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ABSTRACT

We propose a list-based soft demodulator for MIMO systems
that generates the soft information by solving a single semidefinite
program (SDP). The computational cost of solving this SDP is guar-
anteed to be a (low-order) polynomial in the problem size, whereas
existing list-based demodulators that employ sphere decoding prin-
ciples do not have such a guarantee. The proposed demodulator
also has a computational advantage over an existing semidefinite-
relaxation-based soft demodulator that requires the solution of sev-
eral SDPs. Our simulation results suggest that these computational
advantages are achieved without incurring a significant degradation
in performance.

1. INTRODUCTION

The provision of multiple antennas at both the transmitter and re-
ceiver of a wireless communication system offers the potential for re-
liable communication at data rates substantially higher than those of
single antenna systems [1]. One of the core challenges in the design
of such multiple-input multiple-output (MIMO) systems is to obtain
good performance at high data rates without incurring unreasonable
computational cost. A standard architecture for doing so consists
of an outer binary code and a MIMO modulator at the transmitter,
and an iterative “soft” demodulation and decoding (IDD) scheme
at the receiver; e.g., [2], see also Fig. 1. The IDD scheme iteratively
passes estimates of the likelihood of each bit in the message between
a “soft” MIMO demodulator and a soft-input soft-output decoder for
the outer binary code. Although the IDD scheme has many desir-
able features, as the number of bits transmitted per channel use in-
creases the complexity of soft demodulation increases exponentially,
and hence there has been considerable interest in the development of
reduced-complexity soft MIMO demodulation schemes; e.g., [2–9].

There are two basic approaches to reduced-complexity (joint)
soft demodulation of the vector of transmitted bits. The first involves
the use of the so-called max-log approximation to approximate the
log-likelihood ratio of each bit by the difference between the op-
timal values of a pair of “hard” demodulation problems. Existing
“hard” demodulation algorithms, such as sphere decoding [10] and
semidefinite relaxation [11], can then be applied; c.f. [7, 8] and [9],
respectively. The second approach to reduced-complexity soft de-
modulation is based on the idea of list decoding, in which the like-
lihood of each bit is approximated by partial marginalization over
a list of dominant bit-vectors, rather than complete marginalization
over the list of all possible vectors. Most of the existing schemes for
constructing the list of dominant bit-vectors are based on the appli-
cation of the principles of “hard” sphere decoding [2, 5], and related
tree search algorithms [3, 6].

For moderate problem sizes and at moderate-to-high SNRs, the
average computational cost of the sphere decoding and tree search
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Fig. 1. MIMO BICM-IDD transceiver.

algorithms used in list demodulation is quite reasonable [12]. How-
ever, both the average and worst-case complexities remain exponen-
tial in the problem size [13], and the “tail” of the computational com-
plexity distribution can be quite significant at low SNRs or for large
problem sizes; e.g., [14]. For hard demodulation problems, an alter-
native to sphere decoding and other tree search methods is to employ
semidefinite relaxation (SDR); e.g., [11]. SDR generates a hard de-
cision that is guaranteed to be “close” to the optimal hard decision in
an appropriate sense, yet its worst-case computational cost is only a
(low-order) polynomial of the problem size, namely O(n3.5). SDR
techniques have been successfully applied to the first approach to
soft demodulation [9], but to the best of our knowledge they have
not been applied to list-based techniques. In this paper we will ex-
ploit the randomization procedure inherent in SDR to construct an
effective list for the list-based technique. Since only one semidefi-
nite program needs to be solved, the (polynomial) worst-case com-
plexity of our approach is an order lower than that of the SDR-based
hard demodulation approach in [9], and our simulation results show
that the performance of our approach is quite close to that of [9].

For simplicity, in this paper we will focus attention on schemes
based on V-BLAST transmission [15] of QPSK symbols, but ex-
tensions to general linear dispersion coded schemes follow directly
from [16], and extensions to 16-QAM and higher-order constella-
tions follow directly from recent extensions [17, 18] of the SDR ap-
proach to hard demodulation. Although we will focus on MIMO
systems, iterative multiuser detection and decoding schemes [19] for
narrowband (synchronous) CDMA systems can also take advantage
of the proposed demodulator.
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2. SYSTEM MODEL

We consider a narrow-band MIMO transmission scheme with Nt

transmit antennas and Nr ≥ Nt receive antennas. Using a V-
BLAST transmission scheme [15] with QPSK symbols, the mod-
ulator maps blocks b of 2Nt bits from the encoded and interleaved
bit stream to a symbol vector s, each element of which is transmitted
from a different antenna. The received signal y can be written as

y = Hs + v = HM(b) + v, (1)

where H is the Nr×Nt matrix of channel gains and is assumed to be
known at the receiver, v is a vector of additive white circular com-
plex Gaussian noise samples with variance σ2 per real dimension,
and the M(·) denotes the mapping of b to s.

A pragmatic choice for a coded MIMO transmission scheme
is the MIMO bit interleaved coded modulation scheme (BICM,
e.g., [20]) with a “soft” iterative demodulation and decoding (IDD)
shown in Fig. 1, and we will develop our soft demodulator within
this framework.1 Since the outer code is binary, the soft output from
the demodulator can be in the form of the log-likelihood ratio

Li � L(bi|y,H) = log
p(bi = +1|y,H)

p(bi = −1|y,H)

= log
ΣLi,+1p(y|b,H)p(b)

ΣLi,−1p(y|b,H)p(b)
, i = 1, . . . , 2Nt, (2)

where L = {b ∈ {−1, +1}2Nt} denotes the (complete) list of
bit-vectors, Li,+1 = {b ∈ L|bi = +1} and Li,−1 is defined anal-
ogously. (In this paper we will use the antipodal representation of
the bits, bi.) By capturing the a priori soft information on the ele-
ments of b in a vector λ whose elements are λi = log p(bi=+1)

p(bi=−1)
, the

log-likelihood ratio can be rewritten as [2]

Li = log
ΣLi,+1 exp(−D(b)/(2σ2))

ΣLi,−1 exp(−D(b)/(2σ2))
, (3)

where
D(b) � ‖y − HM(b)‖2

2 − σ2λT b. (4)

It can be seen from (2) that as the number of antennas increases,
the size of lists Li,±1 increases exponentially, and hence the compu-
tational complexity of the demodulator increases exponentially. A
common step in the development of reduced complexity soft demod-
ulation is to keep only the dominant summand in each summation in
(3). That is:

Li � log

max
b∈Li,+1

exp(−D(b)/(2σ2))

max
b∈Li,−1

exp(−D(b)/(2σ2))

=
1

2σ2

(
min

b∈Li,−1
D(b) − min

b∈Li,+1
D(b)

)
. (5)

This is often referred to as the max-log approximation of (3), [2].
Despite this approximation, the cost of computing (5) still grows
exponentially in Nt because it requires the solution of two binary
quadratic optimization problems. However, this approximation re-
veals two general classes of approximate soft demodulators:

1In CDMA systems, each user has a separate outer code and the receiver
may implement joint decoding or separate decoding of each user.

1. Direct application of “hard” demodulation techniques: The
right hand side of (5) consists of two “hard” demodulation
problems of size (2Nt−1). While such problems remain dif-
ficult to solve in the general case, the class of sphere decoding
algorithms has desirable average complexity properties under
a variety of practical conditions [12], and several authors have
proposed the adoption of such schemes; e.g., [7, 8]. Unfor-
tunately, the average computational cost of such approaches
remains exponential in the problem size [13]. An alternative
approach [9] is to approximate the solution to the optimiza-
tion problems in (5) using the semidefinite relaxation tech-
nique [21, 22]; see also [11, 23]. While that approach is ap-
proximate, the quality of the approximation is guaranteed to
be good and the (worst-case) computational cost is a (low-
order) polynomial of the number of bits to be detected.

2. List decoding techniques: These techniques are based on the
(efficient) identification of a sub-list, L̂, of L that contains
bit-vectors with small values of D(b). The expression in (5)
is then approximated by replacing Li,±1 by L̂i,±1 and solv-
ing the resulting optimization problems by enumeration.2 The
computational cost of this approach is dependent on the effi-
ciency of the list generation, and the cardinality of L̂.

Most of the existing list generation techniques for the second
class of methods are based on tree-search ideas reminiscent of sphere
decoding; e.g., [3]. However, the computational costs of these meth-
ods grow rapidly with problem size, especially at low SNR. The pur-
pose of this paper is to develop a list-based demodulator that has a
(worst-case) computational cost that is a (low-order) polynomial of
the number of bits to be detected. The key step in our development
is to exploit the randomization step in the semidefinite relaxation ap-
proach for “hard” demodulation. Before we describe the proposed
method, we will provide an overview of the SDR technique.

3. SDR FOR HARD DEMODULATION

For ease of exposition, we will use the following real-valued equiv-
alent model for (1),

ỹ = H̃b + ṽ, (6)

where ỹ and ṽ are concatenations of the real and imaginary parts
of y and v in (1), respectively. Given λ, the maximum a posteriori
probability bit-vector b for this channel can be found by solving the
following optimization problem:

min
b∈{+1,−1}2Nt

D(b) = min
b∈{+1,−1}2Nt

‖ỹ − H̃b‖2
2 − σ2λT b. (7)

Using the following definitions [9, 11]:

b̃ �
[
b̆
c

]
, b̆ � cb, Q =

[
H̃H̃T a
aT 0

]
, a � −H̃T ỹ − 0.5σ2λ,

(8)
where c ∈ {+1,−1}, the problem in (7) can be stated as the follow-
ing (NP-hard) binary quadratic programming (BQP) problem:

min
b∈{+1,−1}2Nt

D(b) = min
b̃∈{+1,−1}2Nt+1

b̃T Qb̃. (9)

The semidefinite relaxation approach to approximate the solution to
this problem [21,22] involves the solution of the following semidef-

2List approximations can also be applied directly to (3) by marginalizing
over L̂i,+1 and L̂i,−1, respectively; e.g., [5].
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inite program (SDP), which is a (matrix) relaxation of (9),

min Trace(XQ) (10a)

s.t. X � 0 (10b)

Xii = 1, i = 1, . . . , 2Nt + 1. (10c)

This problem is convex and can be solved in polynomial time us-
ing interior point methods [24]. (See [25] for some recent devel-
opments.) However, the solution of (10) is a matrix, from which
one must extract an approximation of the solution to the original
problem (9). If the solution of (10) is rank 1, then this extraction is
straightforward and the optimum solution of (10) generates the opti-
mum solution of (9). When this does not happen, an approximation
to the solution of (9) can be generated by a randomization proce-
dure [21,22]; see also [11]. This randomization procedure will form
the core component of the proposed demodulator, so it is stated here
explicitly:

1. Let Xo = VT V denote a factorization of the solution to (10).
Initialize γ = ∞, x̂ empty, and m = 0. Set the maximum
number of randomizations, M , and define D̃(x̃) = x̃T Qx̃.

2. Choose a random vector u from the uniform distribution on
the unit sphere.

3. Construct x̃ = σ(VT u), where σ(·) is the component-wise
sign operator. Calculate D̃(x̃) and increment m.

4. If D̃(x̃) ≤ γ, set γ = D̃(x̃) and x̂ = x̃.

5. If m < M , return to 2.

6. An approximate solution to (7) is b̂ =
x̂2Nt+1[x̂1, . . . , x̂2Nt ]

T .

In addition to its (low-order) polynomial complexity, a key fea-
ture of the SDR approach is that even for the worst-case channel, the
expected value of D̃(x̃) over the randomizations is guaranteed to
be within a (reasonably small) constant factor of the optimal value
of (7), independent of the number of bits to be detected [22]. Fur-
thermore, since each choice of u in step 2 is made independently,
the probability that D(b̂) is higher than the expected value of D̃(x̃)
decreases exponentially with M .

When randomization is applied to the hard demodulation prob-
lem considered in this section, only the “best” of the randomizations
is retained. One of the motivations for the soft demodulator proposed
in the next section, was to exploit the fact that multiple randomiza-
tions are generated.

4. LIST GENERATION USING A SINGLE SDP

One of the properties of the SDR approach to hard demodulation is
that, on average, the randomly generated bit-vectors in step 3 of the
randomization procedure yield small values for the objective in (7).
That suggests that, on average, these bit-vectors are good candidates
for membership of the list in a list-based approach to soft demod-
ulation, and this is the essence of the proposed approach. We will
construct a preliminary list L̂′ by simply storing each (unique) bit-
vector generated by the randomization procedure. Since it is possible
that there may be bit positions for which L̂′

i,+1 or L̂′
i,−1 is empty,

once the randomizations have been completed we will construct an
enriched list L̂ consisting of L̂′ plus all those bit-vectors with Ham-
ming distance of 1 of the bit-vectors in L̂′. (This enrichment is based
on ideas in [4] and can be implemented by “flipping” individual bits
of each element of L̂′.) Once this enriched list has been constructed,

we adopt the standard list-based approach and approximate the opti-
mization problems in (5) by enumeration over L̂i,+1 and L̂i,−1, re-
spectively. Since the computational cost of this enumeration grows
linearly with the cardinality of L̂, one may wish to bound the car-
dinality of L̂′, and to use this bound to enable early termination of
the randomization procedure should L̂′ be sufficiently rich.3 The
resulting SDR-based list construction procedure takes the following
form:

1. Let Xo = VT V denote a factorization of the solution to (10).
Initialize L̂′ empty, m = 0, and k = 0. Set the maximum
number of randomizations, M , and the maximum list size for
L̂′, K.

2. Choose a random vector u from the uniform distribution on
the unit sphere.

3. Construct x̃ = σ(VT u) and increment m.

4. If b̃ = x̃2Nt+1[x̃1, . . . , x̃2Nt ]
T is not in L̂′, add it to L̂′ and

increment k.

5. If k < K and m < M , return to 2.

6. Construct L̂ as the union of L̂′ and all the single bit-flippings
of the bit-vectors in L̂′.

Once L̂ has been constructed in this way, the maximization of
problems in (5) can be approximated by enumeration over L̂i,±1.
However, since L̂i,±1 does not necessarily contain the optimal so-
lutions to each of these problems, the soft information generated in
this way may be under- or over-estimated. We will take a standard
approach to mitigating this effect [6], and will clip the estimated log-
likelihood ratios to the interval [−5, +5].

In order to determine the computational complexity of the pro-
posed approach, we note that the worst-case complexity of solving
the SDP in (10) using the interior point method in [24] is polyno-
mial and of order O((2Nt + 1)3.5 log ε−1), where ε is a measure
of the accuracy of the solution. The complexity of generating each
random bit-vector is O((2Nt +1)2), and the complexity of comput-
ing the metric D(b) is O((2Nt)

2). The SDR method of [9] solves
one SDP of size 2Nt + 1 and 2Nt SDPs of size 2Nt, so its overall
computational complexity is:

O((2Nt + 1)3.5 log ε−1) + M × O((2Nt + 1)2)

+ 2Nt × [O((2Nt)
3.5 log ε−1) + M × O((2Nt)

2)]

∼ O(N4.5
t log ε−1) + O(MN3

t ). (11)

The proposed list-based approach, requires the solution of only one
SDP of size 2Nt + 1. If we let K ≤ M denote the maximum
cardinality of L̂′ then the cardinality of L̂ is at most (2Nt+1)K, and
hence the enumeration approach to optimizing the terms on the right
hand side of (5) requires at most (2Nt + 1)K evaluations of D(b).
Therefore, the worst-case complexity of the proposed approach is

O((2Nt + 1)3.5 log ε−1) + M × O((2Nt + 1)2)

+ (2Nt + 1)K × O((2Nt)
2)

∼ O(N3.5
t log ε−1) + O(MN2

t ) + O(KN3
t ), (12)

where these terms correspond to the cost of solving the SDP, the cost
of constructing L̂, and the cost of the enumerations in (5) over L̂i,±1,

3This treatment of the cardinality of L̂′ is rather simplistic, but as we will
show in Section 5 its performance is quite good.
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Fig. 2. BER performance comparison, 4 × 4 MIMO system, maxi-
mum number of iterations M and maximum cardinality of L̂′, K.

respectively. This expression shows that the computational cost of
the SDP component of the proposed list-based SDR scheme is one
order less than that of the SDR scheme in [9] that is based on the
hard decision strategy.

5. SIMULATION RESULTS

We now compare the performance of our approach, which we will
call List-SDR, to that of the method in [9], which we will de-
note by Multi-SDR. We consider Nr × Nt MIMO systems with
an i.i.d. Rayleigh block-fading MIMO channel model, and with the
transceiver parameters chosen from those used in [2, 5]. In particu-
lar, the simple V-BLAST transmission scheme is implemented and
the outer code is a rate 1/2 punctured parallel concatenated turbo
code with the (5, 7) recursive systematic convolutional code as the
component codes and an (input) block length of 8192. The conven-
tional BCJR algorithm is used to decode the constituent convolu-
tional codes of the turbo code, and 8 turbo decoding iterations are
performed before we pass the soft information back to the demodu-
lator. Up to 4 demodulation-decoding iterations are performed. Fol-
lowing [14], the SDP problems are solved to an accuracy of at least
10−2 for both the List-SDR and Multi-SDR methods.

Figs. 2, 3 and 4 compare the bit error rate (BER) performance of
the List-SDR and Multi-SDR methods after 1, 2 and 4 demodulation-
decoding iterations for 4 × 4, 8 × 8 and 16 × 16 MIMO systems,
respectively. For each demodulation-decoding iteration we plot four
curves. The dashed curves are those for the method in [9] and the
solid curves for the proposed method. For the method in [9] we plot
curves for two representative values for the number of randomiza-
tions M , the lower of which is the value that was selected in [9]. For
the proposed method we consider a system with the smaller number
of randomizations and K = M so that the list size constraint was
inactive, and a system with a larger number of randomizations and
a small list size constraint (K) that was almost always active; see
also Tab. 1. Each of these curves demonstrates that our proposed
approach provides BER performance close to that of the method
in [9]. The comparisons in [9] between the Multi-SDR method and
other hard-decision-based methods that involve exhaustive search or
sphere decoding principles (such as the method in [2]) suggest that
the performance of the proposed method is also quite similar to those
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methods. For reference, in Figs 2–4 we have indicated the SNR at
which the mutual information for QPSK symbols is equal to the cho-
sen number of bits per channel use. This indicates that the systems
considered provide good performance even when the gap to the input
constrained capacity is as small as 1dB.

Although the performance of each of the systems in Figs 2–4 is
quite similar, it is instructive to explore the performance-complexity
trade-offs therein. First of all, it appears that the number of random-
izations chosen in [9] for the Multi-SDR is an appropriate choice,
because the larger number of randomizations does not appear to
provide significant improvement. When this (smaller) number of
randomizations is selected for the proposed List-SDR method (with
K = M ), the performance degrades slightly, but by less than
0.05dB. In order to assess the average computational cost of the
enumeration step for the List-SDR algorithm, we have provided in
Tab. 1 the average size of the preliminary and enriched lists at each
iteration. These numbers suggest that the computational advantage
of the proposed list-based method over that in [9] that arises from
the fact that only one SDP is solved is not substantially eroded by
the enumeration step.
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Table 1. Average size of the preliminary list L̂′ and enriched list L̂
in the List-SDR method for different MIMO systems at SNR=2.5dB.
For reference, the sizes of the full list L for each MIMO system are
28 = 256, 216 ≈ 6.6 × 104 and 232 ≈ 4.3 × 109, respectively.

System / Iteration 1st 2nd 4th
|L̂′| |L̂| |L̂′| |L̂| |L̂′| |L̂|

4 × 4 (M=25) 7.4 49.4 5.1 36.4 4.1 31.2

8 × 8 (M=25) 13.5 201.5 7.5 115.7 4.6 74.1

16 × 16 (M=80) 54.1 1676.9 26.5 819.1 15.6 500.1

In order to explore the effects of limiting the size of the prelimi-
nary list generated by the List-SDR method, we chose values for K,
the maximum size of the preliminary list, that are smaller than the
average sizes reported in Tab. 1, and we repeated the experiments of
Figs 2–4, with a large value for M so that the list size constraint was
almost always active. Bounding the list size in this way reduces the
worst-case complexity of the enumeration step, yet only results in a
slight degradation in performance (up to 0.05dB). It is apparent from
Tab. 1 that this degradation is due, in large part, to the reduction in
the quality of the soft information in the first demodulation-decoding
iteration.

6. CONCLUSION

We have proposed a soft MIMO demodulator based on an adapta-
tion of the semidefinite relaxation (SDR) method for hard demodula-
tion to list-based soft demodulation. In contrast to list demodulators
based on the principles of sphere decoding, the (worst-case) compu-
tational cost of the proposed approach is bounded by a (low-order)
polynomial of the number of bits to be demodulated, and in contrast
to the SDR-based approach in [9] (that is not based on the list de-
modulation principle), the proposed approach requires the solution
of only one semidefinite program. Our simulation results suggest
that these computational advantages are obtained without incurring
a significant degradation in performance. While we have focused on
BICM-based MIMO systems with V-BLAST transmission of QPSK
symbols, there are natural extensions to systems with more general
space-time transmission schemes, systems with 16-QAM modula-
tion and narrowband synchronous CDMA, and these extensions are
under investigation.
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