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Abstract

It is demonstrated that non-central Ho, controllers can have advan-
tages over the usual central Ho controller. In particular, it is shown
that non-central controllers can improve the quadratic performance
of the closed loop. It is further shown how to characterize non-central
controllers with lower order than the central controller. The analysis
is made possible by a state-space representation of the free contraction
based on the Bounded Real Riccati equation.

1 Introduction

For a given generalized plant G and Hoo-norm bound v, it was shown
in [1] that the set of all proper, real-rational, stabilizing controllers
K satisfying || Fi(G, K)llo < 7 i8 given by K = Fi(M,@Q). That
is, all feasible X’s are given by the lower linear fractional map of a
fixed transfer matrix Mo, (calculated from the plant data) and the
free contraction Q which is an arbitrary stable, proper, real-rational
transfer matrix satisfying ||Q|lc < 7. To date, little work has been
done on how best to choose Q. Indeed the central H,, controller
(@ = 0) is almost invariably chosen as a natural, simple choice that is
also entropy minimizing, [2]. It is the purpase of the present work to
show that in fact there may be genuine reasons for using non-central
Moo controllers (@ # 0).

Previous work on the choice of Q has been hindered because the
absence of a closed formula for [|Qf|co made the constraint {{Qfle <
7 somewhat awkward to deal with in state space. We avoid that
difficulty by exploiting a recent state-space representation of the set of
all permissible Q’s which was developed in [3] for a different problem.
The state-space matrices of Q are written in a useful unconstrained
way which is the key to completing the analysis.

Firstly we consider choosing @ to reduce the LQG cost. We show
that ordinarily non-central ., controllers with only one extra state
can be chosen to give smaller LQG cost than the central Ho, con-
troller. This is despite the fact that the central controller minimizes
the closed-loop entropy which is known [2] to be a close upper bound
on the LQG cost. Secondly, we investigate how Q can be chosen to
force state cancellations in the natural realization of K = Fi( Mo, @),
leading to equations for reduced-order controllers.

After submission of the present paper, the independent paper [4]
appeared, which also uses the parameterization of [3] to study mixed
LQG/H, control.

2 Preliminaries

The setup, notation and basic assumptions are as in [1]. The gener-
alized plant G is taken to be of the form

Al B B
G = C1 0 Du 'Y
Ca|Dn O

where A € R***, B; € R™*™ B; € R**™2, C; € RP*" and C3 €
RP*X" and is G assumed to satisfy the usual assumptions in [1}. Given
a desired Mo-norm bound 7, the two associated Ho, Riccati equations
are

Xooh+ AT Xeo + Xeo (172 B1B - BaBY) Xoo + CTCy = 0, (1)
Yoo AT + A¥os + Yoo (Y2CTC1 ~ €] Cs) Yoo + BB = 0. (2)
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In (1] it is shown that there exists a stabilizing controller K such that
IF(G, K)||oo < 7 if and only if (1) and (2) have positive semi-definite
stabilizing solutions satisfying p(XooYeo) < 72, where p is the spectral
radius. If these conditions are satisfied, the set of all such controllers
is given by K = Fi(Ms, Q), where Q@ € RHo, and ||Q[leo < 7, and

Aw = A+ (v'ByB] - BB] ) Xoo = ZooYeuCF Ci,
o = (I =7 Yo Xoo) ™1

Ordinarily Q is set to zero but we wish to explore the effect of nonzero
strictly proper Q. To represent the set of all possible strictly proper
Q’s by unconstrained parameters consider

Q5 := {Q(8) : |Q(s)llee < 7, Q(8) stable, real rational, strictly
proper, of dimension m; X p; and of McMillan degree < ng}

and
Q, = {Colsl - Aq)™ B : Bq € R"¥*™, Cq € R™*",
Ag = Ay + Aw, Ay = —AT, € RO,
. = ~BgB}/(24%) - C§Cq/2}. ®

In [3) it is shown that Q5 = @, by manipulating the Bounded Real
Riccati equation. Hence in the sequel instead of the transfer function
characterization Q € Q) we use the explicit state-space characteriza-
tion Q € Q,.

3 LQG performance

As Ho control theory has matured, mixed objective problems have
received increasing attention. The particular problem of minimizing
the LQG cost subject to an H,-norm bound has not yet been solved
(some necessary conditions are given in [5]) but solutions to related
problems have appeared in {6, 2, 7, 8, 9.

It is not our aim to solve any particular optimal problem here but
rather we wish to point out that Q = 0 does not necessarily minimize
the LQG cost subject to the Hoo-norm bound, even though Q@ = 0
minimizes the closely related entropy [2]. To substantiate that claim,
consider the case where the controller is SISO (i.e., my = p2 = 1).
Let Q have one state, that is Q(s) = Qi(s) = byc,/(s~a,), and let J
be the usual LQG cost, J := [}Fi(G, K)||. Firstly we will show that
with b, = € and ¢, = me, J can be written as

J = Jo+ EJy(m) + O(e*),

where Jp is the central LQG cost. We will then show that in general
Ja(m) can be made negative by suitable choice of m, giving J < Jo
for small enough ¢. Thus the LQG cost can be improved using the
one extra state in Q.

Letting b, = ¢ and ¢; = me and defining a = (m? + 773)/2, the
natural realization of the closed loop, F(s) = Fi(G, Fi( Mo, @1)), is
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where

_| 4 B _| B _| B

e[t 2] me 8] e (2]
C'x=[01 Dnél]- é2=[02 éz]-

With inspiration from [10}, apply the block-diagonalizing transforma-

. I €&

tion [ 7z where

AY + @aY +YCY - mB, = 0, 4)

ZA+EaZ ~mZByZ + 6, = 0. (5)
This gives

A|B
ro-[5fs] ©
where
i= Ay 0] _[A+éY8 0
Tl 0 An|T (] mZB,; - éa

= | 2B+ eDn

It
r—
gngl

. [ 1-31_+ €2Y Dy ]

Ot
|

-[e @)
€, = G +(C,Y — mDy3)Z/(1 - ZY)
Cz = —(ély - mDu)/(l - ZY).
It is easy to verify by substitution into (4) and (5) that
Y = mYo + €Y; + O(e*),
Z = €23+ O(*),
where Yy and Z; are independent of m, and hence that
(1-2Y)™ = 1+ EmZ,Yo + O(e*).
Therefore,
ju = Ai + Eszoéz + a(t"),
jn = e’(mZzéz - ¢I) + O(G‘),
By = By + €mY, Dy + O(¢*),
By = €(Z:81 + Da) + O(¢*),
cl = 6-'1 + ezm(éﬂ'o - D12)22 + 0(5‘),
€z = m(Drz — C1Yo) + E(m¥(Dya — C1Yo)ZaYs — CrYa) + O(),

Using these it can be verified that the controllability gramian, P, of
F(s) in (6) is of the form

s PO mP; P
P'[o o]*"[ PL P;:]+O(€‘), (7

where P is the controllability gramian of (4, By). In (7), P, P;, and
Py3 are all independent of m, and

Py = &1t Du)ZaBy + Du)T
m? — 2mZyB; + 7" ’

The LQG cost of F(s) can be calculated by J = trace (CPCT), and
hence, after some straightforward algebra,

J=Jo+ Gzlz(m) + 0(“)1
2132
sm=met (i) ©

The constants z and B in (8) are defined by

where

z = trwe((:“Pgéf) + 2trace (é1(PZg| - P'Lz)(élyo - Dn)T)
g = [(Dn - CYo)(ZBy + Dm)]T [(Du - GYo)(Z: 5 + Dzl)]

LQG cost

4 5 [] 7 8
gamma

Figure 1: Variation of the LQG cost for the central (dotted) and
one-state @ (solid) controllers with v for the numerical example.

and are both independent of m. As |m] — oo the term in brackets
in (8) tends to #2. Thus provided z # 0, Ja(m) in (8) can be made
negative by choosing m large enough with sign opposite to that of
z. This makes the LQG cost smaller than the central cost for small
enough ¢, .

The above analysis is illustrated with a simple example. Consider
the plant

(o) = ~1.6455% — 1.034464% — 0.04075s
98 = 1 1.06035° — 1.115487 — 0.0565a — 0.0512°

taken from [11], and the Normalized %, Control Problem for g(s)
(see {2, Chapter 7] for details), for which

G=[[3 o] [i]] s 76,10 =

[s 1] (9]

The above analysis implies that for all + larger than the H-optimal,

the LQG cost can be reduced by adding an extra state in the con-
troller. So for various values of 4 the minimum LQG cost over ad-
missable one-state Q was calculated via a combination of grid and
gradient searches. (This optimization is not convex in the parame-
ters by and ¢,.) The results are plotted in Figure 1 and show that
improvements of over 15% can be achieved for the price of an extra
state in the controller.

g gK
-gK 1-gK
9K K
1-9gK 1-gK

—

4 Reduced-order controllers

It is easy to show that the natural realization for the controller K =
Fi(Mw, Q) is

(&)

A reduced-order controller of order (at most) nx < n can be obtained
if ng, Aq, Bq and Cg can be found to make n + ng — nk states of
K nonminimal, whilst satisfying ||@(s)llo < 7. The procedure is
outlined below. For a different approach to a similar problem see
[12].

I, T
0 I,
tion of K in (9), where T is to be found. Then

Firstly apply the state transformation [ ] to the realiza-

BgCs Ag — BaCaT Bg
[ Cq-CT I 0

[ A+TBqC; B;Cq+TAq~ AT -TBQG,T | By +TBq ]
K=
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If Aq, Bg, Cq and T are chosen such that

B +TBg =0, (10)
TAq - (A— BiCa)T + BsCq = 0, (11)
then we have
I’ A-ByC, 0 t 0
K=|_BqC, Aq—BgCyT ECL] . (12)
'. [o2 Cq - &T I 0

‘We now observe that
A- 56 = A+ (v7B,B] - B,B]) X,

which is stable because, by assumption, (1) has a ata}:ilizi.ng.solution.
Hence the n uncontrollable modes associated with A — B,C; in (12)
are all stable and can be cancelled leaving

K=[Aa—Ba¢:TIBg1=.[Ax|Bx1
[ Co-CT |0 ] |Cx[0 |

Since Ax = —BK(C',T) it follows that (Ax, Bx) is uncontrollable
if and only if (Ag, Bg) is uncontrollable. So it is pointless to try to
further reduce the order of X by forcing (Ax, Bx) to be uncontrol-
lable as that would simply introduce uncontrollable states in Q. The
next step is therefore to make (Ax, Cx) unobservable,

Of the nq states in Ax let ng = nq — nx be the number to be
made unobservable. Partition Ag as

on[ 2] o
where € R*X*"x and Aq,, € R™*™¢, and partition Bg, Cq and
T compatibly as

bo=[20]. o= [0a o] 7=[n B]. @0

Similarly,

_[Axe Axa ] _[Aes 4an |_[ B g
o g B ol B S LICR I

Bx = g::].cx’-'[ch Cx, |=[Co-CiTy Co,-CiTa ]
H we set

Axy, = Agy, - Bg,CaTy = 0, - (15)
Cxy,=Cq-CiT3 =0, (16)

then (if Ay, is stable) we can remove the n¢ unobservable modes
associated with Ax,, leaving

|

which has the desired number of states nx (although, of course, some
may be nonminimal).

The analysis so fir has used well-established state-cancellation tech-
niques and at first glance further progress appears to be hampered
by the condition ||Q||cc < 7. Further analysis is made possible by re-
placing the transfer function constraint ||Ql|ec < 7 by the equivalent
but constructive atate-space constraint Q € @, from (3). Then Bg
and Cg become free parameters and

5 %]

[ _M;p At

- B, CiTi | B ]’ an

Co, - CiTh 0

Ag

A‘h’ Ay

1 [ Bg,BY

~3y3 | Bq,B%, Bq,By,

Bq, B}, ]_1[6’%. CTCQ:]
2 CQQCQI anI ’

where A, is an arbitrary ng X ng skew symmetric matrix.

We can now rewrite the condibions (10), (11), (15) and (16) to give
the following characterization of the reduced-order controller in (17):
The nx state reduced-order controller in (17) is obtained by finding
Bg, € R°X*P2, By, € R™*P, Cg, € R™ "X, T) € RV, T; €

RPXRe, Ay, = —AL € RPX*E and Ay, = —Af, € R
satisfying

0 = By +TiBq, +TaBg, . (18)

(A-B16:) T = BiCoy +Ti (Ausy, - Ba, B, /(21) - C§,Ca./2)
~T, (B, B3, /7 - 17 (B3, +€{Ca.))  (19)

(4- B:G) T = T (BasCa+ 17762 T
+T; (Ankz, = Bou B, /(27")) (20)
(Astn ~ Ba, B3, /(2) ~ C§,Cau/2 - Bo,CiTs) instable  (21)
and then setting

Aw, = Bo, 85,/ + (C§.C/2+ Bo,Ca) Tn (22)
Cq, = O1Ty (23)

Equations (18), (22) and (23) are simply equations (10), (15) and
(16) with the parameterization of @ € Q, and the partitioning of (13).
Equations (19) and (20) can be derived from a partitioning of (11)
using substitutions from equations {18}, (22) and (23) and equation
(21) is the requirement that Ax,, be stable. The set of equations in
(18)(23) is a set of design equations that characterizes reduced-order
‘Hoo controllers. The parameters A,x, Bq and Cg enter in an uncon-
strained manner. Issues relating to the existence and computation of
solutions to the equations are currently under investigation.
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