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Abstract 

It is demonstrated that non-central H, controllers can have advan- 
tages over the usual central 'H, controller. In particular, it is shown 
that non-central controllers can improve the quadratic performance 
of the closed loop. It is further shown how to characterize non-central 
controllers with lower order than the central controller. The analysis 
is made possible by a statespace representation of the free contraction 
based on the Bounded Real Riccati equation. 

1 Introduction 

For a given generalized plant G and '&-norm bound 7, it was shown 
in [l] that the set of all proper, real-rational, stabilizing controllers 
K eetisfyi i  llFi(G,K)!, < 7 is given by K = Fl(M,,Q). That 
IS, all feasible K's are gven by the lower linear fractional map of a 
k e d  transfer matrix M, (calculated from the plant data) and the 
&e amtmctwn Q which is an arbitrary stable, proper, real-rational 
transfer matrix satirfying llQllm < 7. To date, little work has been 
done on how best to  choose 8. Indeed the centmf 3.1, controller 
(Q = 0) is h o s t  iavariably chosen as a natural, simple choice that is 
$eo entropy " i c c i n g ,  [2]. It is the purpose of the present work to  
show that in fact t h  may be genuine reasons for using non-antml 

& controllers (Q # 0). 
Previoua work on the choice of Q has been hindered beeawe the 

absence of a closed formula for IlQllm made the constraint IlQllm < 
7 somewhat a w k d  to deal with in state space. We avoid that 
Wdt? bu exploiting. a recent statespace representation of the net of 
d perrmsslble Q's whch was developed in [3] for a Werent problem. 
The statespace matrices of Q are written in a useful unconstrained 
way which ie the key to completing the analyeis. 

Firstly we consider choosing Q to  reduce the LQG cost. We show 
that ordinarily nowxntral E ,  controllers with only one extra state 
can be chosen to  give rmder  LQG cost than the central H, con- 
troller. Thin is despite the fact that the central controller minimizes 
the closed-loop entropy which is known [2] to be a close upper bound 
on the LQG cont. Secondly, we investigate how Q cau be chosen to  
force state cancellations in the natural realization of K = Fi(A4,, Q), 
leading to  equations for reduced-order controllers. 

After submission of the present paper, the independent paper [4] 
appeared, which also usen the parameterization of [3] to study mixed 
LQGI'H, control. 

2 Preliminaries 

The setup, notation and basic assumptions are as in [l]. The gener- 
alized phut G is taken to be of the form 

Where A E R"'", B1 E W""1, Bz E RnX"'a, C1 E Wxn and Ca E 
WXn, and is G asoumed to satisfy the usual assumptions in [l]. Given 
a desired %,-norm bound 7 ,  the two associated H, Riccati equations 
are 

X,A + A ~ X ,  + x, ( ~ B ~ E :  - B ~ B : )  x, + cFcl = 0, (1) 

Y,A= + AY, + Y, (7-2cfc, - czc2) Y, + B ~ B ~  = 0. ( 2 )  
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In [l] it is shown that there d t s  a stabilizing eontroller K such that 
llF~(G,~K)[l, < 7 if and only if (1) and (2) have paitive semi-definite 
stabilizing solutions satisfying p(X,Y,) < y', where pis the spectral 
radius. If these conditions are satMed, the set of all such controllers 
is given by K = Tl(M,,Q), where Q E 1211, and llQlloo < 7, and 

Ordinarily Q is set to zero but we wish to explore the effect of nonzero 
strictly proper Q. To represent the set of all possible strictly proper 
0's by unconstrained parameters consider 

q := {Q(a) : llQ(a)lloo < 7 ,  Q(8) stable, real rational, strictly 

proper, of dimension ma x and of McMillan degree 5 no) 

and 

In [3] it is shown that Q-t = by manipulating the Bounded R d  
Riccati equation. Hence in the sequel instead of the trmnfer function 
characterization Q E Q-t we use the explicit rtatespece characteriza- 
tion Q E Q.,. 

3 LQG performance 

As H, control theory hae matured, mixed objective problems have 
received inUeaeiag attention. The particular problem of m m  
the LQG cost subject to  an &-norm bound has not yet been eolved 
(some necessary conditions am given in [5]) but solutions to  related 
problems have appeared in [6,2,7,8,9]. 

It is not our aim to solve any particular optimal problem here but 
rather we wish to  point out that Q = 0 doen not necessarily minimize 
the LQG cost subject to the &-norm bound, even though Q = 0 
minimizes the closely d a t e d  entropy [2]. To rubstantiate that claim, 
consider the case whem the controller is SE0 (Le., ma = pz = 1). 
Let Q have one state, that is Q(s) = Ql(9 = bqc,/(s - ap), and let J 
be the usual LQG cont, J := llFi(Gy K)llp Firetly we will show that 
with b, = aand cq = me, J can be written aa 

where Jo is the central LQG wt. We will then show that in general 
J2(m) can be made negative by ruitable choice of m, giving J < JO 
for smdl enough c Thnr the LQG cost can be improved using the 
one extra rtate in Q. 

Letting bq = c md e, = me m d  defininlt a = (mz + 7 - l ) / 2 ,  the 
natural realization of the cloned loop, F(s) = Fi(G,Ti(M,,Q1)), is 

.-.., - .  
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where 3 0 ;  

28- ; 

" ...__ .'...._... ., '.''.'...... ................................. 

12 - 

G = [ cl D& 1 ,  6 2  = [ c2 dl 1 .  
With:ipiraticn from [lo], apply the block-diagonalizing transforma- 

tion[. I !Y < ] w h e r e  

This givea 

F(s) = 1 - 1  
where 

e = [ 4 4) 
cl := C l +  (ClY - m D & Z / ( l -  ZY) 

Ca := -(C,Y - mDlt) / ( l -  zY). 

It M easy to verify by substitution into (4) and (5) that 

Y = mu0 + Z Y ~  + 0(c4), 
, 

z = 222 + O ( 4 ,  

where YO and 2 2  ue independent of m, and hence that 

T h d O R . ,  

where 
Pia are all independent of m, and 

is the controhbiity gramian of (A,B1). In (7), P, P2, and 

The LQG cost of F(s)  can be calculated by J = trace(C'PCT), and 
hence, after nome straightforward algebra, 

J = JO + c2J2(m) + ~(i), 

Figure 1: Variation of the LQG cost for the central (dotted) and 
one-state Q (solid) controllers with 7 for the numerical example. 

and are both independent of m. As Iml + M the term in brackets 
in (8) tends to p2. Thus provided z # 0, J2(.m) in (8) can be made 
negative by choosing m large enough with slgn opposite to that of 
2. This makea the LQG cost smaller than the central cost for small 
enough c. 

The above analysis ie illustrated with a simple example. Consider 
the plant 

-1.6452 - 1.034468' - 0.040758 

= d4 + 1.0603S3 - 1.11548' - 0.05658 - 0.0512' 

taken from [ll], and the Normalized ?i= Control Problem for g(u) 
(nee [2, Chapter 71 for details), for which 

The above analysis implies that for all 7 larger than the ?&+,-optimal, 
the LQG eoet can be reduced by adding an extra state in the con- 
troller. So for various values of 7 the minimum LQG cost over ad- 
missable one-state Q was calculated via a combmation of grid and 
gradient searchea. (This optimization is not convex in the parame- 
ters b, and E,.) The results are plotted in Figure 1 and show that 
improvements of over 15% can be achieved for the price of an extra 
state in the controller. 

4 Reduced-order controllers 

fi(Moo,Q) is 

It is easy to show that the natural realization for the controller K = 

A reduced-order controller of order (at most) n~ < n can be obtained 
if ng, AQ, BQ and CQ can be found to make n + nq - nK states of 
K nonminimal, whilst satisfying llQ(8)llm < 7.  The procedure is 
outlined below. For a different approach to  a similar problem see 

lq ] to the r&a- 

[121. 

Firstly apply the state transformation [ 
tion of K in (9), where Tie to  be found. Then 

644 

n 
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If Aq, Bo, CQ m d  T c h w  s ~ c h  that 

then we have 

We now obrslve that 

which ir stable beccwe, by atsumption, (1) has a sta!iiaqaeolntion. 

Heace the (L uncontrollable modes associated with A - BiCa in (12) 
M Q stable and can be cancelled leaving 

Since AK = -BX(&T) it f a  that (AK, BK) is uncontrollable 
if and only $AQ,&) U uncontrollable. So it L pointless to try to  
further reduw the order of K by forcing (AK, BK) to be uncontd- 
loble aa that would implr introduce uncontrollpble states in Q. The 
next step ir therefore to  mrlre (AK,CK) uuobmvable. 

d e  u n o W l e .  Partition AQ aa 
a t h e  h Ax let a( = - nx bs the n u m k  to  be 

It we aet 

then (i A K ~  ie stable) we can remove the ne unobservable modes 
d t e d  with AK,,, lerving 

which h u  the desired number of states (LK (although, of course., some 
may be nonminimal). 

The udyS lo& hu uoed well-established statecancellation tech- 
niquea and at fint glance further progress appeam to be hampered 
by the condition llgljoo < y. hr ther  mdynis ia made pwible by re-- 
placing the transfm fanetiw comtrdnt llQ1lw < y by the equivalent 
but consttu&ve atrtespaw constraint Q E from (3). Then BQ 
aad CQ become fme psrurretsn and 

where A* ie an arbitrary n~ x t a ~  ~kew symmetric matrix. 
We can now rewrite the aondibbm (lo), (ll), (15) m d  (16) to give 

the following characterization of the reduced-des controller in (17): 
The nK state redud-order controller in (17) b obtained by finding 
Bol E R"xXn, BQ, E R"exn, CQ, E R"?'"", TI E R" xnX, Ta E 

at- 
R"T"t,. Adal = E R''KX"x and A,,, = -AT,, E R"txnt 

0 = +TIBQ, + TI&, (18) 

( A  - &I(%) TI = &CQ, +Ti (A,kIl - h B & / ( 2 ? )  - G,Cq1/2) 

-Z (Bu&,/? -e ('%?E;, +e%)) (19) 

( A  - a C l )  T~ = -4 (Bc),Q + 6 4 4 / 2 )  T~ 

+% @er, - BQai%,/(2?)) (20) 

(21) ( ~ . r ,  - B~.Bz,/(~?) - c&cQ,/~ - BQ,QT~) U &able 

and then setting 

Ad,, BQ,B&/(~?) t (c&&2 + Ta (22) 

CQ, = 6iTa (23) 

Equation8 (18), (22) and (23) ate Simply a q u a h m  (lo), (15) aad 
(16) with the parameterization of Q E and the partitioning of (13). 
Equatione (19) and (20) can be derived from a partitioning of (11) 
wing substitution8 from equadons (U) ,  (!B) and (23) and equation 
(21) L the requiremat that AK,, be stable. The wt of q ~ a t i ~ ~  in 
(18)-(23) io a ret of design equatione that characterizes reduced-order 
'H, controllem The parameten A,&, Bq and Cq enter in an uncon- 
strained manner. Issues relating t o  the existence and computation of 
solution8 to  the equations are currently undm inmitigation. 

References 

[l] I. C. Doyle, K. Glover, P. P. Wa&pmhr, and B. A. Ran&, "!%at+ 
space rolutiow to &updud U# md U, control probla," ZEEE 
IRowadionr 011 Awtomatic Control, vol. U, no. 8, pp. 831447,1989. 

[a] D. Murkl.  and K. Gbvar, Yirinrm DJrom 71, Control, vol. 146 of 
Lccirts Ndu ia Conttvl .*d Information ScieMu. S&er Verlag, 
1990. 

[3] M. Steinbuch and 0. -a, "Roburt performance in '?fr/Wm o p t w  
control," in Proccdingr of ihc 30th IEEE Confinace on Dcchion n d  
Control, (Brighton, Endand), pp. Mg.1160, Dec. 1BB1. 

Moor, Wr controller d&p with an 'Hm bounded 
controller," in Procccdingr of f e  American Confrol Conference, (San 

[SI D. Ridgdy, L. Valavani, M. Dahleh, and G. Skin, "sdution to the 
genera m i d  l i 2 / l i m  control problem - Nsoauy conditions for opti- 
mality," in Pmeedingr of I c  American Control Conference, (Chicago, 

[SI D. Bemakin and W. Haddad, "LQG control with an 'Hm performance 
bound A Riccati equation approach," ZEEE ItOnaadiona on Arto- 
matic Contml, vol. 34, pp. 293-306, M u .  1989. 

'Xm- 
constraint: The state feedback caoe," Aatornatica, vol. 27, pp. 307-316, 
Mar. 1991. 

output ay-," ZEEE IRomadiona on Automatic Control, vol. 36, 

[9] C. F o b  and A. Frazbo, "Commutant lifting and 6h1Jbn8ow Woo and 
La suboptimization," SIAM Joamal on Mathematical Analyeis, vol. 23, 
pp. 964-994, July 1992. 

(101 M. Q u e d  and Z. Gajic, "A new vemion of the Chmg transform," 
IEEE lh~nractiow on Artomaiic Control, vol. 37, pp. 800-801, lune 
1992. 

[ll] S. Bhsttacharyya, L. Ked, and J .  Hoaxe, UStabiilirabbility conditions 
wing linear programming," IEEE lhwactionr on Artomaiic Control, 
vol. 33, pp. 480463, May 1988. 

(12) K.-C. Goh and M. Safonw, ~ n n e c t i o n  bet" plant "a and li ,  
controller order reduction," in Proccedinp of tAe Amniorn Control 
Con&", (San Raneko, CA, USA), pp. 2176-2179, luna 1993. 

[4] J. David and B. 

I+=-, CA, USA), pp. yam, JUG ism. 

n, USA.), pp. 1 ~ 1 3 6 2 ,  J U ~ S  1~92 .  

[A M. RotCS and P. Khegoneku, '7hptim.l control with 

[e] P. Dorato and Y. Li, "U-parsmeter dc&~ adrobust ingle-input 

pp. 971-876, Au~. 1BB1. 

Authorized licensed use limited to: McMaster University. Downloaded on August 16,2010 at 19:28:09 UTC from IEEE Xplore.  Restrictions apply. 


