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A Multistack Algorithm for Soft
MIMO Demodulation

Mehran Nekuii and Timothy N. Davidson

Abstract—We propose a family of list-based soft demodulators for
multiple-input–multiple-output (MIMO) communication systems based on
a multistack algorithm for traversing the tree structure that is inherent
in the MIMO demodulation problem. The existing stack algorithm for
MIMO soft demodulation stores a single stack of visited nodes in the tree
and expands the stack using the “best-first” principle. In the proposed
multistack algorithm, the single stack is partitioned into a stack for each
level of the tree, and the algorithm proceeds by performing one best-first
search step in each of these stacks in the natural ordering of the tree.
By assigning appropriate priorities to the level at which this “best-first
search per level” processing restarts once a leaf node has been obtained,
the proposed demodulators can achieve tradeoffs between performance
and complexity that dominate those of several existing methods, including
the stack algorithm, in the low-complexity region.

Index Terms—Iterative demodulation and decoding (IDD), list demod-
ulation, sphere decoder, stack algorithm, tree-search decoding, turbo
principle.

I. INTRODUCTION

Multiple-input–multiple-output (MIMO) wireless communication
systems are attractive because they provide the potential for reli-
able communication at substantially higher data rates than the cor-
responding single-antenna system. However, the computational effort
required to achieve these high spectral efficiencies is often beyond
the capabilities of the envisioned devices, and hence there has been
a considerable interest in the development of transceivers that balance
the competing demands of spectral and computational efficiency. A
popular transceiver architecture for balancing these demands is a
MIMO version of the bit interleaved coded modulation (BICM) with
block-by-block transmission and iterative “soft” demodulation and
decoding (IDD), e.g., [1]. A key computational bottleneck in these
schemes is the demodulation step; that is, the extraction of the log-
likelihood ratio (LLR), or an approximation thereof, of each of the
bits transmitted in a given block from the corresponding output block
of the MIMO channel. The design of list-based techniques to manage
this computational burden is the core topic of this paper.

The goal of list-based soft demodulation for block-based MIMO
transmission is to (efficiently) obtain a list of candidate bit vectors
that generate the dominant components of the likelihoods for a given
block, and then to approximate the LLR of each bit transmitted in
that block using the members of the list, e.g., [1]–[8]. A popular
class of approaches to an efficient list generation [1]–[7] is based on
the tree-search representation of the MIMO demodulation problem
[9], [10]. In that representation, the metric that is used to assess the
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Fig. 1. MIMO-BICM-IDD transceiver.

significance of each bit vector corresponds to an additive path metric
in a tree with nonnegative branch metrics. The leaf nodes in the
tree represent the complete bit vectors, and the dominant bit vectors
correspond to leaf nodes with small path metrics. A feature of the
tree-search representation is that, in an IDD receiver, the extrinsic
information provided by the previous iteration of the decoder can
easily be incorporated into the branch metric [2]–[7].

Once the list generation problem has been associated with the search
for leaf nodes with small path metrics, a number of conventional
tree-search algorithms can be applied. Of particular interest is the
extension of the stack algorithm for “hard” demodulation [10], [11] to
the process of list generation [2], [3], [7]. The stack algorithm adopts
a “best-first” search strategy in which the exposed nodes of the tree
are stored in a global stack, and the algorithm proceeds by expanding
the node in the stack with the smallest path metric until a leaf node
is selected for expansion. (That leaf node is the best leaf node in the
tree.) The natural extension of the stack algorithm to the list generation
simply involves continuing the search for the next best leaf node [2],
[3], [7]. Hence, the stack algorithm generates bit vectors in the order
of their path metrics.

While the stack algorithm generates an ordered list, the rapid
growth of the stack size and the consequent complexity of finding
the next best list member are significant impediments to its imple-
mentation in list-based soft demodulation [7]. The goal of this paper
is to propose demodulators that provide greater control over the
complexity–performance tradeoff by constructing a tree-search algo-
rithm that generates a sizeable collection of “good” list members in
the early stages (though not necessarily an ordered collection) so that
a good performance can be obtained even if the algorithm is terminated
for reasons of complexity. The key aspect of the proposed multistack
algorithm is that the (global) stack is partitioned into one stack per
level in the tree. The algorithm then proceeds by performing one best-
first search step per level of the tree in the natural ordering of the
tree. We will show that by assigning appropriate priorities to the level
at which this “best-first search per level” processing restarts, and by
incorporating natural termination criteria, the proposed demodulators
can achieve tradeoffs between performance and complexity that dom-
inate those of several existing methods in the low-complexity region.

II. SYSTEM MODEL

We will consider the coherent narrowband MIMO-BICM-IDD
transceiver structure illustrated in Fig. 1 [1], where the space–time
modulator is the concatenation of a scalar constellation mapper and
any (widely) linear space–time block code [12]. We will consider
scalar constellations of size 2M , and the space–time block code will
transmit K such symbols per block channel use. We will let b(n)

denote the vector of MK bits from the interleaved encoded bit
streams that are mapped to the K symbols at the nth channel use
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s(n) = M(b(n)), where M(·) is the corresponding mapping. Hence,
the vector of received samples at the nth channel use can be written as

y(n) = H(n)s(n) + v(n) = H(n)M(b(n)) + v(n) (1)

where H(n) is the equivalent channel matrix [12] at the nth channel
use, and v(n) is a vector of noise samples, which will be assumed to
be from a zero-mean additive white circular Gaussian noise (AWGN)
model with variance σ2 per real scalar dimension. We will focus on
cases in which the space–time block code is configured so that H(n)

is square or tall.
Since the emphasis of this paper is on the demodulation step, the

outer encoder in Fig. 1 can be any binary encoder, and we will adopt
its corresponding soft-input–soft-output decoder at the receiver. The
role of the soft MIMO demodulator in Fig. 1 is to compute the LLRs
of the interleaved encoded bits based on the channel measurements
and the extrinsic information from previous decoder iterations. This
“soft information” is then passed to the outer soft decoder. Since the
channel model in (1) is memoryless, the soft demodulator can operate
on a block-by-block basis. For notational simplicity, we will drop the
superscript (·)(n) in (1) and consider a generic block channel use.
In that case, the soft demodulator computes (or approximates) the
(conditioned) LLR for each element bi of b [1] as

log
p(bi = 1|y,H)

p(bi = 0|y,H)
= log

ΣLi,1p(y|b,H)p(b)

ΣLi,0p(y|b,H)p(b)
(2)

where L is the list of all 2MK binary vectors b, Li,b
Δ
= {b ∈

L|bi = b}, and under the assumed AWGN noise model p(y|b,H) ∝
e−‖y−HM(b)‖2

2/(2σ2). Assuming that the interleaver is good enough
for the conventional approximation p(b) ≈

∏MK

i=1
p(bi) to hold, the

summands in (2) can be written as e−D(b)/(2σ2) [5], where

D(b)
Δ
= ‖y −HM(b)‖2

2 − 2σ2

MK∑

i=1

log p(bi). (3)

Since each list Li,b contains 2MK−1 terms, there has been a con-
siderable interest in schemes that enable the approximation of (2) by
replacing L with a carefully selected reduce-sized list L̂ that contains
the dominant summands in (2) [1]–[8].

The dominant summands in (2) correspond to binary vectors b
that yield small values for D(b). The search for such vectors is
significantly simplified when the QR decomposition is used to make
the inherent M -ary tree structure explicit [1]–[3], [5], [6], [9], [10].
In particular, if we let HE = QR denote the QR decomposition1 of
HE, where E is a column permutation matrix that determines the

arrangement of the symbols in the tree, and if we define ỹ
Δ
= Q†y,

ṽ
Δ
= Q†v, s̃

Δ
= E†s, and Rj to be the jth row of R, then (3) can be

rewritten as

D(b) =

K−1∑

j=0

|ỹK−j −RK−j s̃|2 − 2σ2 log p(s̃K−j). (4)

Here, p(s̃i) =
∏iM

�=(i−1)M+1
p(b�), where the product is over those

bits that index the symbol s̃i. In (4), the jth summand only depends
on symbols K − j to K, and hence, the inherent tree structure is
exposed [10]. In particular, we can assign the possible values for
the jth summand to be the metrics of the branches emanating from
the nodes at the jth level of the tree (with level 0 being the root).
Since each s̃K−j comes from an M -ary constellation, there will be

1We consider the conventional QR decomposition in which Q†Q = I , where
(·)† denotes the (conjugate) transpose, and R is an upper triangular matrix with
nonnegative diagonal elements [13].

Fig. 2. Snapshot of an instance of the stack algorithm for a system in which
K symbols from a 4-ary constellation are transmitted in each (block) chan-
nel use.

M branches emanating from each node. For later convenience, we
observe that the path metric for a node at level L in the tree is the
sum of the first L terms in (4), and this path metric is additive, with
nonnegative branch metrics.

One approach to searching a tree for the leaf node with the smallest
path metric is to employ the stack algorithm [10], [11], in which all
the exposed nodes of the tree are stored in a stack S. This algorithm
proceeds in a “best-first” manner by selecting the node in the stack
with the smallest metric and replacing it by its child nodes. The first
leaf node that the algorithm selects for expansion corresponds to the
bit vector with the smallest value for D(b). A snapshot of an instance
of the stack algorithm is provided in Fig. 2, where the exposed nodes
have been labeled in increasing order of their path metrics. The next
step in the algorithm would be to expand the node marked D1.

If the stack algorithm is continued to search for the “next best” leaf
nodes, it will produce leaf nodes in increasing order of D(b), and the
corresponding bit vectors constitute a candidate list for demodulation
purposes [2], [3], [7]. However, such a scheme may explore many
internal nodes in the tree before it reaches the leaf node with the next
smallest value for D(b) and hence may expend significant computa-
tional effort and memory resources to find only a few dominant leaf
nodes. The multistack algorithm proposed in the following section
provides greater control over the tradeoff between performance and
complexity, so a large subset of the dominant leaf nodes can be
obtained for a lower computational cost.

III. MULTISTACK ALGORITHM

While the conventional stack algorithm [10], [11] employs a single-
ordered stack of nodes S for the whole tree, we propose to partition
the stack into separate stacks Sk for each level in the tree. In each step
of the conventional stack algorithm, the node in the (global) stack with
the smallest path metric is removed and replaced by its child nodes.
In each step of the proposed multistack algorithm,2 one of the stacks
is selected for processing, and the node with the smallest path metric
in that stack is removed, and its child nodes are placed in the stack
at the next lower level of the tree. A snapshot of an instance of the
multistack algorithm is provided in Fig. 3, where the exposed nodes
have been labeled in increasing order of their path metrics within each

2The proposed multistack algorithm is substantially different from the
multiple-stack algorithm that was developed in [14] for the decoding of
convolutional codes.
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Fig. 3. Snapshot of an instance of the proposed multistack algorithm for a
system in which K symbols from a 4-ary constellation are transmitted in each
(block) channel use.

stack. If the stack at level 3 is selected for processing, the node to be
expanded will be that labeled D3

1 .
The partitioning of the (global) stack into a stack for each level

naturally generates an additional degree of freedom: the order in which
the stacks are processed. In an attempt to obtain “good” leaf nodes
without excessive processing, we will focus on orderings in which the
next stack to be processed is the stack at the next lower level of the tree.
As there are K levels in the tree, this guarantees that the next leaf node
will be found in at most K steps.3 Once a leaf node has been obtained,
there is a degree of freedom in the level at which the search is restarted,
and this choice provides some control over the way in which the tree
is explored (see Section III-A).

Although this degree of design freedom is a distinct advantage of
the proposed algorithm, the leaf nodes are no longer produced in
increasing order of D(b), and hence, we need to ensure that the
algorithm does not expend computational effort to exploring paths with
large metrics. To do so, we only consider those nodes with path metrics
below a certain threshold B that is computed using a preliminary
greedy depth-first search of the tree (see Section III-B).

A key feature of the proposed algorithm is that it generates a
sizeable collection of good leaf nodes in the early stages. We will
exploit this feature by providing explicit termination criteria based
on the size of the list and/or the number of nodes visited in the tree.
These termination criteria enable the algorithm to be tailored to the
computational resources at hand (see Section III-C).

A formal statement of the proposed algorithm is provided in Table I,
and in the following sections, we will discuss some of the features of
the algorithm in more detail.

A. Symbol and Restart Orderings

The conventional stack algorithm has a single degree of freedom,
namely the ordering of the symbols in the tree. In our notation, this
is controlled by the permutation matrix E that is implicit in (4).
The multistack algorithm introduces an additional degree of freedom,
which is the order in which we search for a nonempty stack after
having obtained a leaf node.4 That ordering will be denoted by t,

3Note that, by themselves, these K steps do not necessarily create a contigu-
ous path to a leaf node. They merely expose the child nodes of the best node in
the stack at each level of the tree.

4Or after having encountered a stack whose nodes all have path metrics
greater than B.

TABLE I
PROPOSED LIST CONSTRUCTION ALGORITHM

and the best-first search per level processing is restarted from the first
nonempty stack in that ordering. The variables E and t are set prior
to each demodulation iteration and enable the designer to exert some
control over the way in which the tree is explored. Some candidate
orderings are described below.

1) Vertical Bell Labs Layered Space-Time (V-BLAST) Symbol and
Restart Orderings: In the first iteration, no a priori information is
available, and a natural choice for symbol ordering E is the V-BLAST
ordering [15], in which the symbol to be expanded at the next level
of the tree is the one with the largest signal-to-interference-plus-noise
ratio (SINR). In the generation of the list, it may be fruitful to examine
those symbols with low SINR in the greatest detail. This suggests
a choice of t = [K, K − 1, . . . , 1]. In the subsequent demodulation
iterations, we will retain the same orderings, which means that in this
case the ordering of the search is determined by the channel and noise
realization, and that the decoder exerts no influence over the ordering.

2) Symbol and Restart Orderings Based on A Priori Information:
The principle of the V-BLAST ordering is to place the symbols about
which we are most confident at the top of the tree. When we have
a priori information (i.e., after the first demodulation iteration), we can
choose to use the likelihoods provided by the decoder as the measure of
confidence instead of the SINR. In particular, if we let P (s∗j ) denote
the largest of the prior probabilities for symbols at level j, we can
arrange the symbols in descending order of P (s∗j ). (We will use the
V-BLAST ordering for the first iteration.) As the deep nodes in the
tree represent the symbols about which we are least confident, we will
use the restart ordering t = [K, K − 1, . . . , 1].

3) Restart Ordering Based on A Priori Information: A weakness
of the previous ordering is that, at each demodulation–decoding
iteration, the a priori information is updated, and hence, E may
change. If E does change, then the QR decomposition of HE that
is implicit in (4) will have to be repeated, and this adds to the
computational cost of the algorithm. An alternative is to sort the
stacks instead of the symbols. That is, we retain the V-BLAST symbol
ordering, and upon restart, we examine the stacks in increasing order
of P (s∗j ).
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4) Natural Restart Order: In this approach, we order the symbols
according to the V-BLAST ordering, and upon restart, we examine
the stacks in their natural order. That is, t = [1, 2, . . . , K], and we
examine the stacks starting from the top of the tree. The motivation
for doing so is to provide a diverse collection of candidate paths in the
stacks at each level of the tree.

B. Bounding the Path Metrics

One of the difficulties encountered in the direct application of best-
first search strategies to MIMO soft demodulation is the breadth of
the nodes that are visited and the consequent computational cost and
memory requirement. We address this issue by identifying those nodes
in the tree that have a path metric greater than some prespecified
bound B, and cutting the subtrees below such nodes from the tree.
To ensure that this bound is adapted to the channel realization and the
a priori information, it is determined by first performing a preliminary
greedy depth-first search5 that generates a single leaf node, and then
selecting that node’s path metric as the threshold B. (This preliminary
search also populates the stacks at each level of the tree.) In the first
demodulation iteration, when there is no a priori information, the
resulting leaf node corresponds to the output of a zero-forcing decision
feedback detector with the ordering prescribed by E [9], [10].

C. Bounding the Complexity

If we were to run the proposed algorithm until all the leaf nodes with
a path metric less than B were found, then our approach would be rem-
iniscent of some adaptations of the sphere decoding (SD) algorithm to
list-based soft demodulation [1], [4], [5].6 However, the goal of the
proposed algorithm is to generate a sizeable collection of good leaf
nodes in the early stages, so that a good performance can be obtained
even if the algorithm is terminated before all the leaf nodes with
metrics less than B are found. Since the dominant operations in the tree
search are those that are repeated at each node, and since the size of
the list determines the complexity of computing the list approximation
of the LLRs, the key factors in the computational cost of the algorithm
are the number of nodes visited in the tree search and the size of the
list. The proposed algorithm provides an explicit control over both of
these terms, and we will show in Section V that these controls provide
a convenient way to explore the performance–complexity tradeoff.

IV. LIKELIHOOD COMPUTATION

The goal of the multistack algorithm in Section III (and that of the
related algorithms [1]–[7]) is to efficiently construct a reduced-sized
list L̂ with which the LLRs in (2) can be approximated. However, as
in the related algorithms, after generating L̂ using the algorithm in
Table I, there may be bit positions for which L̂i,0 or L̂i,1 is empty,
and such cases make the list approximation of the LLRs problematic.
Therefore, we will generate an “enriched” list L̂′ by adding all those
bit vectors that are within a Hamming distance of at least one member
of the subset of L̂ containing the bit vectors with the J smallest
metrics [8]. This enriched list can be generated by simply flipping one
bit at a time of each list member.7

5In a greedy depth-first search, the levels of the tree are sequentially
expanded, and the child node with the smallest branch metric is selected at
each step.

6That said, our simple choice for the threshold B avoids the “trial-and-error”
methods in some approaches to list sphere decoding [1].

7If L̂ has L members, then the enriched list has at most L + JMK
members. However, the simulation results indicate that many of the bit-flipped
vectors are already members of L̂, and hence, L′ = |L̂′| is typically much
smaller than L + JMK.

Fig. 4. Tradeoff between the SNR required for a BER of 10−4 and the
average FLOPs per channel use for different algorithms for a 4 × 4 MIMO-
BICM transmission scheme with 16-QAM symbols.

Once the enriched list has been constructed, the LLR in (2) can be
approximated by performing the “max-log” approximation [1] over
the sublists L̂′

i,1 and L̂′
i,0, respectively. That is, we will approximate

the LLR only using the dominant vector in each sublist. To guard
against severe overestimation or underestimation of the soft informa-
tion caused by the list and max-log approximations [6], we will employ
the common practice of clipping the approximated LLRs to a certain
range [6]; in our case, to the interval [−5, 5].

V. SIMULATION RESULTS

We consider a narrowband MIMO transmission over a Rayleigh
block-fading channel with channel gains that are independent and
identically distributed (i.i.d.) zero-mean circular complex Gaussian
random variables of unit variance. To facilitate comparisons of our
results with those in [1] and [2], we employ the same transmitter and
receiver components and parameters. That is, at the transmitter, we
use a rate-1/2 punctured parallel concatenated turbo code with block
length 8192 and (5, 7) recursive systematic convolutional codes as the
component codes, and the V-BLAST transmission scheme [15].8 At
the receiver, we use the conventional Bahl, Cocke, Jelinek, and Raviv
(BCJR) algorithm to decode the constituent codes of the turbo code.
We perform eight turbo decoding iterations before we pass the soft
information back to the demodulator, and four demodulation–decoding
iterations. We will consider two MIMO systems; a system with four
transmit and four receive antennas with Gray-mapped 16 quadratic-
amplitude modulation (16-QAM) symbols, and an 8 × 8 MIMO
system with Gray-mapped QPSK symbols. The size of the complete
list for both of these systems is |L| = 65 536.

In Figs. 4 and 5, we have provided performance-versus-complexity
tradeoff curves for a variety of soft MIMO demodulators, each with
their LLRs clipped to [−5, 5].9 The performance is measured in terms
of the SNR required to achieve a bit error rate (BER) of 10−4 after four

8The (different) interleavers in the turbo code and in the BICM transmitter
are selected from randomly generated candidates in each Monte Carlo iteration.

9Using these tradeoff curves, one can develop a notion of an “efficient
frontier” for soft MIMO demodulation that is similar in spirit to the efficient
frontier for hard demodulation in [16].
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Fig. 5. Tradeoff between the SNR required for a BER of 10−4 and the
average FLOPs per channel use for different algorithms for a 8 × 8 MIMO-
BICM transmission scheme with QPSK symbols.

demodulation–decoding iterations, and the complexity is measured
by explicitly computing the average number of floating-point oper-
ations (FLOPs)10 that are required to generate the (enriched) list L̂′

and to compute the approximate LLRs for one channel use. Qualita-
tively similar results are obtained if one considers other measures of
complexity, such as the peak FLOPs per channel use or the tail proba-
bility of the empirical complexity distribution (cf. [17]). However, the
advantages of the proposed demodulator tend to be greater in those
cases because it was designed to provide good performance with low
complexity.

In Figs. 4 and 5, we consider the multistack algorithm with the four
different symbol and restart orderings mentioned in Section III-A and
limits placed on either the list size (using L) or the number of nodes
visited (using N ). (The bit-flipping scheme in Section IV was applied
to the best J = 20 members of the original list.) We also consider the
stack algorithm, the list SD algorithm, and the M -algorithm. For the
stack algorithm, we chose the list sequential (LISS) method in [2]. In
that method, once an initial list of size L has been found, the LLRs are
approximated using an augmented list that incorporates information
from the incomplete paths of the tree. In our implementation of the
LISS algorithm, we used a stack of size 500 and different initial list
sizes L (mentioned on the figures), and we augmented the list to a size
of 100. For the list SD algorithm, we used the method in [1], in which
the list is generated only once per channel use. While that removes the
computational load of list generation for the subsequent demodulation
iterations, the list does not adapt to the updated a priori information
from the decoder, and hence rather long lists are required for good
performance. To obtain a target list size, the list sphere decoder in [1]
employs a trial-and-error method to determine the appropriate search
radius. However, we have excluded the FLOPs allocated to this task

10Although the demodulators compared here are all based on tree-search
methods, there are significant differences in the computational effort required
to process a given node, and counting the FLOPs enables us to take these
differences into account. Counting the FLOPs also enables us to incorporate
the computational cost of the QR decompositions that are performed and the
impact of the different list sizes on the cost of the list approximation of
the LLRs.

TABLE II
AVERAGE SIZE OF THE PRELIMINARY LIST L̂ AND THE ENRICHED LIST

L̂′, AND THE AVERAGE NUMBER OF NODES VISITED N ′, FOR THE

MULTISTACK ALGORITHM WITH NATURAL OR V-BLAST RESTART

ORDERINGS, AND A LIMIT L ON THE PRELIMINARY LIST SIZE OR

A LIMIT N ON THE NUMBER OF NODES VISITED. THE

SCENARIO CONSIDERED IS THAT IN FIG. 5

in the curves in Figs. 4 and 5. For the M -algorithm, we have used the
efficient iterative tree search (ITS) implementation in [6].

One way to gauge the significance of the SNR gains in Figs. 4 and
5 is to compute the SNR threshold for the systems under consideration
(cf. [1]). For the 4 × 4 system with 16-QAM symbols, that threshold
is about 6.9 dB, and for the 8 × 8 system with QPSK symbols, it
is about 1.6 dB. Since our focus is on the soft demodulator rather
than the whole transceiver, an arguably more relevant benchmark is the
performance of the given MIMO-BICM-IDD system with precise soft
demodulation [cf. (2)]. Although that demodulator is computationally
infeasible, the performance of the LISS method [2] for large list sizes
provides an indication of its performance, because the stack algorithm
generates the leaf nodes of the tree in increasing order of their path
metrics, and the list augmentation process incorporates information
from the incomplete paths in the tree.

Let us first make some observations regarding the performance of
the different instances of the proposed algorithm. By comparing the
dashed and solid curves with the same symbol, it is apparent that for
a given computational cost, limiting the number of nodes visited pro-
vides better performance than limiting the size of the preliminary list,
at least in the low computational cost region that we have examined.
In addition, by comparing curves with different symbols, it is apparent
that the natural restart ordering provides better performance for a given
computational cost. To provide insight into these comparisons, we
selected four instances of the proposed algorithm that result in about
the same computational cost in Fig. 5; two that employ the natural
restart ordering and two that employ the V-BLAST ordering. For these
demodulators, Table II provides the average number of nodes visited,
the average size of the preliminary list, and the average size of the
enriched list for the first, second, and fourth demodulation–decoding
iterations. For each ordering, the scheme with the limit on the number
of nodes visited provides, on average, a larger enriched list in the
first two iterations than the scheme with the bound on the size of
the preliminary list, and it visits fewer nodes in generating these lists.
The richness of these lists enables the demodulator to more effectively
leverage the power of the outer decoder. As shown in Table II, this
results in a significant reduction in the number of nodes visited in the
fourth iteration (and hence a reduction in the computational cost of that
iteration), and as shown in Fig. 5, it also results in a reduction of the
SNR that is required to achieve the desired target error rate.

The tradeoff curves in Figs. 4 and 5 for the stack (LISS) algorithm
in [2] demonstrate the improved performance that can be obtained
by searching for the best leaf nodes in the sequence. However, these
figures also demonstrate the significant computational cost of that
search. In particular, by employing the proposed multistack algorithm
with the natural restart ordering and a bound on the number of nodes
visited, we obtain a performance–complexity tradeoff that dominates
that of the stack algorithm in the low-complexity region. Figs. 4 and
5 also show that the proposed method offers similar performance
to the list sphere decoder [1] at a significantly lower computational
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cost and better performance than the M -algorithm [6] for the same
computational cost. The performance–complexity tradeoff of all the
demodulators in Figs. 4 and 5 can be improved by employing (un-
biased) MMSE preprocessing [10], [18], but the relative tradeoffs
remain qualitatively similar. The relative tradeoffs after fewer than four
demodulation–decoding iterations are also qualitatively similar.

VI. CONCLUSION

We have proposed a tree-search algorithm for list-based MIMO soft
demodulation. The proposed algorithm is based on the “best-first”
search principle used in the stack algorithm, but rather than applying
that principle to a single (global) stack, the global stack is partitioned
into a stack for each level of the tree, and the algorithm sequentially
proceeds by performing one best-first search step in each of these
stacks in the natural ordering of the tree. By assigning appropriate
priorities to the level at which this best-first search per level processing
restarts once a leaf node has been obtained, we have shown that the
proposed approach can achieve a performance–complexity tradeoff
that dominates those of the stack (LISS) algorithm in [2], the list sphere
decoder [1], and the M -algorithm [6] in the low-complexity region.
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Abstract—An efficient voice-over-IP (VoIP) support at the wireless ac-
cess point (AP) of a wireless LAN (WLAN) remains a challenge for the
last-mile wireless coverage of IP networks with mobility support. Due to
the limited bandwidth that is available in WLANs, an accurate analysis of
the voice capacity in such networks is crucial for the efficient utilization
of their resources. The available analytical models only provide the upper
and lower bounds on voice capacity, which may significantly overestimate
or underestimate the WLAN’s capability of supporting VoIP and, thus,
are not suitable for the mentioned purpose. In this paper, we focus on the
voice capacity analysis of a wireless 802.11(a/b) AP running the distributed
coordination function (DCF). In particular, we show that by incorporating
the clients’ spatial distribution into the analysis, we are able to develop a
new analytical model for a much more accurate estimation of the average
voice capacity. By properly exploring this spatial information, we further
propose a new scheme for AP placement such that the overall voice
capacity can be enhanced. The efficiency of the new voice capacity model
and the new AP placement scheme is validated through both analytical and
simulation studies.

Index Terms—IEEE 802.11 distributed coordination function (DCF),
spatial distribution, voice capacity, voice over IP (VoIP), wireless access
point (AP).

I. INTRODUCTION

Voice over Internet Protocol (VoIP) is one of the fastest-growing
Internet applications due to its cost efficiency and its promising
ability to merge voice communication with other multimedia and data
applications [1]. Driven by the huge demands for flexible connectivity
and portable access at reduced costs, wireless local area networks
(WLANs) are increasingly making their way into residential, com-
mercial, industrial, and public areas. While the majority of traffic in
WLAN are data, it is expected that the voice application will become
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