, 0-2926} = 0-2926
and the oscillation frequency constraint is active, as shown in Fig. 8. O

We will not discuss the combined region further, as in each of the following
sections it is clear that the sector and the band can be combined in a similar way to that
described above.

4. Generalized proportional controllability

In this section we present results for proportional controllers that are analogous to
the results in §3. In this and the following sections, we consider only strictly proper
systems to ensure well-posedness of the closed loop. Given an mxm system
G(s) = C(sI—A)™'B and the proportional controller & I,,, the closed-loop dynamics

matrix is 3
Alky): = A—k, BC (6)

Since the eigenvalues of 4 move continuously with k, if A is in a region I" then there
exists a I€P such that 4 is in I" for all k,€[0, IQP) (i.e. all G(s) in I" are ‘ I'-proportional
controllable’). We will use the term radius of I'-proportional controllability to mean
the largest value of k, such that k, I,, I-assigns G(s) for all k, € [0, k,) and will denote
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it by k2%, The region to which £ refers will be clear from the context. Note that in
the single-input single-output case, if I'is the left half-plane and £ > 1, then k™2~ is
the gain margin of G(s).

This section is kept short because the derivation of the formulae for the radius of
I-proportional controllability (Propositions 4.1 (@) and 4.2 (a) below) is simpler than
that for the radius of I'-integral controllability. The simplification arises because A4(k)
in (6) is not block structured, in contrast to A(k,) in (1). Indeed, the formulae for the
radius of I'-proportional controllability could have been derived from the modification
of the results of Fu and Barmish (1988) to the region I

4.1. Proportional controllability in the left sector

Consider theleftsectordefinedin§3.1andlet4,(1 < i < n)betheeigenvaluesof A(k,,)
in (6). A critical proportional gain (for the left sector) is defined to be any finite real
value of k; such that e, +e7*4, = 0, for some p, g (1 < p, ¢ < n). In the following
proposition we give a formula for the radius of left-sector proportional controllability.
We also give formulae for all the critical proportional gains, for later use.

Proposition 4.1:  Let G(s) = C(sI— A)™ B be an n-state m x m system.
(@) If G(s) is in the left sector, then the radius of left-sector proportional
controllability is given by
[ —
P DWW (@)
where W(&) is the n® x n® matrix
W(e): = (€4 @ e *4) {(e"*BC @ e ¥*BC)
(b) All the critical proportional gains for the left sector are given by
A @A @ e 74, *BC®eBC)
Proof: For the proof see Appendix D. O

4.2.  Proportional controllability in the horizontal band

Consider the horizontal band defined in §3.2 and let 4, (1 <i<n) be the
eigenvalues of A(ky) in (6). A critical proportional gain (for the horizontal band) is
defined to be any finite real value of k;, such that A,— 4, = j2f, for some p, g (1 < p,
g < n). In the following proposition we give a formula for the radius of horizontal-
band proportional controllability. We also give formulae for all the critical
proportional gains, for later use.

Proposition 4.2:  Let G(s) = C(sI— A)™'B be an n-state m x m system.
(a) If G(s) is in the horizontal band, then the radius of horizontal-band proportional
controllability is given by
1

[max __
kpax

)
where X(f) is the n® x n® matrix

X(p):= (A+JpL,) ® (—A+jpL,)(BC @ —BC)
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(b) All the critical proportional gains for the horizontal band are given by
/’{real((A +J;Bln) ® (_ A4 +jﬁIn)> BC ('B - BC)
Proof: For the proof see Appendix E. O

5. Generalized PI controllability

In this section we extend the results on generalized integral and generalized
proportional controllability to PT controllers. A system G(s) in a region I’is said to be
I"-PI controllable if there exist positive gains k, and k, such that the PI controller
(kp+k,/s) I, I-assigns G(s) for all kpe[0, k,) and k;e(0,k,). We will use the term
maximal region of I'-PI controllability to mean the largest region enclosing the origin
in the positive quadrant of (k,, k) gain-space that contains only gain pairs that 7-
assign G(s). Where the region I is clear from the context, we will often refer to the
maximal region of I'-PI controllability as the maximal region.

Since all strictly proper systems in a region I"are ‘ I-proportional controllable’ (see
§4), it is immediate that a strictly proper system in I"is 7-PI controllable if and only
if it is I-integral controllable. This fact is the generalization to the region I" of the
corrected version of Lemma 10-4 of Lunze (1989).

Given an n-state m x m strictly proper system G(s) = C(s[—A) ' Bin I', which is I
PI controllable, the results of §§ 3 and 4 can be used to find the maximal region for G(s),
as shown below. First, note that the closed-loop dynamics matrix formed by the
negative unity feedback connection of the PI controller (k,+k;/s) I,, to G(s) is

A k) = [A—kPBC ky B]

—C 0

Tt is simple to show that A(k, k) is equal to the closed-loop dynamics matrix formed
by the negative unity feedback connection of the integral controller k, ,,/s to Gy(s),
where
Gp(8):= G(5) (I, +hp G(5)) " = CplsL, —Ap) B,
and
Ap:=A—k,BC, B,:=B, (C;:=C

In a similar way, A(k,, k;) is also equal to the closed-loop dynamics matrix formed by
the negative unity feedback connection of the proportional controller k; 1, to G(s),

where
GI(S) = G(S) (Im + kI G(S)/S)_ C (S n+m I)_IBI

A kB B
AI:=[_C B}, BI:=[O], Ci:=[C 0]

and

The results of §§3 and 4 can be applied to Gp(s) and G,(s) respectively to obtain the
maximal region for G(s) as shown in the following procedure.

Procedure 5.1:  Given a strictly proper system G(s) in I that is I'-PI controllable, the
maximal region can be found in the following way.

Step i. Use the results of §3 to plot the positive critical integral gains (for the region I')
of Go(s) for positive values of k.
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Figure 9. The maximal region (shaded) for the 45° left sector for Example 5.1.

Step ii. Use the results of §4 to plot the positive critical proportional gains (for the region
I) of G(s) for positive values of k.

The maximal region is the region formed by Steps (i) and (i) which encloses the origin.

O

Remark 5.1: When I'is a left sector, if —G(0) is in the left sector then the simplified
formulae in Proposition 3.2(c) can be used in Procedure 5.1(i) for all positive values of
kp except the positive critical proportional gains (for the left sector) of G(s). At these
values of k, (given in Proposition 4.1(b)), Proposition 3.2(b) can be used instead.
Similarly, for the horizontal band, the simplified formulae in Proposition 3.3(c) can be
applied for all positive values of &, except the positive critical proportional gains (for
the horizontal band) of G(s). At these values of k, (given in Proposition 4.2(b)),
Proposition 3.3 () can be used instead. O

The calculation of the maximal region is illustrated in the following example for the
left sector.

Example 5.1: Consider the single-input single-output system

2425+ 10

GO) = 515 19515

and suppose that we wish to find how far we can increase the proportional and integral
gains from zero whilst maintaining a damping factor greater than 1/4/2. In other
words, find the maximal region for the 45° left sector. The maximal region was
calculated using Procedure 5.1 and is shown in Fig. 9. |
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ky

Figure 10. The maximal regions for various damping factors for Example 5.2.

In some application areas it may be of interest to determine the manner in which
the size and shape of the maximal region vary with a parameter defining the stability
region I". In general, it is difficult to make precise statements about the shape of the
maximal region, as pointed out by Genesio and Tesi (1988). However, by using
Procedure 5.1, the maximal region can be plotted easily and exactly for representative
values of the parameter defining the stability region. The variation of the maximal
region with the damping factor for a particular system is illustrated in the following
example.

Example 5.2: Consider the five-state 3 x 3 system given in Example 3.2. The maximal
regions (for the left sector) for damping factors of { = sina = 0, 0-05, 0-1, 0-2, 0-5 for
this system were calculated using Procedure 5.1 and are shown in Fig. 10. O

An important issue in control system design is whether robustness against
perturbations can be guaranteed. When the region I is the left half-plane, strong
robustness results are available which are compatible with the approach taken in the
present paper. In particular, it is immediate from the 16 Plant Theorem (Barmish ez al.
1992) that the maximal region of left half-plane PI controllability for an interval plant
family is the intersection of the maximal regions for 16 particular extreme plants
known as the ‘Kharitonov plants’. The maximal region for the interval plant family
can therefore be easily calculated as the intersection of the maximal regions for the 0°
sector for each of the 16 Kharitonov plants. Each such region can be computed
directly using Procedure 5.1. See Mustafa (1994 d) for an example. When I"is a left-
sector, we conjecture that a similar result to the 16 Plant theorem holds too. That
would allow the maximal region of left-sector PI controllability for an interval plant
family to be found as the intersection of maximal regions for a subset of distinguished
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extreme plants. Again, each such region could be computed directly using Procedure
5.1. Proof of such a conjecture may well follow from extensions of strong Kharitonov-
type theorems for the left sector (Soh and Foo 1990, Foo and Soh 1989, Rantzer 1990).

6. Conclusions

A generalization of the concept of integral controllability to a left sector and to a
horizontal band has been presented. Conditions for left-sector integral controllability
were derived, generalizing those of Morari (1985), and it was shown that all systems
in a horizontal band are horizontal-band integral controllable. By using block
Kronecker algebra (Hyland and Collins 1989) to modify guardian maps (Saydy e al.
1990), closed eigenvalue formulae for the maximal low integral gain with respect to the
sector and the band were derived, generalizing and improving on the results of
Mustafa (1994a, 1994¢). Closed eigenvalue formulae for the maximal low pro-
portional gains for the sector and the band were also derived using similar techniques.
It was shown how to use these results to find all low PI controller gains that place the
closed-loop eigenvalues in the sector or the band (i.e. the maximal region in PI gain
space). The method involved plotting the positive critical integral and proportional
gains of certain auxiliary systems.

In the present paper attention has been focused on low positive gain controllers. Of
course there may also be other (higher or negative) gain regions for which the closed-
loop eigenvalues are in the desired region of the complex plane. As illustrated in
Examples 3.1 and 3.3 and in Fig. 4, the critical gains also give the boundaries of all
other gain regions for which the closed-loop eigenvalues are in the desired region of the
complex plane. Hence, all such gain regions can be calculated using the techniques
described here. See Mustafa (1994 d) for the case of single-input single-output systems
with the left half-plane as the desired region of the complex plane.
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Appendix A

Proof of Proposition 3.1: Recall the closed-loop dynamics matrix A(k;) given in (1).
It is well-known that the eigenvalues of A(k;) vary continuously with k; (see for
example, p. 540 of Horn and Johnson 1985). Since G(s) is in the left sector, the only
eigenvalues of 4(0) on the boundary of the left sector are those at the origin. So it is
enough to consider just the zero eigenvalues of A(0) and to ensure that they move into
the left sector for all sufficiently small positive &;.

A formula for the derivatives of a certain class of multiple eigenvalues (which
includes our case of interest) is given in the following lemma. The lemma is essentially
Theorem 7 of Lancaster (1964), but is presented as a simplification of Theorem 4.1 of
Sun (1990). Related results have also appeared in Kato (1966). Note that an eigenvalue
is said to be semi-simple if the dimension of its associated eigenspace (i.c. its geometric
multiplicity) is equal to its (algebraic) multiplicity (see for example, p. 41 of Kato
1966).
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Lemma A.1: Let peR andlet M(p) be an n x n matrix analytically dependent on p. Let

M), A(D), ..., A(p) be the ¥ < n eigenvalues of M(p) which coincide at X, when p = p,.

If A, is semi-simple then the derivatives of 2,(p), A(p), ..., 4,(p) at p =p, are the

eigenvalues of

L OM(p)

Y;——=
2 ap

2
=1,

where X = [X, X,] and Y = [Y, Y], with X, YeC™" and X,, Y,€ C*', are such that

o )

where Y*X = I and ), is not an eigenvalue of M.

Continuing the proof of Proposition 3.1, we note that

A0) = [—Ac 8]

Hence, using the notation of Lemma A.1 withp = k;, p, = 0, 4, = 0 and r = m, we can

choose
I, 0 «_ | In 0
x=| & L) me =l Im] AD

where 4 is invertible because G(s) is in the left sector by assumption. Itis clear that the
(multiple) eigenvalue of A(0) at the origin is semi-simple since the (2,2)-blocks of X
and Y in (A 1) are full rank. Applying Lemma A.1, the derivatives of the m zero
eigenvalues of 4(k,) at k; = 0 are the eigenvalues of

-1 0 B 0 _ -1 _
[CA™ I] [0 _ D] [Ln:l = CA™'B—D =—-G(0)
Hence, if the eigenvalues of —G(0) lie in the left sector, then the m eigenvalues of A(0)
at the origin move into the left sector for all sufficiently small positive k;. Furthermore,
if the m eigenvalues of 4(0) at the origin move into the left sector for all sufficiently
small positive k;, then the eigenvalues of — G(0) cannot be zero and must lic in the
closed left sector. In the case where m = 1, the conditions collapse to the single
condition G(0) > 0. O

Appendix B

Proof of Proposition 3.2: Recall the closed-loop dynamics matrix given in (1).
Suppressing the explicit dependence of 4 on k;, consider the function

v(k;) = det (¢4 @ e *A)

The eigenvalues of €4 @ e 7“4 are the pairwise sums of the eigenvalues of ¢4 and
¢ 4. Thus, v(k,) = 0 if and only if e"*4 @ e “4 is singular if and only if 4 has a pair
of eigenvalues 4, A, satisfying e +¢ 4, =0. In particular, if A4 has all its
eigenvalues in the closed left sector, v(k,) = 0 if and only if 4 @ e*4 is singular if
and only if 4 has at least one eigenvalue on the boundary of the left sector. Hence v(k;)
guards the (open) left sector in the sense of Saydy et al. (1990). It should be noted that
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the guardian map, v(k;), is similar to that given in Example 3.5 of Saydy et al. (1990),
but has the advantages that it retains the block structure of 4 and that it is real for
a = 0. It is the structure that will be exploited to obtain the formulae.

Since A4 has a pair eigenvalues satisfying ¢4, +¢ ¥4, = 0 if and only if v(k;) = 0,
the critical integral gains are the finite real solutions to v(k;) = 0. For the special case
in part (@) of the proposition, left-sector integral controllability of G(s) guarantees that
for all sufficiently small positive &, all the eigenvalues of A are in the (open) left sector.
Hence, by construction of the guardian map, as k; is increased, the first value for which
at least one closed-loop eigenvalue is on the boundary of the left sector (i.e. £2*%) is the
smallest positive real solution of v(k,) = 0 (or + oo if there are no finite positive real
solutions). The remainder of the proof involves showing that the finite real solutions
to v(k;) = 0 are given by the expressions in the proposition.

Firstly, note that A can be written as

_ A 0 0 —
2[4 0wt 7] @

Using (B 1) and some block Kronecker algebra, v(k,) can be written as

v(k;) = det (e’“" [_A c 8] De ™ [_fi C g] —k; (ej" [8 —DB} ®e™ [8 _DB]))

Hence, the finite real solutions to v(k;) = 0 (and therefore all the critical integral gains)
are the finite real generalized eigenvalues given in part (b) of the proposition. We now
turn to the proof of parts (a) and (¢).

Using the definition of the block Kronecker sum

A @ e’ 4 kI,®e B
~I,®e™C "4 @®(—keD)

k)=det | '
vle) =det | Leceor 0
0 e C®I,
ke"B® 1, 0
0 ke e"B® I
‘ A 'm B2
“(—kD)@e A4 kI, ®@ec*B B2
—I,®eC —k(e""D @ e D)

Since the assumptions of both parts (a) and (¢) guarantee that 4 @ ¢ "4 is non-
singular, we can apply the Schur formula for the determinant (see for example, p. 21
of Horn and Johnson 1985) to get

v(k,) = det (¢4 @ e"4)

e"4 @ (—k,e7"D) 0 ke"B® I,
x det 0 (—ke"D)D e 4 kI, ® e B
—e"CRI, —I,®e¢C —k,(e"D @ e D)
I, ®e*C
+k | CROI, | (*A@e™A)[I,®e™B e“B®I, 0] B3)
0

We now establish a Schur-type formula to simplify the second determinant in
(B 3).
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LemmaB.1: Let V,ZeR?? WeR™ XeR™? and Ye R If V and (Y— XV W)
are non-singular, then

det [V}Z V;] =det(V)det(Y—XV'W)

x det (I, +(V 14+ VWY — XV W) XV Z)

Proof: We begin by noting that if V' is non-singular

v wl| [V 0 I, VW
X v] |x y-xvwilo |

Hence, if (Y— XV 'W) is non-singular,

v owlt [, —VX v 0
X v| |0 I, || -(Y—XxV'W)7XxV (Y—-XVW)™
Now

ol ol el ST o

where use of the Schur formula gives

det [; V;] = det (V) det (Y—XVW) (B 5)

Also note that

(i ol 3T ol
_ det ([1p+(V—1+ V*IW(Y:XV‘IW)*lXV*)Z ;)])

q

= det (I, + (V" 4+ V WY - XV W)XV Z) (B 6)

where * is unimportant for the proof. The formula is then obtained by combining
(B 4), (B 5) and (B 6). [l

Returning to the proof of parts () and (¢) of Proposition 3.2, we simplify the
second determinant in (B 3) by choosing (in the notation of Lemma B 1)

- A ®1I, 0
Lo L,®e4
which is non-singular by assumption. This choice of ¥ gives (again in the notation of
Lemma B.1) Y- XV'W = —k, (¢"G(0) @ ¢*G(0)) which is non-singular for k; # 0
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by assumption. By inspection of (9), v(0) = 0 so k; = 0is always a critical integral gain.
For k; + 0, applying Lemma B.1 gives

v(ky) = (— k)™ flor) det (Ly,,, — ky NM)

where
Sy = det (4)*™ det (64 @ e A) det (6*G(0) ® e G(0))
and
eAQI 0
e ]
A_lB ® Im jor —je -1 -1 -1
4 2O s @e G0 Mea @ L, 1,® Ca]
_[L®e™D 0
M= [ 0 "D ® In]
_ In ® e—jacC ja —jo —1 —jo jo
[e“‘C@In](e A@ e A, ®e™B e“B®I,]

Since f{a) is non-zero by assumption and is independent of %, all the finite real
solutions to v(k,) = 0 are the finite real solutions to det (Z,,,, —k; NM) = 0 together
with zero. The finite real solutions to det(Z,,,,—k; NM) =0 are simply the finite
reciprocals of the real eigenvalues of NM. Part (¢) of the proposition follows by
multiplying out NM, collecting terms and simplifying using standard properties of
Kronecker algebra to show that NM = S(«). The radius of left-sector integral
controllability is the smallest positive real solution to det (Z,,,, —k; NM) = 0 (or + 00

if there are no finite positive real solutions). That is, & = 1/A%, (NM), and hence
part (a) of the proposition. O

Appendix C

Proof of Proposition 3.3: Using the expression for A given in (1), consider the
function
U(kl) = det ((A +jﬁln+m) @ (—A +jﬁ[n+m))

Each eigenvalue of (4 +jBL,,,.) ® (—A+jpL,...) is equal to the difference between a
pair of eigenvalues of 4 plus j2. Thus v(k) =0 if and only if (A+jBl,,,.) @D
(—A+jpL,,,,) is singular if and only if A has a pair of eigenvalues A, 4, satisfying
Ap— A, = 2. In particular, v(k;) guards the horizontal band and, in fact, is a block
structured version of the guardian map of the horizontal band given in Example 3.4 of
Saydy et al. (1990). Since the eigenvalues of the Kronecker and block Kronecker sums
are equal, the modification retains the guarding property whilst exposing the structure
of 4.

For parts (b) and (c) of the proposition, the critical integral gains are the finite real
solutions to v(k,;) = 0. For the special case in part (a), since all systems in the horizontal
band are horizontal-band integral controllable, it is immediate that 4 is in the
horizontal band for all sufficiently small k,. Thus (using a similar argument to that in
the proof of Proposition 3.2 in Appendix B) as k, is increased, the first value for which
atleast one closed-loop eigenvalue is on the boundary of the horizontal band (i.e. k%)
is the smallest positive real solution of v(k;) = 0 (or + oo if there are no finite positive
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real solutions). The remainder of the proof involves showing that the finite real
solutions to v(k;) = 0 are given by the expressions in the proposition.

By using the expression for 4 in (8) and some block Kronecker algebra, v(k;) can
be written as

A+ipl, 0 | =[—4+ipL 0 0 —B|=]0 B
k) = " L —
ey =i 000 Jo[ 1™ g elle ThlBle o
Hence the finite real solutions to v(k;) = 0 (and therefore all the critical integral gains)
are the finite generalized eigenvalues as given in part (b) of the proposition. We now
turn to the proof of parts (@) and (c).

Using the definition of the block Kronecker sum

(A+jBL,) ® (—A+ipL,) —k1,®B
_ L,®C (A+]pL,) @ (k; D+jpL,)
o(ky) = det el A
kBRI, 0
y 0 kB®I,
L,®C (—kiD+jplL,) @ (kD +ipL,)

Since (4 +jpI,) ® (— A +jpL,) is invertible under the assumptions of parts (@) and (c),
we can apply the Schur formula to get

v(ky) = det((4+3p1,) ® (—A+]pL,))ydet (L—k; M) (C1)
where
[ (4+]BI,) ®JpL, 0 0
(-1, @D 0 ~B®I,
M= 0 D®I, I,®B
\_ 0 0 D®(—D)
In ® C
+ | —COL | (A+iBL)® (—A+ipL) -1, B B®I, 01 (C2)
0

Note that (A+jpL)®ipL, = A4, ®1,, and similarly that jBI, ®(—A+jfl,) =
I,® A,, where A, and A, are defined in Proposition 3.3. The determinant of L
can therefore be written as

det (L) = (j28)™ det (4,)™ det (4,)"
Since 4, and 4, are non-singular by assumption, L is invertible. Thus
U(kl) :f(ﬂ) det (‘[2171,71~X-111,2 —kI L_IM)

where

fUB) = G2B)™ det (4™ det (4,)" det (4 +]BL,) ® (—A+ipL)
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and
A7'® 1, 0 0
L= 0 Im. ® A;l 0

(CATQLY/(28) —(UL, ® CATY/G2p) 1,2/ (2B)

The assumptions ensure that f{f) & 0, and hence all the finite real solutions to
v(k;) = 0 are the finite real solutions to det(/,,,, . 2»—k, L*M) =0 (i.e. the finite
reciprocals of the real eigenvalues of L™M). By collecting terms and simplifying using
properties of Kronecker algebra, the matrix inversion lemma (see for example, p. 19
of Horn and Johnson 1985) and the facts that G(j28) = D+ CA;'B and G(—j2f) =
D—CA;*B, it follows that L™*M = H(p), and hence part (c). For part (a), the radius
of horizontal-band integral controllability is the smallest positive real solution to
det (Zynome—ki L*M) =0 (or + oo if there are no finite positive real solutions).
Hence, k> = 1/A+ (L7M). O

max

Appendix D

Proof of Proposition 4.1: Recall the closed-loop dynamics matrix given in (6) and
consider the function
v(k,) = det (64 @ e7*4)

By similar arguments to those in the proof of Proposition 3.2 in Appendix B, for part
(b) we require all the finite real solutions to v(k;,) = 0 and for part (a) we require the
smallest positive real solution (or + co if there are no finite positive real solutions).
Part (b) follows by writing

v(ky) = det (6”4 @ ¢ "4 —k,(e"BC @ ¢ *BC))

The assumptions in part («) ensure that ¢4 @ e 4 is non-singular and hence part (a)
follows by rewriting v(k,) as

v(kp) = det (€4 @ e *A) det (I —k, W(z)) W

Appendix E
Proof of Proposition 4.2: Recall the closed-loop dynamics matrix given in (6) and
consider the function

v(ky) = det (4 +jBL,) ® (— A+ipL,)

By similar arguments to those in the proof of Proposition 3.3 in Appendix C, for part
(b) we require all the finite real solutions to v(k;,) = 0 and for part (a) we require the
smallest positive real solution (or + oo if there are no finite positive real solutions).
Part (b) follows by writing

v(kp) = det (4 +jpI,) ® (—A+jpl,)—ko(BC ®— BC))

The assumptions in part (a) ensure that (4 +jf1,) ® (— A +jBI) is non-singular and
hence part (a) follows by rewriting v(k,) as

v(ky) = det (4 +jpL,) @ (— A +jpL,)) det (I —k, X(B)) O
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